

भारत सरकार

जल संसाधन मंत्रालय

केंद्रीय भूजल बोर्ड

GOVERNMENT OF INDIA MINISTRY OF WATER RESOURCES CENTRAL GROUND WATER BOARD

महाराष्ट्र राज्य के अंतर्गत लातुर जिले की

भूजल विज्ञान जानकारी

GROUND WATER INFORMATION LATUR DISTRICT, MAHARASHTRA

By

U.S. BALPANDE Scientist-C द्वारा **उमेश शे. बालपांडे** वैज्ञानिक-ग

मध्य •ोत्र, -॥•ापुर CENTRAL REGION NAGPUR 2013

LATUR DISTRICT AT A GLANCE

1.	GENERAL INFORMATION		
	Geographical Area	:	7157 sq. km.
	Administrative Divisions	:	10 talukas; Latur, Ahmedpur, Udgir,
	(As on 31/03/2013)		Nilanga, Ausa, Renapur, Chakur,
			Shirur-Anantpal, Deoni and Jalkot.
	Villages		945
	Population (2011)	•	24 55 543
	Normal Annual Rainfall	•	650 mm to 800 mm
2.	GEOMORPHOLOGY	•	
	Major Physiographic unit	:	One: Balaghat Plateau
	Maior Drainage	:	One: Manira
3.	LAND USE (2000-01)		,
	Forest	:	35 sa. km.
	Cultivable Area	:	6423 sq. km.
	Net Area Sown	:	5610 sq. km.
4.	SOIL TYPE		
	Three: Light and medium soil of infer	ior	type (eastern part), deep black soil
	(western part) and Lateritic type (in part)	arts	of Nilanga taluka)
5.	PRINCIPAL CROPS (1999-2000)		<i>c ,</i>
	Jowar	:	1370 sg. km.
	Sugarcane	:	290 sg. km.
	Wheat	:	97 sq. km.
	Pulses	:	40 sg. km.
	Oil Seeds	:	30 sq. km.
6. II	RRIGATION BY DIFFERENT SOU	RC	ES (2006-2007)
Nos.	/Potential Created (ha)		``````````````````````````````````````
	Dugwells	:	38253/84272
	Tubewells	:	15531/32048
	Tanks	:	1025/2139
	Other Minor Surface Sources	:	6794/14341
	Net Irrigated Area	:	130635 ha
7. G	ROUND WATER MONITORING V	VE	LLS (As on 31/03/2012)
	Dug wells	:	28
	Piezometers	:	11
8.	GEOLOGY		
	Recent	:	Alluvium
	Upper Cretaceous-Lower Eocene	:	Deccan Trap Basalt
9.	HYDROGEOLOGY		
	Water Bearing Formation	:	Basalt- Weathered/fractured/ jointed,
			vesicular/massive, under. phreatic and
			semi-confined to confined conditions
	Pre-monsoon Depth to Water Level (May-2011)	:	1.85 to 30.40 m bgl
	Post-monsoon Depth to Water Level (Nov2011)	:	1.05 to 50.00 m bgl
	Pre-monsoon Water Level Trend	:	Rise: Negligible 0.08 – 0.79 m/year
	(2001-2010)		Fall: 0.03 – 2.48 m/year
	Post-monsoon Water Level Trend	:	Rise: 0.06-1.29 m/year
	(2001-2010)		Fall: 0.04 to 0.27 m/year

10. 6	GROUND WATER EXPLORATION	(A	s on 31/03/2012)
	Wells Drilled	:	EW-35, OW-13, PZ-14
	Depth Range	:	29.00 to 203.00 m bgl
	Discharge	:	Traces to 12.24 lps
	Transmissivity	:	6.15 to 83.53 m ² /day
	Storativity	:	$8.68 \ge 10^{-3}$ to $4.7 \ge 10^{-4}$
11.	GROUND WATER QUALITY		
	Good and suitable for drinking and irr	iga	tion purpose, however localized nitrate
	and total hardness contamination is ob	ser	ved.
	Type of Water	:	Ca-HCO ₃ in majority of samples
12.	DYNAMIC GROUND WATER RE	SO	URCES- (As on 31/03/2009)
	Net Annual Ground Water	:	119520 ha.m
	Availability		
	Annual Ground Water Draft	:	93702 ha.m
	(Irrigation + Domestic)		
	Allocation for Domestic and	:	3801 ha.m
	Industrial requirement up to next 25		
	years		
	Stage of Ground Water	:	78 %
	Development		
13. (GROUND WATER CONTROL & R	EG	JULATION
	Over-Exploited Taluka	:	None
	Critical Taluka	:	None
	Semi-Critical	:	1 - Latur
	Notified Taluka	:	None
16. N	AAJOR GROUND WATER PROBL	EN	IS AND ISSUES

The entire district comes under "drought area". In major parts of the district, falling/declining water level trends have been observed in almost entire Nilanga, Ausa, Latur and Renapur talukas and northern part of Ahmadpur and southern part of Udgir taluka. These areas also coincide with deeper premonsoon water levels in the range of 10 to 20 m bgl. The taluka categorised as "Semi-Critical" viz., Latur as well as Ausa, Nilanga, Chakur and Renapur, talukas where the stage of ground water development has already reached about 70% or more also coincide with the deeper water level and declining trend areas. Ground water quality is adversely affected by nitrate contamination.

Ground Water Information Latur District

Contents

1.0	Introduction	1
2.0	Climate and Rainfall	3
3.0	Geomorphology and Soil Types	4
4.0	Ground Water Scenario	5
4.1	Hydrogeology	5
4.2	Water Level Scenario	6
4.3	Yield of Wells	9
4.4	Aquifer Parameters	9
4.5	Ground Water Resources	10
4.6	Ground Water Quality	14
4.7	Status of Ground Water Development	16
5.0	Ground Water Management Strategy	17
5.1	Ground Water Development	17
5.2	Water Conservation and Artificial Recharge	18
6.0	Ground Water Related Issues and Problems	19
7.0	Mass Awareness and Training Activities	19
7.1	M.A.P. and W.M.T.P.	19
8.0	Areas Notified by CGWA/SGWA	20
9.0	Recommendations	20

List of Figures

- 1. Location.
- 2. Hydrogeology.
- 3. Depth to Water Level (Pre-monsoon- May 2011).
- 4. Depth to Water Level (Post-monsoon- Nov. 2011).
- 5. Ground Water Resources (March 2009).

List of Tables

- 1. Studies undertaken by CGWB.
- 2. Salient Features of Ground Water Exploration.
- 3. Annual Rainfall Data (2008-11).
- 4. Aquifer Parameters.
- 5. Ground Water Resources (March 2009).
- 6. Classification of Ground Water Samples for Drinking based on BIS Drinking Water Standards (IS-10500-91, Revised 2003).
- 7. Classification of Ground Water for Irrigation based on EC.
- 8. Classification of Ground Water for Irrigation based on RSC.
- 9. Status of Successful Borewells Drilled by GSDA (March-2008).
- **10.** Nature and Yield Potential of Aquifers.

Ground Water Information Latur District

1.0 Introduction

Latur is one of the drought districts of Marathwada Region of Maharashtra State. It suddenly became famous after it was worst hit by an earthquake on 30/09/1993 at 0355 hrs with an intensity of 6.0-6.5 on Rictcher's scale, causing an enormous damage to the area in the loss of human life, livestock standing crops and property. It is situated in the south-eastern part of the State borderring Maharashtra and Karnataka States. It lies between north latitudes 17°55'00'' and 18°50'00'' and east longitude 76°15'00'' and 77°15'00'' and falls in parts of Survey of India degree sheets 56 B, 56 C and 56 F. The district has a geographical area of 7157 sq. km. out of which only 35 sq.km. is covered by forest, whereas cultivable area is 6423 sq. km. and net sown area is 5610 sq. km. The district forms part of Godavari basin. Manjra River is the main river flowing through the district.

The district headquarters is located at Latur town. For administrative convenience, the district is divided in 10 talukas viz, Latur, Ahmedpur, Udgir, Nilanga, Ausa, Renapur, Chakur, Shirur-Anantpal, Deoni and Jalkot. It has a population of 24,55,543 as per 2001 census. The district has 5 Nagar Parishads, 10 Panchayat Samitis and 786 Gram Panchayats.

Central Ground Water Board has taken up several studies like Systematic Hydrogeological Surveys (SHS) and Reappraisal Hydrogeological Studies (RHS) in the district. A list of studies conducted in the district is presented in Table-1.

S.	Officer	AAP	Type of	Area Covered in the district
No.	S/Shri		Survey/Study	
1.	Verma, S.K.	1985-86	SHS	Toposheet No. 56-C/10
2.	Singh, R. P.	1985-86	SHS	Toposheet No. 56-B/7, 56-B/11 and
				56-B/15
3.	Anand, AVVS	1989-90	SHS	56-B/6 and 56-B/10
4.	Marwaha, S.	1989-90	SHS	56-B/13 and 56-B/14
5.	Jain, S.K. and Marwah,	1993-94	Hydrogeological	Earthquake affected areas of Latur
	S.		Investigation	and Osmanabad districts
6.	Ramaiah, S.N.	1994-95	RHS	Watersheds- MR 13, MR 26, MR
				27, MR 31A, MR 32A, MR 33,
				MR 37, MR 38, MR 39, MR 40,
				MR 41, MR 46B, MR 47, MR 48,
				MR 51, MR 53, MR 54, MR 55,
				MR 56, GV 56B &GV 97B.
7.	Venkateswaran, D.	1995-96	RHS	Watersheds- MR 15, MR 16, MR
				20, MR 21, 28, 29, MR 34, MR 35,
				MR 42, MR 43, MR 44 & MR 45.

Table	1:	Studies	undertaken	by	CGWB.
-------	----	---------	------------	----	-------

In addition to the above, a report on "Ground Water Resources and Development Potential of Latur District, Maharashtra" was issued during year 1998.

Ground water exploration in the district was undertaken during 1994 to 2001 in phases. Since 1994, 35 Exploratory Wells (EW), 13 Observation Wells (OW) and 14 Piezometers (PZ) were drilled at 49 sites (35 EW sites and 14 PZ sites). Pumping tests, to determine aquifer parameters, were also conducted at 10 sites. The taluka wise salient features of ground water exploration are given in Table-2. A map of the district showing the taluka boundaries, taluka headquarters, physical features and location of Piezometers and monitoring wells is presented as **Figure-1**.

Figure-1: Location.

The perusal of Table-2 indicates that the depth of the wells varies from 29.00 to 203.00 metres below ground level (m bgl), while the depth of casing varies from 2.20 m bgl (Hanegaon) to 63.80 m bgl (Killar wadi) and both the EW are located in Ausa taluka.

S.	Taluka	Wells		Depth	Casing	SWL	Dis-	Zones	
No.		EW	WO	ΡZ	(mbgl)	(m bgl)	(m bgl)	charge (lps)	(m bgl)
1.	Udgir	7	3	5	30.00- 195.20	4.80- 11.70	12.55- 66.30	1.37- 12.24	5.60- 165.00
2.	Chakur	3	2	-	81.00- 202.00	7.40- 18.40	5.23- 80.10	1.37- 12.18	7.00- 193.00
3.	Ahmadpur	5	3	1	29.00- 201.00	3.00- 14.50	1.48- 55.80	1.37- 7.76	9.00- 193.00
4.	Latur	5	2	1	172.00- 202.00	5.62- 19.60	5.36- 53.05	1.05- 5.94	6.10- 181.50
5.	Renapur	2	1	-	142.00- 200.00	6.10- 14.50	10.90- 24.30	1.05- 4.43	19.90- 142.00
6.	Ausa	11	1	3	30.00- 203.00	6.00- 63.80	1.85- 100.00	Traces - 5.15	6.00- 193.70
7.	Nilanga	2	1	4	30.00- 172.40	5.40- 5.70	9.20- 35.42	2.16- 3.17	11.00- 145.00
8.	Total	35	13	14	29.00 - 203.00	2.20 - 63.80	1.48 - 100.00	Traces - 12.24	5.60 - 193.70

Table 2: Salient Features of Ground Water Exploration.

The discharge of the wells varies between traces and 12.24 litres per second (lps). Some of wells in the district are dry, whereas the highest yielding EW was located at Wadona (Bk) with discharge of 12.24 lps. Out of 35 exploratory wells drilled in the district, 13 exploratory wells (about 40%) are high yielding with discharge of more than 3 lps. The depth to water level varies from 1.48 m bgl (Kajal Hipparpa) to 100.00 m bgl (Belkund). The depth to water levels was found even more than 50.00 m bgl at Talni, Lohara, Latur road, Shirur Tajband, Kingaon, Chinchalirao Wadi, Belkund and Ausa exploratory wells. The aquifer zones were encountered in the depth range of 5.60 m bgl (Deoni) to 193.70 m bgl (Ausa), thus indicating the presence of water bearing zones even at deeper depths beyond 100 m bgl.

2.0 Climate and Rainfall

There is no meteorological observatory located in the district. The nearby meteorological observatory has been taken as representative for the district. The winter season commences by the end of November when night temperature decreases rapidly. December is generally the coldest month with the mean daily maximum temperature at 29.5°C and the mean daily minimum temperature at about 15°C. On some occasions the minimum temperature drops down to 4 or 5°C due to western disturbances. May is generally the hottest month with temperature at 40°C and mean daily minimum temperature 27 °C. In

summer the humidity is less than 25%.

The normal annual rainfall over the district varies from 650 to 800mm and it increases from southwest to northeast. It is minimum in the southern part of the district around Nilanga and increases towards north east and reaches a maximum around Udgir. The average annual rainfall for 2008-2011is about 761 mm and same is presented in Table–3.

	2008	2009	2010	2011	AVERAGE
	Rain (in mm.)	Rain (in mm.)	Rain (in mm.)	Rain (in mm.)	(2008-11)
Latur	785.5	720.2	1054.4	726	821.53
Ausa	711.45	560.9	896.4	541.7	677.61
Ahmedpur	542.18	466.9	1096.6	679.2	696.22
Nilanga	644.61	607	1243.2	725	804.95
Udgir	769.42	527.8	1209.6	790.1	824.23
Chakur	756.58	541.7	983.7	749.3	757.82
Renapur	766.12	571.9	956.9	722.6	754.38
Davani	718.95	463.8	1076	856.2	778.74
Shirur Anantmal	754.5	658	1028.4	606.2	761.78
Jalkot	753	501	971.3	703	732.08
AVERAGE	712.98	544.33	1051.34	708.14	760.93

Table 3: Annual Rainfall (2008-2011).

(Source-website of Maharashtra Government: mahaagri.gov.in)

3.0 Geomorphology and Soil Types

Geomorphologically, Balaghat plateau running eastwards is the main geomorphological unit. In general the area of the district shows uneven topography with residual hills belonging to Balaghat ranges. The altitude of the area ranges between 500 to 715 m above mean sea level (m amsl). Physiographically, the district can be divided into two parts i.e., Higher Elevated Plateaus, which occurs in the western and southern parts of the district in Latur, Ausa, and Nilanga talukas and Lower Elevated River Valleys, which comprises valley plains of Manyar and Lendi rivers in Ahmedpur and Udgir talukas and valley plains of Manjra and Tawarja rivers and plains of Terna River and its tributaries. The district forms a part of Godavari basin. Manjra River, a tributary of Godavari River flowing south-easterly is the major river in the district. Tawarja and Terna rivers are the main easterly flowing tributaries while Gharni and Rena rivers are southerly flowing tributaries of Manjra River. The rivers show dendritic and rectangular drainage pattern.

The district can be divided into the two zones based on soil characteristics i.e., the first zone which occurs in eastern part of the district comprising of Ahmedpur, Udgir and

parts of Latur and Ausa talukas. It consists of light and light medium soil of inferior type. They are not retentive of moisture and are therefore suitable for the cultivation of Kharif crops only. The soil in some parts of Nilanga taluka is of Lateritic type and the second zone which occurs in western part of the district comprising parts of Latur and Ausa talukas. They are heavy deep black cotton soils. Owing to the peculiarity of the soil, both Kharif and Rabi crops are cultivated in this zone.

4.0 Ground Water Scenario

4.1 Hydrogeology

Almost entire district is underlain by the Basaltic lava flows of upper Cretaceous to lower Eocene age. The shallow Alluvial formation of Recent age also occur as narrow stretch along the banks of major rivers flowing in the area but it does not form potential aquifer. A map depicting the hydrogeological features is shown in **Figure-2**.

Figure-2: Hydrogeology 4.1.1 Deccan Trap Basalt

Deccan Traps occurs as Basaltic lava flows, which are normally horizontally disposed

over a wide stretch and give rise to tableland type of topography on weathering also known as plateau. These flows occur in layered sequence ranging in thickness from few metres to 50 m. Flows are represented by massive portion at bottom and vesicular portion at top and are separated from each other by marker bed known as bole bed

Ground water in Deccan Trap Basalt occurs under phreatic conditions at shallow depths upto 15 to 20 m. At deeper levels, the ground water occurs under semi-confined to confined conditions. The weathered and fractured trap occurring in topographic lows, form the main aquifer in the district. The vesicular portion of different lava flow varies in thickness from 15 to 25 m and forms the potential zones. The yield of dugwells tapping upper phreatic aquifer ranges between 25 to 250 m³/day, whereas that of borewells varies form 0.50 to 52.00 m³/day depending upon the local hydrogeological conditions. The exploration data of CGWB and borewell data of Groundwater Surveys and Development Agency (GSDA) reveals the presence of promising deeper confined aquifers even below 100 m.

4.2 Water Level Scenario

Central Ground Water Board periodically monitors 28 National Hydrograph Network Stations (NHNS), four times a year i.e., in January, May (Pre-monsoon), August and November (Post-monsoon).

4.2.1 Depth to Water Level – Pre-monsoon (May-2011)

During the pre-monsoon period of May 2011, in most part of the district, depth to water levels is less than 20 m bgl. Deeper water levels between 20-40 m are observed in Nilanga, Deoni, Udgir and Jalkot tehsils of Latur district. Depth to water level between 2-5 m bgl is observed in part of Udgir and Shirur-Anantpal talukas of the district. Groundwater levels between 5 and 10 m is observed in Renapur, Ahmedpur, Latur, Ausa, Nilanga, Udgir, Shirur and Deoni tehsils. Deeper water levels between 10 to 20 m is observed in almost all the talukas of the district. The depth to water level map for May 2011 is shown in figure 3.

Figure-3: Depth to Water Level (Pre-monsoon- May 2011).

4.2.2 Depth to Water Level – Post-monsoon (Nov -2011)

During the post-monsoon period of 2011, depth to water level observed in major part of the district is less than 10 m bgl. Deeper water level between 20 to 40 m bgl is observed in Nilanga taluka of the district. A very shallow water level of less than 2 m bgl is observed in parts of Udgir, Shirur, Deoni, Latur, Chakur and Renapur talukas. The water level map for the post-monsoon period is shown in Figure 4.

Figure-4: Depth to Water Level (Post-monsoon- Nov.2011).

4.2.3 Seasonal Water Level Fluctuation- (May to Nov. 2011)

The seasonal water level fluctuation between pre-monsoon and post-monsoon of 2011 is shown in Figure 5. The water level fluctuation map reveals that in major part of the Latur district, the rise of more than 4 m is observed during the post-monsoon period. Less than 2 m rise of water level is observed in pockets in Ausa, Nilanga and Udgir talukas. Fall in water level of less than 2 m is also observed in Ausa talukal of Latur district.

4.2.4 Water Level Trend

Trend of water levels for pre and post monsoon period for 10 years (2001-10) have been computed for NHNS located in the district. It is observed that during pre monsoon period, rise of water level has been observed in the range of 0.08 to 0.79m/year whereas, fall in water level has been observed in the range of 0.03 to 0.25 m/Year.

During postmonsoon period, rise of water level has been observed in the range of 0.061 to 1.29m/year. Fall in water level has been observed in the range of 0.04 to 0.27 m/Year

4.3 Yield of Wells

The yields of wells are functions of the permeability and transmissivity of aquifer encountered and vary with location, diameter and depth etc. Ground water in the area is being developed by two types of abstraction structures i.e., borewells and dugwells. However, dugwells are the main ground water abstraction structures in the district for domestic and irrigation use. The yield of dugwells varies from 75 to 250 m³/day during winter season and during summer season it varies from 25 to 100 m³/day. High yielding dugwells are generally located in weathered and fractured basalt occurring in physiographic depressions. The yield of borewells as per CGWB and GSDA data varies form 0.50 to 52.00 m³/day. The majority of high yielding borewells of GSDA are located in the vicinity of lineaments in western, southwestern and north eastern parts of the district in the depth range of 50 to 80 m bgl tapping semi-confined to confined aquifers.

4.4 Aquifer Parameters

The aquifer parameters of phreatic aquifer are available from previous studies conducted by CGWB. In Deccan Trap Basalt, the specific capacity of dugwells ranges from 17.61 to 429.94 lpm/m of drawdown. While the permeability ranges from 5.47 to 50.56 m/day. The transmissivity and storativity of deeper aquifer as obtained from pumping tests conducted on exploratory wells ranges from 6.15 to 83.53 m²/day and 8.68 x 10⁻³ to 4.7 x 10⁻⁴ respectively. The aquifer parameters of phreatic and deeper aquifers are presented in Table-4.

S. No.	Aquifer/ Formation	Transmissivity (m²/day)	Storativity	Permeability (m/day)	Specific Capacity (lpm/m of
1	Shallow/Phreatic	Aquifer			uu)
1.	Magging Pagelt			5 17 to 16 22	41.14 to
a	Massive Dasait	-	-	5.47 10 10.55	41.14 10
					332.88
b	Vesicular Basalt	-	-	9.24 to 50.56	17.61 to
					429.94
2.	Deeper Aquifer	6.15 to 83.53	$8.68 \ge 10^{-3}$ to	-	-
	(Basalt)		4.7 x 10 ⁻⁴		

Table	4:	Aquifer	Parameters.
-------	----	---------	-------------

4.5 Ground Water Resources

Central Ground Water Board and GSDA have jointly estimated the ground water resources of Latur district based on GEC-97 methodology as on March 2009. The same are presented in Table-5. A graphical representation is given in figure 5.

As per the estimation the annual replenishable groundwater resource is 126264 ha.m with the natural discharge of 6744 ha. m, thus the net annual ground water availability comes to be 119520 ha.m. The total gross draft for all uses is estimated at 93702 ha.m with irrigation sector being the major consumer having a draft of 91637 ha.m. The draft for domestic and industrial sectors is worked at 2065 ha.m. The overall stage of ground water development for the district is 78% which is quite high. Out of 10 talukas, Latur taluka has been categorised as "Semi-Critical", all the remaining watersheds falls in "Safe" category. Similarly, the ground water resources were also assessed for all 39 watersheds, out of which 23 watersheds have been categorised as "Semi Critical", and 7 watersheds (GV 97C, MR 15, MR 19, MR 33, MR 39, MR 43 and MR 44) have been categorised as "Over-Exploited".

In all these, "Semi-Critical" and "Over-Exploited" watersheds and "Semi-Critical" taluka of Latur, future ground water development is not recommended without adhering to the precautionary measures i.e., artificial recharge to augment the ground water resources and adoption of ground water management practices.

Figure-5: Ground Water Resources (March 2009).

Table 5:- Ground Water Resources (March 2009).

Figures in HAM

SI No	Administrative Unit	Command / Non- Command / Total	Net Annual Ground Water Availability	Existing Gross Ground Water Draft for irrigation	Existing Gross Ground Water Draft for domestic and industrial water supply	Existing Gross Ground Water Draft for All uses	Provision for domestic and industrial requirement supply to 2025	Net Ground Water Availability for future irrigation development	Stage of Ground Water Development {13/10 * 100}%
1	Ahmedpur	Command	341.79	518.95	52.87	571.82			
	Ahmedpur	Non Command	14359.86	7835.99	251.49	8087.48			
	Ahmedpur	Total	14701.65	8354.94	304.36	8659.30	600.57	5656.66	58.90
2	Anantpal Sh	Command							
	Anantpal Sh	Non Command	2846.15	2125.76	52.21	2177.97			
	Anantpal Sh	Total	2846.15	2125.76	52.21	2177.97	140.92	541.53	76.52
3	Ausa	Command	1921.28	2824.50	40.54	2865.03			
	Ausa	Non Command	24705.39	17164.28	291.79	17456.06			
	Ausa	Total	26626.66	19988.77	332.32	20321.09	657.27	5988.82	76.32
4	Chakur	Command	385.89	486.22	15.36	501.57			
	Chakur	Non Command	8069.61	6766.83	146.83	6913.66			
	Chakur	Total	8455.50	7253.05	162.19	7415.23	240.95	1338.98	87.70
5	Devani	Command							
	Devani	Non Command	3259.86	1911.34	64.60	1975.94			
	Devani	Total	3259.86	1911.34	64.60	1975.94	140.65	1212.95	60.61

6	Jalkot	Command							
		Non							
	Jalkot	Command	3257.91	1496.22	36.29	1532.51			
	Jalkot	Total	3257.91	1496.22	36.29	1532.51	96.41	1494.10	47.04
7	Latur	Command	3028.46	4379.94	108.55	4488.49			
	Latur	Non Command	17624.22	14258.60	226.30	14484.90			
	Latur	Total	20652.68	18638.54	334.85	18973.39	594.72	2262.81	91.87
8	Nilanga	Command	1197.68	1633.08	68.53	1701.61			
	Nilanga	Non Command	18679.66	15809.03	353.55	16162.58			
	Nilanga	Total	19877.34	17442.11	422.08	17864.19	715.67	2987.18	89.87
9	Renapur	Command	1484.15	2037.53	30.75	2068.28			
	Renapur	Non Command	6587.21	5011.00	104.03	5115.03			
	Renapur	Total	8071.37	7048.53	134.78	7183.31	220.38	1075.43	89.00
10	Udgir	Command	1058.38	989.40	64.87	1054.27			
	Udgir	Non Command	10712.65	6388.48	156.23	6544.71			
	Udgir	Total	11771.03	7377.88	221.10	7598.98	393.78	4309.31	64.56
	District Total		119520.20	91637.14	2064.78	93701.91	3801.32	26867.77	78

4.6 Ground Water Quality

CGWB is monitoring the ground water quality of the Latur district since the last four decades through its established monitoring wells. The objectives behind the monitoring are to develop an overall picture of the ground water quality of the district. During the year 2011, the Board has carried out the ground water quality monitoring

Of 21 monitoring wells. These wells mainly consist of the dug wells representing the shallow aquifer. The sampling of ground water from these wells was carried out in the month of May 2011 (pre-monsoon period). The water samples after collection were immediately subjected for the analysis of various parameters in the Regional Chemical Laboratory of the Board at Nagpur. The parameters analysed, include pH, Electrical Conductivity (EC), Total Alkalinity (TA), Total Hardness (TH), Nitrate (NO₃) and Fluoride (F). The sample collection, preservation, storage, transportation and analysis were carried out as per the standard methods given in the manual of American Public Health Association for the Examination of Water and Wastewater (APHA, 1998). The ground water quality data thus generated was first checked for completeness and then the validation of data was carried out using standard checks. Subsequently, the interpretation of data was carried out to develop the overall picture of ground water quality in the district in the year 2011.

4.6.1 Suitability of Ground Water for Drinking Purpose

The suitability of ground water for drinking purpose is determined keeping in view the effects of various chemical constituents in water on the biological system of human being. Though many ions are very essential for the growth of human, but when present in excess, have an adverse effect on human body. The standards proposed by the Bureau of Indian Standards (BIS) for drinking water (IS-10500-91, Revised 2003) were used to decide the suitability of ground water. The classification of ground water samples was carried out based on the desirable and maximum permissible limits for the parameters viz., TA, TH, NO₃ and F prescribed in the standards and is given in **Table-6**.

Parameters	DL	MPL	Samples with conc. < DL	Samples with conc. in DL- MPL	Samples with conc. >MPL
TA (mg/L)	200	600	12	9	-
TH (mg/L)	300	600	7	14	-
NO ₃ (mg/L)	45	No relaxation	8	-	13
F (mg/L)	1.0	1.5	21	-	-

Table-6: Classification of Ground Water Samples for Drinking based on BISDrinking Water Standards (IS-10500-91, Revised 2003)

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

The perusal of **Table-6** shows that the concentrations of all the parameters except nitrate in most of the samples are above the maximum permissible limit of the BIS standards. It is also seen from the **Table-6** that the potability of ground water in the wells is mainly affected due to the Nitrate (NO₃) as its concentration exceeds more than MPL in 62% of samples. Overall, it can be concluded that the ground water quality in the wells monitored in the district is affected because of high NO₃ concentrations.

4.6.2 Suitability of Ground Water for Irrigation Purpose

The water used for irrigation is an important factor in productivity of crop, its yield and quality of irrigated crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. Electrical Conductivity (EC) and Residual Sodium Carbonate (RSC) are the most important quality criteria, which influence the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The amount of dissolved ions in the water is best represented by the parameter electrical conductivity. The classification of water for irrigation based on the EC values is as follows.

Low Salinity Water (EC: 100-250 μ S/cm): This water can be used for irrigation with most crops on most soils with little likelihood that salinity will develop.

Medium Salinity Water (EC: 250 – 750 μ S/cm): This water can be used if moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

High Salinity Water (EC: 750 – 2250 μ S/cm): This water cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very High Salinity Water (EC: >2250 µS/cm): This water is not suitable for

irrigation under ordinary condition. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and very salt tolerant crops should be selected.

The classification of ground water samples collected from monitoring wells for irrigation purpose was carried out and given below in **Table-7**.

It is clear from the **Table-7** that maximum number of samples (76%) falls under the category of high salinity water while nearly 19% of samples fall in medium salinity water category. This shows that the ground water in the pre-monsoon season from shallow aquifer in the district should be used for irrigation with proper soil and crop management practices.

Table-7: Classification of Ground Water for Irrigation based on EC.

Туре	EC (µS/cm)	No. of Samples	% of Samples
Low Salinity Water	<250	Nil	Nil
Medium Salinity Water	250-750	4	19
High Salinity Water	750-2250	16	76
Very High Salinity	>2250	1	5
Water			
Total		21	100.0

Residual Sodium Carbonate (RSC)

Residual Sodium Carbonate (RSC) is considered to be superior to EC as a measure of sodicity particularly at low salinity levels. The classification of ground water samples based on RSC values for its suitability for irrigation purpose is shown below in **Table-8**.

Table-8: Classification of Ground Water for Irrigation based on RSC.

Туре	RSC	No. of Samples	% of Samples
Good	<1.25	21	100
Doubtful	1.25-2.50	-	-
Unsuitable	>2.50	-	-
Total		21	100

A perusal of **Table-8** shows that the RSC values of ground water samples collected from the wells is less than 1.25 in about 100% of wells, which reflects that the overall quality of ground water in the monitoring wells is good for irrigation purpose.

4.7 Status of Ground Water Development

Ground water development depends on many factors viz., availability, crop water requirement, socio-economic fabric and on the yield of the aquifers existing in that area.

Ground water is predominantly used for irrigation, as it is the major ground water utilising sector. As per the data available for year 2006-07, The total number of dugwells are 38253 and area irrigated by dugwell is 84272 hectares. Similarly the total number of tubewells is 15531 and the area brought under irrigation by tubewells is 32048 hectares. An area of 2139 hectares is under irrigation by 1025 tanks in the district. Similarly the area brought under irrigation by other minor surface water sources 6794 in no. has brought an area of 14341 hectares under irrigation. The Net irrigated area is 130635 hectares.

State Government agencies have drilled number of borewells fitted with hand pumps and electric motors for rural drinking water purposes in the district. In all till March 2008, GSDA, Government of Maharashtra has drilled 6758 successful borewells for rural water supply under various schemes in the district, out of which 1682 bore wells are fitted with electric pumps and the rest 5072 are fitted with hand pumps. Talukawise distribution of successful borewells is given in Table 9.

S No.	Taluka	Successful	Borewells fitted	Borewells fitted with
		Borewells	with Hand Pump	Electric Pump
1	Latur	1086	790	296
2	Renapur	838	677	160
3	Ahmedpur	655	530	125
4	Jalkot	219	176	43
5	Chakur	684	524	160
6	Shirur Anantpal	363	271	92
7	Ausa	1042	739	302
8	Nilanga	970	669	301
9	Devni	268	203	65
10	Udgir	631	493	138
Total	Borewells	6756	5072	1682

Table 9: Status of Successful Borewells Drilled by GSDA (March-2008).

5.0 Ground Water Management Strategy

Ground water has special significance for agricultural development in the district. The ground water development in major parts of the district has reached a critical stage resulting in decline of ground water levels over a period of time. There is thus a need to adopt an integrated approach of development of ground water resources dovetailed with ground water augmentation to provide sustainability to ground water development.

5.1 Ground Water Development

Entire district is underlain by Deccan Trap Basalt. The eastern, extreme southern and

western parts of the district comprising parts of Ahmedpur, Nilanga, Latur and Ausa talukas have low ground water development potential. The areas with medium ground water development potential are observed in northern, central and southern part of the district comprising entire Shirur-Anantpur taluka and parts of Renapur, Udgir, Nilanga, Ausa and Latur taluksa. The entire Deoni taluka, northern parts of Chakur, southern parts of Renapur and Udgir, eastern parts of Latur and extreme south-western part of district have high ground water development potential. In these areas, the ground water can be developed through dugwells, dug-cum-bored wells (DCB) and borewells. However, the sites for borewell need to be selected only after proper scientific investigation and they should only be used for drinking water supply and not for irrigation. Also in Latur taluka categorised as "Semi-Critical", the ground water development needs to be carried out with proper care and planning. The yield of dugwells in the district may be expected to range from 75 to 250 m³/day, depending on the local hydrogeological conditions. The nature and yield potential of the aquifers occurring in different talukas is given in Table 10.

Sr.	Taluka	Main Aquifer	Yield Potential	Type of Wells Suitable
No.				
1.	Latur	Basalt	Low to High	Dugwell, DCB and Borewells
2.	Renapur	Basalt	Medium to High	Dugwell, DCB and Borewells
3.	Ahmedpur	Basalt	Low to High	Dugwell, DCB and Borewells
4.	Jalkot	Basalt	Low to Medium	Dugwell and DCB
5.	Chakur	Basalt	Low to High	Dugwell, DCB and Borewells
6.	Shirur Anantpal	Basalt	Medium	Dugwell and DCB
7.	Ausa	Basalt	Low to High	Dugwell, DCB and Borewells
8.	Nilanga	Basalt	Low to High	Dugwell, DCB and Borewells
9.	Devni	Basalt	High	Dugwell, DCB and Borewells
10.	Udgir	Basalt	Low to High	Dugwell, DCB and Borewells

 Table 10: Nature and Yield Potential of Aquifers.

5.2 Water Conservation and Artificial Recharge

In Basaltic area, the artificial recharge structures feasible are check dams, gully plugs, percolation tanks, nalla bunds, etc. The structures like gully plugs, contour bunds are most favorable in the hilly area. Existing dugwells can also be used for artificial recharge; however, the source water should be properly filtered before being put in the wells.

These sites need to be located where the hydrogeological conditions are favorable, i.e., where sufficient thickness of unsaturated/de-saturated aquifer exists and water levels are more than 5 m deep. The postmonsoon depth to water level map and premonsoon water level

trend map gives a good idea of areas suitable for artificial recharge of ground water and they are located in major parts of Nilanga, Ausa, Latur, Renapur and Ahmedpur talukas, where water levels are deep and falling water level trends are also observed.

6.0 Ground Water Related Issues and Problems

The rainfall data analyses for the period 1901-1995 indicates that the probabilities of occurrence of moderate drought varies from 18% at Latur to 30% at Ausa. The entire district comes under "drought area". In major parts of the district, falling/declining water level trends have been observed in almost entire Nilanga, Ausa, Latur and Renapur talukas and northern part of Ahmadpur and southern part of Udgir taluka. These areas also coincide with deeper premonsoon water levels in the range of 10 to 20 m bgl. The talukas categorised as "Semi-Critical" viz., Latur as well as Ausa, Nilanga and Chakur, talukas where the stage of ground water development has already reached about 70% or more also coincide with the deeper water level and declining trend areas. Thus future water conservation and artificial recharge structures in the district may be prioritised in this part of the district. Also future ground water development is not recommended without adhering to the precautionary measures i.e., artificial recharge to augment the ground water resources and adoption of ground water management practices.

Ground water quality is adversely affected by nitrate contamination in 62% of the samples collected in May 2011. Continues intake of high nitrate concentration water causes infant methaemoglobinamea, popularly known as Blue Babies disease. Thus all the wells used for water supply should be first analysed for nitrate contents and if the nitrate content is found beyond permissible limit the ground water may be used for other purposes than drinking. Adequate sanitary protection to the wells may be provided to control the nitrate contamination.

7.0 Mass Awareness and Training Activities

7.1 M.A.P. and W.M.T.P.

No Mass Awareness Programme (MAP) and Water Management Training Programme (WMTP) have been organised in Latur district. However, it is recommended that such programmes should be organized in large scale by district administration, so as to educate the user regarding yielding capacity of aquifer and declining trend of water levels in the district. Similarly farmer should also be encouraged to adopt appropriate crop planning and irrigation practices.

8.0 Areas Notified by CGWA/SGWA

As per ground water resource estimation 1 taluka viz., Latur have been categorised as "Semi Critical". However, so far none of the taluka has been notified either by CGWA or SGWA.

9.0 Recommendations

- 1 The entire district is underlain by the Deccan Trap Basalt where only dugwells are most feasible structures for ground water development. The sites for borewell need to be selected only after proper scientific investigation.
- 2 Borewells generally tap deeper fractures, which may not be sustainable. Besides, the borewells should only be used for drinking water supply and not for irrigation.
- 3 The overall stage of ground water development for the district is has already reached 64.56%. Therefore, future development of ground water resources should be carried out with proper care and planning.
- 4 The talukas categorised as "Semi-Critical" viz., Latur where the stage of ground water development has already reached about 91% or more coincide with the deeper water levels and declining water level trends. Thus future water conservation and artificial recharge structures in the district may be prioritised in these parts of the district. Also future ground water development is not recommended without adhering to the precautionary measures i.e., artificial recharge to augment the ground water resources and adoption of ground water management practices in these talukas.
- 5 The entire Deoni taluka, northern parts Chakur, southern part of Renapur and Udgir, eastern part of Latur and extreme south-western part of district have high ground water development potential. In these areas the ground water can be developed through dugwells, dug-cum-bored wells (DCB) and borewells. However, in Latur taluka categorised as "Semi-Critical", the ground water development needs to be carried out with proper care and planning. The yield of dugwells in the district may be expected from 75 to 250 m³/day, depending on the local hydrogeological conditions.
- 6 The scope exists for constructing of suitable artificial recharge structures in the district. The structures recommended for the hilly-basaltic area are: contour bunds, gully plugs,

nala bunds and check dams. For other Basaltic areas, particularly in Nilanga, Ausa, Latur, Renapur and Ahmedpur talukas, where water levels are deep and falling water level trends are also observed, the nala bunds, check dams and KT weirs are suggested. The existing dugwells may also be used for artificial recharge of ground water provided source water is free of silt and dissolved impurities.

- 7 The existing village ponds need to be rejuvenated to act both as water conservation and artificial recharge structures.
- 8 Ground water quality is adversely affected by nitrate contamination in 62% of the samples collected in May 2011. Thus all the wells used for water supply should be first analysed for nitrate contents and if the nitrate content is found beyond permissible limit the ground water may be used for purposes other than drinking. Adequate sanitary protection to the wells may be provided to control the nitrate contamination.
- 9 To enhance the ground water resources and for sustainable development, mass awareness programmes should be organized in large scale by district administration. Such programmes are necessary so as to educate the user regarding yielding capacity of aquifer and declining trend of water levels in the district. Similarly farmer should also be encouraged to adopt appropriate crop planning and irrigation practices.