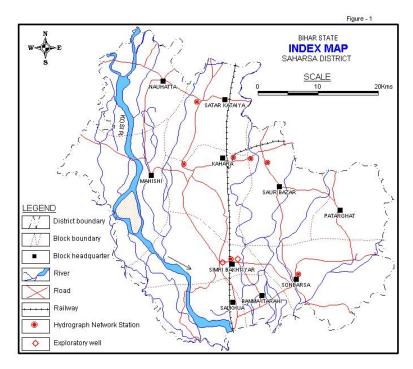


(भारत सरकार)

मध्य-पूर्वी क्षेत्र


पटना

सहरसा जिला, बिहार

Ground Water Information Booklet Saharsa District, Bihar State

केन्द्रीय भूमिजल बोर्ड जल संसाधन मंत्रालय

Central Ground water Board Ministry of Water Resources (Govt. of India) **Mid-Eastern Region** Patna

सितंबर 2013

September 2013

Sri S. Sahu Sc. C

CONTENTS

Page No

DIST	RICT AT A GLANCE			5-6	
1.0	INTRODUCTION			7-12	
	1.1	1	Location, Area and Administrative Details	7-8	
	1.2	2	Basin/Sub-Basin and Drainage	8-10	
	1.3	3	Water use habits	10-11	
	1.4	4	Land use, Agriculture and Irrigation Practices	11-12	
	1.5	5	Studies carried out by CGWB	12-12	
2.0	CLIMATE AND RAINFA	ALL		12-12	
3.0	GEOMORPHOLOGY AN	ND S	SOIL	13-13	
	3.1	1	Geomorphology	13-13	
	3.2	2	Soil	13-13	
4.0	GROUND WATER SCE	NAF	RIO	14-18	
	4.1	1	Water Bearing Formations	14-15	
	4.2	2	Depth to Water Level	15-16	
	4.3	3	Ground Water Quality	17-17	
	4.4	4	Ground Water Resources	17-18	
5.0	GROUND WATER MAN	NAG	EMENT STRATEGY	19-20	
	5.1	1	Ground Water Development	19-19	
	5.2	2	Design and construction of Tube Wells	19-20	
	5.3	3	Water Conservation and Artificial Recharge	20-20	
6.0	GROUND WATER REL	ATE	ED ISSUES AND RELATED PROBLEMS:	20-20	
7.0	MASS AWARENESS AN	ND 7	FRAINING PROGRAMME	20-20	
0.0	AREA NOTIFIED BY CENTRAL GROUND WATER AUTHORITY/				
8.0	STATE GROUND WATER AUTHORITY				
9.0	RECOMMENDATION			20-20	

LIST OF TABLES

Table No	Title	Page No.
Table 1	Demographics of Saharsa district, Bihar.	7-8
Table 2	Agricultural seasons and major crops in Saharsa district, Bihar.	11-11
Table 3	Ground water quality in Saharsa district.	17-17
Table 4	Net groundwater availability (ham) and stage of groundwater development in Saharsa district, Bihar (As on 31 st March 2009).	18-18
Table 5	Proposed Model of DTWs in Saharsa district	19-19
Table 6	Proposed slot openings for tube wells in Saharsa district.	19-19

LIST OF FIGURES

Figure No	Title	Page No.			
Figure 1	Map of Saharsa district showing administrative details.	ails. 8-8			
Figure 2	Map of Kosi megafan and the location of Saharsan district in it.	9-9			
Figure 3	(A) Large scale inundation in the downstream parts of the Kosi River due to bank breaching in 2008. (B) Collapse of bridges and sand filling in the old small channels in the megafan. (C) Agricultural lands covered with sand, making them uncultivable.	10-10			
Figure 4	Water table exposed in a small pit of hardly 1.5 m deep during November in Saharsa district, Bihar.	10-10			
Figure 5	Monthly distribution of normal rainfall in the Saharsa district, Bihar state.	12-12			
Figure 6	The hydrogeological map of Saharsa district, Bihar.	14-14			
Figure 7	A hydrogeological transect depicting thick sand zones up to 80 m below ground in the district of Saharsa in Bihar.	15-15			
Figure 8	(A) Pre- and (B) post-monsoon depth to water level map of Saharsa district.	16-16			
Figure 9	Bar diagram depicting the stage of groundwater development in blocks of Saharsa district, Bihar.	18-18			

GROUNDWATER INFORMATION BOOKLET SAHARSA DISTRICT

DISTRICT AT A GLANCE

Sl. No.		Statistics
1.	GENERAL INFORMATION	
	I. Geographical Area (Sq. Km.)	1645*
	Administrative Divisions	Saharsa Sadar
		Simri Bakhtiarpur
	II. Population (As per 2011 Census)	Total: 1,900,661
		Rural: 744121
		Urban: 156540
	III. Average Annual Rainfall (mm)	1360
2	GEOMORPHOLOGY	1500
4	Major Physiographic Units	Younger Alluvium with Newer Flood
	wajor i nystographic Onits	Plains
	Motor Droinogog	Kosi River
2	Major Drainages	KOSI KIVEI
3	LAND USE	N:1
	a) Forest Area	Nil 1071 og hvo*
	b) Net Area Sown	1071 sq. km*
	c) Cultivable Area	1071 sq. km*
4	MAJOR SOIL TYPES	Sandy loam, Loam, silty loam
5	AREA UNDER PRINCIPAL CROPS	Rice-279 km ² , wheat-496 km ² $*$
6	IRRIGATION BY DIFFERENT SOURCES	
	(Areas and Number of Structures)	
	Dug wells	2 (2001 MI Census)
	Tube wells/Bore wells	13335 (2001 MI Census)
	Tanks/ponds	$855, 16 \text{ km}^2 \text{ *}$
	Canals	$101 \text{ km}^2 \text{ *}$
	Other Sources	$1200, 221 \text{ km}^{2*}$
	Net Irrigated Area	553 km^{2*}
	Gross Irrigated Area	760 km ² *
7	NUMBER OF GROUND WATER MONITERING WELLS	
	OF CGWB (As on 31-03-2007)	
	No. of Dug wells	7
	No. of Piezometers	Nil
8	PREDOMINANT GEOLOGICAL FORMATIONS	Quaternary Alluvium
9	HYDROGEOLOGY	- ·
	Major water bearing formations	Sand zones in Quaternary Alluvium
	Pre-monsoon Depth to water level during 2011	2.22–5.72 m bgl
	Post-monsoon Depth to water level during 2011	1.2–4.6 m bgl
	Long term water level trend in last 10 yrs (1997 –2011) in	No Significant Decline
	m/yr	C
10	GROUND WATER EXPLORATION BY CGWB (As on	
	31-03-2007)	
	No. of well drilled (EW,OW, PZ, SH, Total)	2 EW, abandoned due to caving
	Depth Range (m)	68-165 m bgl
	Discharge (m/s)	$150 - 200 \text{ m}^3/\text{hr}$
	Storativity (s)	NA
	Transmissitivity (m^2/day)	NA
11	GROUND WATER QUALITY	Fresh and potable
**	Presence of Chemical constituents more than the	Iron
	permissible limit (e.g.EC, F, As, F)	non
	Type of Water	Ca-HCO ₃
12	DYNAMIC GROUND WATER RESOURCES (2009) IN	Ca-11CO3
14		
	ha.m Annual Banlanishible Cround Water Becourses	58684
	Annual Replenishible Ground Water Resources	
	Net Annual Ground Water Draft	20052

	Projected Demand for Domestic and Industrial Uses up to 2025	4895
	Stage of Ground Water Development	36.7 %
13	AWARENESS AND TRAINING ACTIVITY	
	Mass Awareness Programme Organized	Nil
	Date	Nil
	Place	Nil
	No. of Participants	Nil
14	EFFORTS OF ARTIFICIAL RECHARGE AND	Nil
	RAINWATER HARVESTING	
	Projects Completed By CGWB (No. Amount Spent)	Nil
	Projects Under Technical Guidance of CGWB (Numbers)	Nil
15	GROUND WATER CONTROL AND REGULATION	
	No. of OE Blocks	Nil
	No. of Critical Blocks	Nil
	No. of Blocks Notified	Nil
16	MAJOR GROUND WATER PROBLEMS AND ISSUES	No such groundwater issue in district other than patches of elevated iron contamination

Note: Latest available data may be incorporated *Source: Department of Agriculture and Cooperation, Govt. of India.

1.0 INTRODUCTION

1.1 Location, Area and Administrative Details

Saharsa is one of the thirty-eight districts of Bihar state. Saharsa town is the administrative headquarters of this district. The district is a part of a larger territory, the Kosi Division and it became a district on 1 April 1954 and subsequently has become smaller with other districts being carved form it, most notably Madhepura in 1981. The area of the district is 1,645 km². The Kosi River flows at the western boundary of the district.

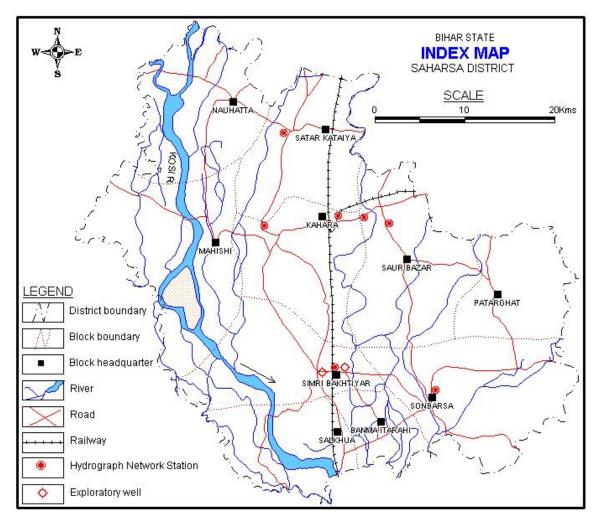
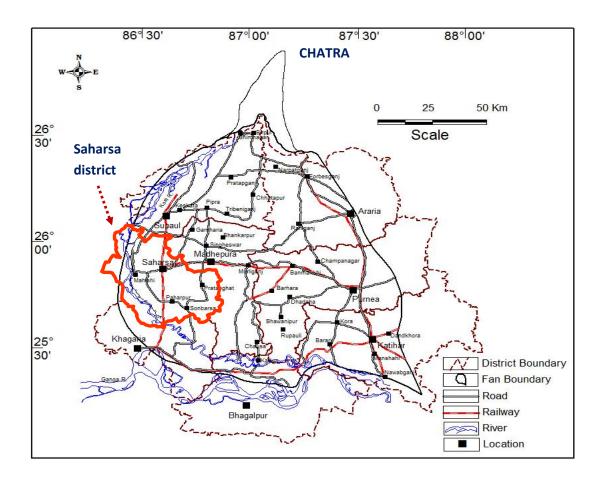
The district comprises two sub-divisions, namely Saharsa Sadar and Simri Bakhtiarpur, and ten blocks, namely Nauhatta, Simari, Bakhatiyarpur, Salkhua, Kahra, Mahishi, Sonbarsa, Saurbazar, Patarghat, Sattar, Kateya and Banma Itahari. According to the 2011 census Saharsa district has a population of 1,900,661 (female: 997,174 and male: 903,487). The bulk of the population (1,744,121) lives in rural areas and the urban population makes only 8.24% (156,540). Population density of the district for 2011 is 1,127 people per sq. km. There was change of 26.02% in the population compared to population as per 2001. With regards to Sex Ratio in Saharsa, it stood at 906 per 1000 male compared to 2001 census figure of 910. Average literacy rate of Saharsa in 2011 were 53.20% compared to 39.08 of 2001. If things are looked out at gender wise, male and female literacy were 63.56 and 41.68 respectively.

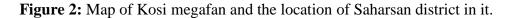
Description	2011	2001
Actual Population	1,900,661	1,508,182
Male	997,174	789,432
Female	903,487	718,750
Population Growth	26.02%	33.03%
Area Sq. Km	1,687	1,687
Density/km2	1,127	895
Proportion to Bihar Population	1.83%	1.82%
Sex Ratio (Per 1000)	906	910
Child Sex Ratio (0-6 Age)	933	912
Average Literacy	53.20	39.08
Male Literacy	63.56	51.66
Female Literacy	41.68	25.27
Total Child Population (0-6 Age)	387,479	316,930
Male Population (0-6 Age)	200,497	165,793
Female Population (0-6 Age)	186,982	151,137

Table 1: Demographics of Saharsa district, Bihar.

Literates	804,996	465,577
Male Literates	506,374	322,163
Female Literates	298,622	143,414
Child Proportion (0-6 Age)	20.39%	21.01%
Boys Proportion (0-6 Age)	20.11%	21.00%
Girls Proportion (0-6 Age)	20.70%	21.03%

Agriculture is the major occupation of Saharsa district and paddy is the main crop. Saharsa is famous for its varieties of Mango's and Summer Berry known as Litchi. Makhana, cultivated in the flood plains of Kosi River forms one of the most important cash crops.


Figure 1: Map of Saharsa district showing administrative details.

1.2 Basin/Sub-Basin and Drainage

The Saharsa district is located at the north eastern parts of Bihar state, which is situated in the middle parts of Ganga Basin. The district falls in the Kosi Sub-basin. The active Kosi River, an

important northern tributary of the Ganga River, originates at an altitude of 7000 m above msl in the Tibet Himalayas and is the third largest Himalayan River, after the Indus and the Brahmputra. The river has remained dynamic from historic parts and as such few palaeochannels of the river are traced in the district. Mis-fit channels with significant drainage during monsoon flow across the district towards south. The Kosi River has formed a megafan of ~13,000 km2 in Bihar state. The Saharsa district is situated at the south-eastern parts of the megafan (Fig. 2).

The district is regularly visited by the flood water of Kosi. The flood of the year 2008 owing to breach of eastern embankment at Kusaha, was devastating in nature. This created havoc with large-scale inundation and devastation in Supaul, Saharsa and Madhepura districts, causing huge property and life loss along with the loss in agriculture (Fig 3).

Figure 3: (A) Large scale inundation in the downstream parts of the Kosi River due to bank breaching in 2008. (B) Collapse of bridges and sand filling in the old small channels in the megafan. (C) Agricultural lands covered with sand, making them uncultivable.

1.3 Water use habits

Saharsa district has abundant surface and groundwater resources. The groundwater level remains usually shallow (Fig 4). Hand boring with one length of pipe is suffice to give adequate discharge to a 5 HP diesel pump set.

Figure 4: Water table exposed in a small pit of hardly 1.5 m deep during November in Saharsa district, Bihar.

Like most of other villages in North Bihar Plains, the people in the villages of Saharsa district depend upon groundwater for their domestic supply, including drinking water. Unlike many other parts of the Bihar state, dug wells are frequently met in every village, but presently most of them are not in use. Since water in the district lies very close to ground surface, this was a convenient way of getting potable water by digging and setting a ring well of hardly 7 m deep. In

last decade and half, people have got a more easy way to access the groundwater by auguring a hole up to 5–7 m (usually one length pipe) and putting a locally designed hand pump assembly into that. In many cases bamboo is also used as the hand pump assembly pipe.

1.4 Land use, Agriculture and Irrigation Practices

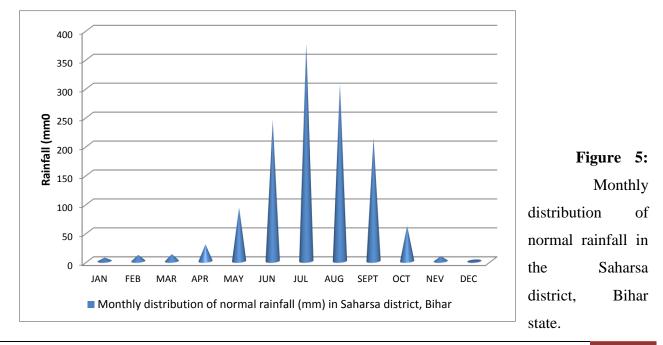
There are four cropping seasons prevalent in the study area namely, 1) Garma (March-June), 2) Bhadai (April/May – August/Sept.), 3) Aghani (June- November), and 4) Rabi December-March). Bhadai and Aghani seasons are clubbed for all practical purposes as Kharif season. The staple cereal of this district is rice. The principal crops grown during different seasons are produced in the following table:

Season	Kharif	Rabi	Garma					
Crops	Paddy, Maize, Pulses,	Maize, Wheat, Pulse	Paddy, Maize, Moong					
	Fiber							
Vear: (1996-97)								

Table 2: Agricultural seasons and major crops in Saharsa district, Bihar.

Year: (1996-97)

. Irrigation plays a vital role in the agriculture in this district and irrigation is practiced from both surface and groundwater Though the district falls in the Eastern Kosi Command Area and a good part of the irrigation in the district is met from canal water, in summer, canal system remains dry and the agriculture meets the irrigation demand from sources like groundwater and surface water bodies. It is observed that groundwater forms a major irrigation source in the district with more than 50 % of the net irrigated area getting the source from groundwater (NIC-1997-98, Govt. of Bihar). Ground water is exploited for irrigation mainly through shallow tube-wells and bamboo borings. Since water level remains shallow and cost of making a shallow tube well is low, people try to have their own bore well in their agriculture fields. In general, a local design of well assembly is lowered in the boreholes. Bamboo borings are of shallow depth and are extensively used for irrigation mainly due to low cost of the structures. Most of the tube wells are within a depth of 5-15 m with their tops directly fitted with 3-5 HP diesel operated pumps.


As per the record of Department of Agriculture and Cooperation, Govt. of India, the net and gross area cropped in the district of Saharsa is 1071 km² and 1900 km² respectively. The forest cover was negligible at 1.7 km². As per the data of 1998-99 (Department of Statistics and Evaluation, Govt. of Bihar), the gross area irrigated by canals, tube wells and other sources stands at 210 km², 850 km² and 30 km² respectively. The net areas irrigated by the same sources are 150, 570 and 20 km² respectively. This indicates that the irrigation through tube wells constitute a significant part of the total irrigation need in the district.

1.5 Studies/Activities carried by CGWB

Earlier, CGWB has drilled two of Exploratory Wells were in the district down to a depth of 165 m. The drilling data shows that the granular zones have been encountered right from the depth of 10 m bgl and continuing throughout with limited clay lenses between them. Both the wells were abandoned due to caving. Besides these, water samples are being collected from hand pumps (shallow tube wells) and dug wells at regular intervals in order to assess the development of arsenic in a response to the water table fluctuation. Water levels from some particular dug wells, known as Hydrograph Network Stations, are being taken four times in a year. These data reflect any change in ground water regime in the dug wells in a response to the monsoonal pattern (shallow aquifer) and are used to estimate the ground water resource available in the district for irrigation, drinking and industrial purposes.

2.0 CLIMATE AND RAINFALL

The area has warm and humid climate with high temperature and medium to high rainfall. The temperatures are lowest during December-January with an average minimum of 8° C to 10° C and maximum of 24° C to 25° C. The temperatures in the hottest months of April to June are minima 23° C to 25° C and maxima 35° C to 38° C. The normal rainfall for the district stands at 1360 mm with the monsoon (June-Sept) component of 1138 mm (84%). of the rainfall (80% to 90%) is received from mid-June to mid-October (Fig 5). The late September-October rains (locally known as 'Hathia') are very crucial to agriculture in the region and their timing and distribution make all the difference between plenty and scarcity.

GWIB | Saharsa

3.0 GEOMORPHOLOGY AND SOIL

3.1 Geomorphology

The North Bihar Plains are mainly characterized by fan (megafan) and interfan areas. In the west of lies the Gandak Megafan, whereas in the east lies the Kosi megafan. A major part of the Saharsa district forms a part of the Kosi megafan. The active Kosi River flows at the western parts of the district. Siwaliks in the foothills of the Himalayas form the northern boundary of the megafan. The land surface in the district, with an average elevation of 44 m amsl, slopes southward with ~40 cm/km at the northern half, while it is ~50 cm/km at the southern half.

The Kosi River has its source in Nepal Himalayas and emerges on to eastern parts of the Gangetic plains near Chatra (Fig 2) after cutting across the Great Himalayan and Lesser Himalayan Ranges in a number of deep gorges. The river is known for its notorious shifting and channel abandonment approximately in every 25 years. The district Saharsa is subjected to frequent flooding related to either shifting of the river Kosi or bank over-topping/breaching by floodwater. Thus, over-bank sedimentation is a common phenomenon in the district. The Kosi River is one of the highest bed-load carrying rivers in the world. The concentration of suspended load is usually 2 to 5 g/l, but increases during the monsoon period to reach 18 g/l. The mean annual suspended load transport of the Kosi River is 130 million m^3 (Singh et al., 1993).

A number of old channel beds of the river are traceable in Saharsa district. The river planform with typical dune type braid bars and longitudinal bars are well preserved within this abandoned channel beds. In general, these bar deposits form either exposed sand bodies or with minor capping of flood plain mud. In many cases the abandoned channels form lakes or *Chaurs*, which gets filled with water during monsoon creating water-logging condition. Though the major river Kosi has made the regional architecture of the district, numerous interconnected minor rivers participate in carving out features of the plains by reworking and redistributing the sediments deposited by the river Kosi. These small streams (basically groundwater fed) with clayey beds mostly follow the old channels and traverse the district Saharsa in a north-south fashion.

3.2 Soil

The district in general possesses alluvial soil. The soils are of poorly drained type. The areas close to the Kosi channels possess soil types of sandy loam, loamy sand and sand character, whereas, the areas away from the river channels consist of silty sand to sandy silt in nature. The soils in general are fine textured away from the river course and rivulets and coarse textured along their courses.

4.0 GROUND WATER SCENARIO

4.1 Water Bearing Formations

The typical geomorphic set-up evolved by the action of Kosi River has controlled the local land use pattern and groundwater potential in its different parts. The whole of Saharsa district in the Kosi megafan is covered with Quaternary deposits (Fig 6). The alluvial deposits in Kosi fan area form one of the most prolific aquifer systems in the North Ganga Plains (Fig 7). Shallow tube wells in the area have the potential of yielding 50 m³/hr for nominal drawdown of 2 m only. The area is underlain by thick unconsolidated sediments of Quaternary age consisting of sands of various grades, gravels, cobbles, pebbles etc up to the explored depth of 80 m. The clay capping is thin (< 1 m to 5 m) and even absent at many places.

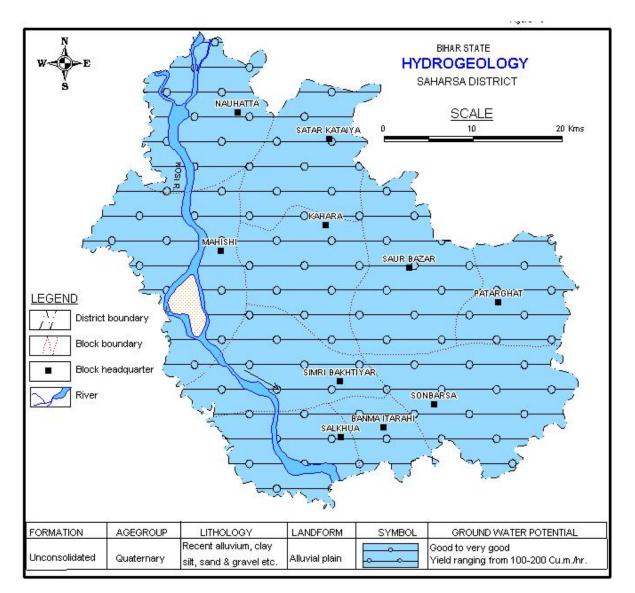
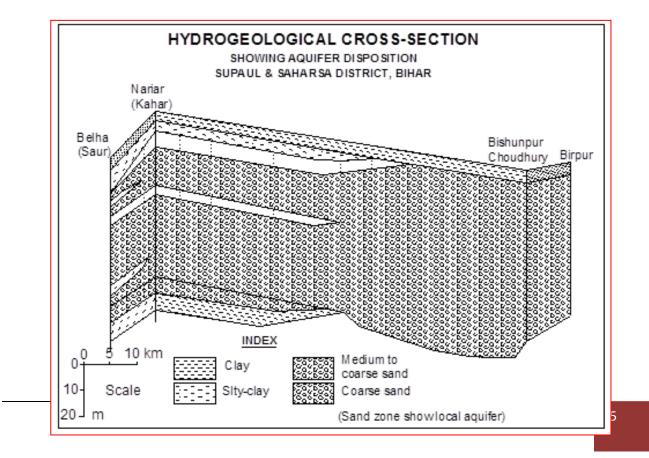
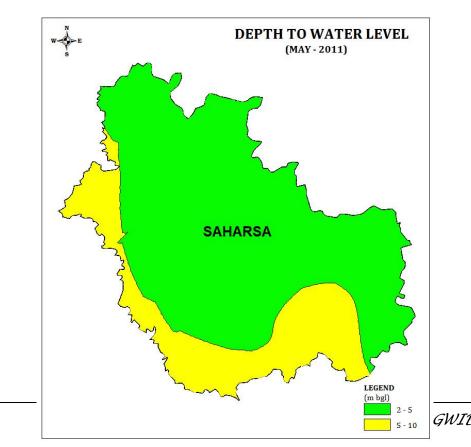



Figure 6: The hydrogeological map of Saharsa district, Bihar.

Figure 7: A hydrogeological transect depicting thick sand zones up to 80 m below ground in the district of Saharsa in Bihar.


The lithological logs indicate that the ground water occurs under unconfined condition. In Saharsa district shallow tube wells are suitable up to a depth of 50 m with discharge of 20 to 40 m³/hr. The deep tube well of more than 100 m depth can also be constructed with estimated discharge of 100-200 m³/hr. Whereas Bamboo Boring of 20 to 25 m depth tapping water table aquifer can yield 10 to 20 m³/hr with a safe draw down.

4.2 Depth to Water Level

Water level in Saharsa district remains largely shallow (<5 mbgl) during the post-monsoon period, whereas, during the pre-monsoon period, the water level in the western parts of the district, adjoining to the Kosi River goes deeper (up to ~10 m bgl). It may be due to groundwater drainage to the river during the season. Fig 8 A & B depicts the depth to water level scenario in Saharsa district.

During the post-monsoon period, major parts of the district are covered by the water level range of 2-5 m bgl. Pockets, at the northern parts and south-central parts depict water levels within 2 m bgl, exhibiting the water-logging condition.

The average water table elevation ranges from 32 to 42 m above MSL.

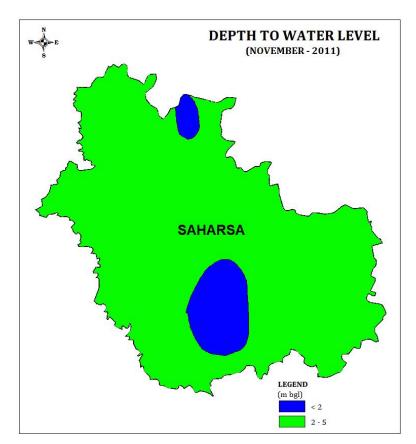


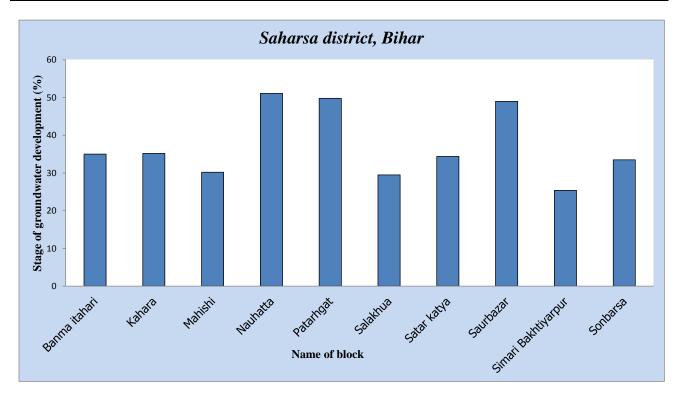
Figure 8: (A) Pre- and (B) post-monsoon depth to water level map of Saharsa district.

4.3 Ground Water Quality

The chemical quality of groundwater is available from the water samples collected from different key and hydrograph network stations during pre- and post-monsoon periods from time to time in the district. The chemical data obtained is produced below:

Table 3:	Ground	water	quality	in	Saharsa	district.
----------	--------	-------	---------	----	---------	-----------

Chemical constituents (mg/l)	Shallow Aquifer	Drinking Water Standard (As per BIS norms)		
		Highest Desirable	Maximum Permissible	
pH	7.2-8.2 (max.)	6.5 - 8.5	No relaxation	
E.C (Micro-siemens/cm at	260-970	500	2000	
Total Hardness (CaCO ₃)	60-525	300	600	
Bicarbonate	85-458	200	600	
Calcium	18-122	75	200	
Magnesium	5-54	30	100	
Chloride	11-99	250	1000	
Sulphate	-	200	Up to 400 if Mg is <30	
Nitrate	_	45	100	
Fluoride	_	0.6 – 1.2	1.5	
Iron	0.105 – 16.94	0.30	1.0	


The groundwater in the district is suitable for drinking.

4.4 Ground Water Resources

The block-wise ground water resource is given in Table 4. The net annual replenishable ground water resource as on 31st March 2009 works out to be 54575 ham. The gross annual draft for all uses stands at 20052 ha.m. The average stage of ground water development for the district is 36.7%; the maximum being in the block Nauhatta (51.1%) and the minimum at Simri Bakhtiarpur (25.4%). The stage of ground water development is highest in Nauhatta (51.1%) and lowest in Simari Bakhtiyarpur (25.4%). The stage of ground water development in all the blocks is less than 70%, and there is no long-term decline in water levels recorded in the blocks. Thus, all the blocks are under safe category. The stage of ground water development is depicted in Fig 9.

Table 4: Net groundwater availability (ham) and stage of groundwater development in Saharsa district, Bihar (As on 31st March 2009).

SI.N o	Assessment Unit/ District	Net Annual Ground water Availabil ity	Existin g Gross Groun d Water Draft for Irrigati on	Existin g Gross Ground water Draft for Domest ic and Industri al Water Supply	Existi ng Gross Groun d Water Draft For all Uses (10+11)	Allocation for Domestic and Industrial Requirem ent Supply upto year 2025	Net Ground Water Availabilit y for future irrigation developm ent (9-10- 12)	Stage of Ground Water Developm ent (12/9)*100 (%)
1	2	9	10	11	12	13	14	15
1	Banma itahari	2607	784	128	911	216	1608	35.0
2	Kahara	4826	1238	460	1698	988	2601	35.2
3	Mahishi	5403	1300	334	1633	564	3539	30.2
4	Nauhatta	4437	2017	250	2266	422	1998	51.1
5	Patarhgat	4257	1942	176	2118	298	2017	49.8
6	Salakhua	6471	1721	187	1908	315	4434	29.5
7	Satar katya	5382	1621	232	1854	392	3368	34.4
8	Saurbazar	7146	3213	292	3505	493	3441	49.0
9	Simari	6796	1333	396	1729	668	4794	25.4
10	Sonbarsa	7251	2110	320	2430	540	4601	33.5
	Total	54575	17278	2774	20052	4895	32402	36.7

Figure 9: Bar diagram depicting the stage of groundwater development in blocks of Saharsa district, Bihar.

5.0 GROUND WATER MANAGEMENT STRATEGY

5.1 Ground Water Development

As per the resource evaluation (31st march 2009) the average utilisation of ground water in the district is less than 36.7%, which means none of the blocks in the district comes under semicritical/critical or over exploited category. The present infrastructural facilities yield only 17278 ham of groundwater for irrigation and there is a vast surplus replenishable ground water potential of 32402 ham to be tapped.

5.2 Design and construction of Tube Wells5.2.1 Construction and yield of wells

As per MI census 2000-2001, a total of 13335 shallow tube wells (STW) (~8 tube wells per km^2) and only 2 deep tube wells (DTW) are in use in Saharsa district. Most of the STWs in the district are constructed within the depth range of 5-15 m. The STWs with large diameter (306 mm) can yield more than 75 m³/hr. The granular zones tapped trough deep tube wells within the depth of 100 m can yield up to 200 m³/hr

5.2.1.1 Design of Tube Wells

(a) Sallow Tube Wells

The district is blessed with potential mono-aquifer down to the explored depth of 100 m. The STWs in the depth range of 30–50 m bgl can yield up to 50 to 75 m³/hr. A well assembly of about 76 to 102 mm diameter with about 10 to 20 m slotted pipe can be used for construction of such wells.

(b) Deep Tube Wells

Table 5: Proposed Model of DTWs in Saharsa district

Sl.No.	Discharge (m ³ /hr)	Proposed Depth of well (m bgl)	Proposed Diameter of well (mm)	Assembly Length (m)
1	100	100	306 – casing pipe 153 – slotted pipe 153 – blank pipe	25 24 51

The slot size should be recommended depending on the grain size of the granular zones as given below;

Table 6: Proposed slot openings for tube wells in Saharsa district.

Fine sand	: 1/64" (0.04 cm) to 1/32" (0.08 cm)
Medium to coarse sand	: 1/16" (0.15 cm)
Gravel	: 1/8" to 1/16"

Both the shallow as well deep tube wells should be artificially packed with gravels of size ranging within 2–4 mm and a bail plug of 2–5 m should be provided in order to the yield and life of the well.

5.3 Water Conservation and Artificial Recharge:

No such water conservation and artificial structure has been constructed in the district so far.

6.0 GROUND WATER RELATED ISSUES AND RELATED PROBLEMS:

No such issues and problems have been reported from Saharsa district other than pockets of groundwater iron contamination.

7.0 MASS AWARENESS AND TRAINING PROGRAMME:

Mass awareness programme is yet to be carried out in Saharsa district.

8.0 AREA NOTIFIED BY CENTRAL GROUND WATER AUTHORITY/ STATE GROUND WATER AUTHORITY

Since all blocks of the district come under safe category from groundwater development point of view, no area is notified either by Central Ground Water Authority or State Ground Water Authority till date.

9.0 RECOMMENDATION

- There exists ample scope for development of groundwater for irrigation purposes without disturbing the groundwater regime in the district. About 20 to 30 shallow tube wells (STWs) can run effectively (within 50 m depth) per km², considering the safe operational distance between any 2 tube wells to be 200 m. In the western parts of the district, adjoining to the Kosi River, sustainable and economically more viable STWs of less depth can be constructed.
- To combat the water-logging problem, the status of irrigation from groundwater needs to be increased.
- Energisation of all the tube wells should be made on priority basis for increasing the cropping intensity. For this, financial support to small and marginal farmers should be provided.
- Chemical quality of groundwater has been observed to be in general suitable for drinking and irrigation purpose. In areas where high iron concentration is present, domestic water supply should be made after proper treatment of groundwater. Alternate deeper aquifers, free from iron may also be found for the purpose.