

# **केन्द्रीय भूमि जल बोर्ड** जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

# **Central Ground Water Board**

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

# AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

PURULIA DISTRICT WEST BENGAL

पूर्वी क्षेत्र<mark>,</mark> कोलकाता Eastern Region, Kolkata

No. : 213 For official use only



Government of India MINISTRY OF JAL SHAKTI DEPARTMENT OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION

### **REPORT ON**

#### AQUIFER MAPPING AND MANAGEMENT PLAN OF PURULIA DISTRICT WEST BENGAL

by

Ms. Zumchilo T. Ezung, Scientist-'B'(HG) Ms. Monisha Baruah, Scientist-'B'(HG) Shri. Anirvan Choudhury, Scientist-'B'(HG)





CENTRAL GROUNDWATER BOARD Eastern Region, Kolkata August 2022

### FOREWORD

Purulia District is located in the western part of the State of West Bengal. It is historically tagged as an area with acute water scarcity that affects life and livelihood of the predominantly tribal population, residing in the district.

National Aquifer Mapping(NAQUIM) activities in Purulia District was carried out during the Annual Action Plan(AAP) Period of 2020-21 for deriving the sustainable aquifer management plan. The interim Report for the same was submitted during the Annual Action Plan Period of 2021-22, which in its draft form was presented before the State level Ground Water Co-ordination Committee (SGWCC) under the Chairmanship of The Principal Secretary, Water Resources Investigation & Development Department(WRI & DD), Government of West Bengal on 23.02.2022. Based on the feedbacks and suggestions received in that meeting, few corrections and modifications have been incorporated, which was presented before the National Level Expert Committee(NLEC) and the same was duly approved. The current report is the updated and modified version of the earlier interim report, which is incorporating all the necessary modifications, as suggested by the SGWCC, West Bengal.

This report in its current form is a comprehensive hydrogeological compendium for Purulia district, West Bengal, which includes minute detailing in terms of the suggested and recommended management interventions for aquifer management on short term, intermediate term and long term basis, upto the block level.

It is an outcome of dedicated efforts by our team of Scientists of various disciplines at Central Ground Water Board, Eastern Region, Kolkata. It is very much anticipated that this report will become an important reference tool not only for various user agencies, Engineers, Scientists, Administrators, Planners and others involved in groundwater planning, development and management but also for the common people to make them aware of local groundwater issues and its sustainable management options.

Date : 31.08.2022

Caper 31/08/2022

(Dr Anadi Gayen) Regional Director(I/C), CGWB, ER, Kolkata

### FOREWORD

To understand the nature and occurrences of groundwater, Aquifer geometry, dispositions & characteristics and management of groundwater resource, National Aquifer Mapping & Management Programme (NAQUIM) has been taken up by CGWB under XII<sup>th</sup> Plan. During the Annual Action Plan 2020-2021, Aquifer Mapping studies & Management plan was taken up in Purulia district.

The study under the aegis of NAQUIM includes four major components namely; Data gap analysis, Data generation, Data collection & compilation and preparation of Aquifer maps and Aquifer Management Plan.

This report is presented in three parts, where Part-I embodies general report for the study area, Part-II include Block Management Plans and Part-III comprises Data Gap Analysis done for the district. Relevant data in respect of the said subjects have been collected and collated from different Departments and their publications, viz. Public Health Engineering Directorate, State Water Investigation Directorate, Agri-Irrigation Dept., Bureau of Economics & Statistics, Land & Land Reforms Dept., Data of Indian Meteorological Dept., National Bureau of Soil Survey & Land Use Planning, etc. of Govt. of India have also been used. Hydrogeological data is sourced from the scientific studies of CGWB pertaining to groundwater explorations, hydrogeological surveys, chemical analysis and outsourcing explorations being taken up for data generation.

Compilation of this report, evaluation of data and preparation of relevant maps, 2D crosssections & 3D models of aquifers and their representation in the form of present report is outcome of the efforts given by Miss Monisha Baruah, Scientist-'B'(HG) and Miss Zumchilo T Ezung, Scientist-'B'(HG) under the supervision of Smt. Sandhya Yadav, Scientist-'D'(HG) & OIC(NAQUIM) and Shri. Anirvan Choudhury, Scientist-'B'(HG). The section pertaining to Hydrochemistry has been prepared by Shri A. N. Chowdhury, Assistant Chemist & Dr. Suparna Dutta, Assistant Chemist and her effort is thankfully acknowledged. Geophysical inputs for this report has been provided by Dr. A. K. Sinha, Scientist-'B'(GP).

Effective method of dissemination of the existing technical information to different user agencies is an important aspect of NAQUIM which plays a very vital role in the safe and optimal development of groundwater resources in our country. In this regard, Central Ground Water Board has taken up a great initiative in incorporating NAQUIM project since 2012 to fulfill this directive. It is much anticipated that, this report will become an important tool not only for various user agencies, Engineers, Scientists, Administrators, Planners and others involved in groundwater planning, development and management but also to the common people to make them aware of local groundwater issues and its sustainable management.

gledanner:

(Dr S. K. Samanta) Regional Director, CGWB, ER, Kolkata

Date : 28.10.2021

### **EXECUTIVE SUMMARY**

National Aquifer Mapping and Management Plan(NAQUIM) studies in Purulia District West Bengal was taken up during the Annual Action Plan period of 2020-21. The NAQUIM study area comprises of 20 blocks of Purulia districts in West Bengal. The total geographical area is 6,259 sq. km of which mappable area is about 5,627 sq. km.

Climatologically Purulia district represents dry tropical climate characterized by moderately cold winters and scorching summer. Meteorologically it reflects relatively lower precipitation with a comparatively higher evapotranspiration rate. The average annual rainfall varies across the Community Development Blocks, between 1100 – 1500 mm. The normal annual rainfall is in the tune of 1321.9 mm of which 80% is contributed by South-West monsoon. Rainfall is both non-uniform and erratic within the geographic span of the district and even bordering scanty in many localized pockets.

The elevation of the district varies from 63 meters to 712 meters above mean sea level. The general elevation of the land surface ranges between 150 meters to 300 meters. The master slope of the land surface is towards the east and south-east. The district can be sub-divided physiographically into two units. The one is hilly terrain in the western and southern parts, which are the continuation of Chottanagpur Plateau. The other one is the undulating plain with isolated mounds and hills, comprising the rest of the district covering about 80% of the total area. The hilly terrain in the western part has parallel hill ranges roughly trending in NW-SE direction. This includes the Ajodhya hill which is a small plateau with surrounding hills. The highest peak of Ajodhya hills is Chamtaburu (712 mAMSL). In general the topography is undulating. Geomorphologically, the district is represented by pediment-pediplain complex, denudational/residual hills, dissected plateaus, valley fills, isolated hillocks and mounds

The prominent perennial rivers of the district are Kasai, Damodar, Tangon and Subarnarekha. Dwarakeswar and Silai or Sialabati are other rivers of importance. In general, the rivers / streams of the district flow either in easterly or south-easterly directions. The drainage pattern in the district is predominantly dendritic with

i

occasional radial pattern. The important ephemeral streams of the district are Sahara, Jorh, Bandhu, Nangsai, Vanumata, etc.

Soils in the district are in general of the residual type, derived directly from the weathering of the Pre-Cambrian bed rock, lying at depth underneath. Lateritic soil prevails in the uplands whereas, in the valleys, reddish clay loam or white to reddish clay are common. Texturally sandy loam, reddish loam, white or reddish stiff clay etc are most dominant. Because of the undulating nature of the topography, the soil cover is thin, often skeletal and in general gravelly.

Only 12% of the geographical area is under forest cover, 0.24% constitutes the barren and unculturable land and almost 50% is under net sown area. The forest in general can be classified under Northern tropical Dry Deciduous Forest.

Agriculture is grossly rainfed in absence of adequate potential and sustainable ground water sources. About 40-50 percent of the cultivated land is under single cropbecause of poor land fertility and lack of proper irrigation facility. The proportion of double and triple cropped area is very limited. Paddy is the primary crop grown in the district along with some production of potato, wheat, dal, mustard, maize, maskalai, etc. 3,39,463 hectares of land is under Aman paddy alone as in 2013-2014. This Aman cultivation basically dominates the Kharif season.

Predominantly Precambrian metamorphics of Chottanagpur Gneissic Complex(CGC) represented by granite gneiss, biotite granite gneiss, calc-granulite, ultrabasic, metabasic, meta-sedimentaries, pegmatites and quartz veins covers the area. Gondwana formations are represented by shales and ferruginous sandstones(Barren Measure Formation) along with sandstones, shales and coal seams(Raniganj Formation) are found along the north eastern parts. Unconsolidated formation represented by coarse to fine sand, silt, clay, lithomargic clay, yellow clay, calcareous nodules and laterite. Recent fluvial sediments are found to occur, adjacent to major rivers & streams as discontinuous patches.

ii

The regional structure indicates the presence of isoclinal folds, in which the fold axes are either horizontal or plunging at low angles towards east or west. General E-W strike of the formations is predominant with moderate to steep northerly and southerly dips. Reversals of dips are the manifestations of regional folding and shearing of the concerned rocks locally.

Two prominent shear zones are observed in the district. One of them, known as South Purulia Shear Zone (SPSZ) exists along the boundary between the Singhbhum Group and Gneissic Complex and another Shear Zone (North Purulia Shear Zone, *i.e.*, NPSZ) has been traced further to the north between Jhalda and Ragunathpur.

Groundwater is primarily restricted to the upper weathered mantle, saprolitic zones and in the fractured zones of consolidated Chottanagpur Gneissic Complex(CGC) Formation and in the semi-consolidated Gondwana sedimentaries. The narrow strips of unconsolidated sediments along the major river valleys behave as substantial groundwater repositories as well.

The weathered zone has a maximum thickness 25m. The dug wells from this zone yield up to 3 lps. Potential saturated fractures have been encountered in borewells constructed in CGC upto a depth of 60 mbgl has a cumulative thickness of 2-3 m generally, forming very thin aquifers at different depth levels.

The yield prospect for the aquifers in hard rock is generally very low, and the drawdown is comparatively high. Semi-consolidated Gondwana sedimentaries constitutes the unconfined aquifers within the depth of 12 mbgl. Potential fracture in this zones are encountered within 20 mbgl with moderately low yield prospect and very high drawdown(upto 20m). Analysis of fracture zone, in consolidated formation reveals, that the zone within the range of 0-50 mbgl provides more probability for encountering fractures through drillings and explorations. The aquifers from these shallow fracture zones occur mostly under unconfined or semi-confined conditions. Prolific aquifers, though rare and sporadic are also encountered from the fractures within the depth range of 50-150 mbgl. Yield potential is generally better in the

proximity of the shear zones, though the well collapse phenomenon is also quite common, therein.

The Quaternary sediment column of limited thickness(<3m) occupies the narrow strips of valleys along the major ephemeral rivers. These are thin but potential river bed Phreatic aquifers in otherwise water scarce area.

The stage of ground water development in the district stands at 9.43%, categorized as 'Safe'. The total in-storage for the district is 2,26,620.97 MCM.

The district as a whole is identified as drought prone and water scarce area. Iron and Fluoride are the two most common quality issues in the district. Few samples also show slightly elevated concentration of manganese. Except these there are no major quality issues and most of the water is suitable for potable and irrigation purpose. Gibbs plot of the water samples reveals that the rock water interaction time is appreciable, which indicates that most ground water flows are appreciable within limited areas and the regional ground water flow is relatively slower.

Considering the limited potentialities, attempts are to be made to ensure sustainable drinking water resources. These are to be adopted both through short term and long term measures. Recommended interventions include - Percolation Tanks, Check Dams, Gabion Structures, Sub-Surface Dykes, Re-Excavation of existing tanks with Recharge Shafts, Urban Roof Top Rainwater harvesting. Out of these, based on the earlier recommendations of Master Plan for Artificial Recharge, about 40% Percolation tanks and check dams have already been implemented by the Govt. of West Bengal. The cost of implementation of balance intervention structures is estimated roughly at Rupees 12 crore 40 lakhs only.

iv

### CONTRIBUTORS

| Data Acquisition               | : | Monisha Baruah, Scientist-'B'(HG) &<br>Zumchilo T Ezung, Scientist-'B'(HG)                                                                                             |
|--------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Processing                | : | Monisha Baruah, Scientist-'B'(HG) &<br>Zumchilo T Ezung, Scientist-'B'(HG)                                                                                             |
| Data Compilation & Editing     | : | Monisha Baruah, Scientist-'B'(HG) &<br>Zumchilo T Ezung, Scientist-'B'(HG)                                                                                             |
| Data Interpretation            | : | Monisha Baruah, Scientist-'B'(HG)<br>Zumchilo T Ezung, Scientist-'B'(HG)<br>Anirvan Choudhury, Scientist-'B'(HG)                                                       |
| Geophysical Investigations     | : | Dr. A. K. Sinha, Scientist-'B'(GP)<br>Shri Sujit Sarkar, Scientist-'B'(GP)                                                                                             |
| GIS & Thematic Map Preparation | : | Anirvan Choudhury, Scientist-'B'(HG)<br>Monisha Baruah, Scientist-'B'(HG)<br>Zumchilo T Ezung, Scientist-'B'(HG)<br>Mahashweta Mukherjee (YP)<br>Rajyashree Nandi (YP) |
| Report Compilation             | : | Monisha Baruah, Scientist-'B'(HG) &<br>Zumchilo T Ezung, Scientist-'B'(HG)<br>Anirvan Choudhury, Scientist-'B'(HG)                                                     |
| Report Scrutiny                | : | Sandhya Yadav, Scientist-'E'(HG)<br>Dr. Indranil Roy, Scientist-'D'(HG)                                                                                                |
| Report Processing              | : | Chirashree Mohanty, Scientist-'D'(HG)                                                                                                                                  |
| Technical Guidance             | : | Sandhya Yadav Scientist-'E'(HG)<br>Anirvan Choudhury, Scientist-'B'(HG)                                                                                                |
| Overall Supervision            | : | Dr. S. K. Samanta, Regional Director<br>(Technical Supervision & Report Preparation)<br>Dr. Anadi Gayen, Regional Director(I/C)<br>(Report Updation & Issuance)        |

#### Sl Topic Page Foreword by current Regional Director(I/C) а Foreword by erstwhile Regional Director b **Executive Summary** i Part-I **1** INTRODUCTION --1 1.1 Objective --1 1.2 Scope of study 1 ---1.3 Approach & methodology 2 --3 1.4 Location, extent & accessibility 1.5 Administrative divisions & demography 4 --1.6 Landuse, cropping Pattern & irrigation 6 --1.7 Urban area, industries & mining activities --11 2 CLIMATE --13 2.1 Rainfall 13 --2.2 Temperature 15 --2.3 Humidity & wind 15 --PHYSIOGRAPHY 3 --16 3.1 Physiography --16 3.2 Geomorphology --18 3.3 Drainage 19 --3.4 20 Pedology ---GEOLOGY 23 4 --4.1 General geology --23 4.2 Structural features 26 -----**GEOPHYSICAL STUDIES** 5 27 --5.1 Bodaldih, Barabazar Block 28 --5.2 Ankhro PHC site, Manbazar-II block --30 5.3 Basantapur PHC site, Manbazar-II block 31 --Eklabya Model School and Pandit Raghunath Murmu Model School, 5.4 32 --Manbazar-II block 5.5 Sirkabad PHC, Arsha block 34 --HYDROGEOLOGY 36 6 --6.1 Occurrence and movement of ground water --36 6.2 Aquifer Properties and Yield, Water Bearing Formations 36 --6.3 Fracture analysis --43 6.4 Ground water regime, depth to water level, wells and fluctuations --46 7 **GROUND WATER RESOURCE ESTIMATION** --55 **Dynamic Resource** 55 7.1 --7.1.1 Recharge & resource --55 7.1.2 Ground water draft 55 --

### CONTENT

| Sl |       | Торіс                                                                | Page    |
|----|-------|----------------------------------------------------------------------|---------|
|    |       | 7.1.3 Stage of development & category                                | <br>56  |
|    |       | 7.1.4 Irrigation potential created & utilized                        | <br>57  |
|    | 7.2   | Static / In-Storage resource                                         | <br>58  |
|    |       |                                                                      |         |
| 8  | GROUI | ND WATER QUALITY                                                     | <br>60  |
|    | 8.1   | Major Ion Chemistry And Hydro-Geochemical Facies                     | <br>60  |
|    | 8.2   | Rock-Water Interaction                                               | <br>62  |
|    | 8.3   | Water quality assessment                                             | <br>63  |
| 9  | GROUI | ND WATER RELATED ISSUES & PROBLEMS                                   | <br>69  |
|    | 9.1   | Drought and water scarcity                                           | <br>69  |
|    | 9.2   | Ground water quality problems                                        | <br>69  |
|    | 9.3   | Other major issues                                                   | <br>71  |
| 10 |       |                                                                      | =0      |
| 10 | GROUI | ND WATER DEVELOPMENT & MANAGEMENT                                    | <br>72  |
|    | 10.1  | Rural and urban water supply schemes                                 | <br>72  |
|    | 10.2  | Future Ground Water Development & Management                         | <br>73  |
|    | 10.3  | Artificial recharge & rain water harvesting                          | <br>74  |
|    | 10.4  | Strategies For Water Conservation, Rainwater Harvesting & Artificial | <br>77  |
|    |       | Recharge – Based On Non-Committed Runoff                             |         |
|    |       | PART-II :                                                            |         |
| 11 | BLOCK | WISE AQUIFER MANAGEMENT PLANS                                        | <br>90  |
|    | 11.1  | Arsha Block                                                          | <br>90  |
|    | 11.2  | Bagmundi Block                                                       | <br>96  |
|    | 11.3  | Balrampur Block                                                      | <br>101 |
|    | 11.4  | Barabazar Block                                                      | <br>106 |
|    | 11.5  | Bundwan Block                                                        | <br>111 |
|    | 11.6  | Hura Block                                                           | <br>116 |
|    | 11.7  | Jaipur Block                                                         | <br>121 |
|    | 11.8  | Jhalda-I Block                                                       | <br>126 |
|    | 11.9  | Jhalda-II Block                                                      | <br>131 |
|    | 11.10 | Kashipur Block                                                       | <br>136 |
|    | 11.11 | Manbazar-I Block                                                     | <br>141 |
|    | 11.12 | Manbazar-II Block                                                    | <br>147 |
|    | 11.13 | Neturia Block                                                        | <br>152 |
|    | 11.14 | Para Block                                                           | <br>157 |
|    | 11.15 | Puncha Block                                                         | <br>163 |
|    | 11.16 | Purulia-I Block                                                      | <br>168 |
|    | 11.17 | Purulia-II Block                                                     | <br>174 |
|    | 11.18 | Raghunathpur-I Block                                                 | <br>180 |
|    | 11.19 | Raghunathpur-II Block                                                | <br>185 |
|    | 11.20 | Santuri Block                                                        | <br>190 |

PART-III

12 DATA GAP ANALYSIS

-- 196

| Sl |                 | Горіс | Page |
|----|-----------------|-------|------|
|    | ACKNOWLEDGEMENT |       | 210  |
|    | REFERENCES      |       | 211  |
|    | ANNEXURES       |       | 213  |

### **LIST OF TABLES**

| Table | Description                                                                               | Раде   |
|-------|-------------------------------------------------------------------------------------------|--------|
| No.   | Description                                                                               | 1 age  |
|       |                                                                                           |        |
|       | PART - I                                                                                  |        |
| 1.1   | Major administrative division of the study area                                           | <br>4  |
| 1.2   | Distribution of population in the administrative units of the study area                  | <br>5  |
| 1.3   | Geographical area and Mappable area for the given study area                              | <br>5  |
| 1.4   | Land use & land cover distribution of Purulia district                                    | <br>6  |
| 1.5   | Block-wise details of Land-use pattern in Purulia district                                | <br>6  |
| 1.6   | Area, yield and production of major crops in the study area.                              | <br>9  |
| 1./   | Source of irrigation and area irrigated by different sources                              | <br>10 |
| 1.8   | Source wise Culturable command area, Purulia district                                     | <br>11 |
| 1.9   | Irrigation Potential created by different sources in Purulia district                     | <br>11 |
| 2.1   | Normal Annual Rainfall and Meteorological Analysis                                        | <br>14 |
| 2.2   | Maximum and Minimum Temperature of the District                                           | <br>15 |
| 3.1   | Location and extent of different land relief types in Purulia District                    | <br>17 |
| 3.2   | Location wise soil distribution                                                           | <br>21 |
| 4.1   | Stratigraphic Succession of Purulia district                                              | <br>23 |
| 5.1   | Range of resistivity in Hard rocks                                                        | <br>28 |
| 5.2   | Interpreted VES results of Bodaldin High School, Barabazar block                          | <br>29 |
| 5.3   | Recommendation of water bearing zones for different locations at Bodaldih                 | <br>30 |
|       | High School site as per availability of aquifers.                                         |        |
| 5.4   | Interpreted VES results of Ankhro PHC site, Manbazar-II block                             | <br>31 |
| 5.5   | Recommendation of water bearing zones at Ankhro PHC site for different                    | <br>31 |
|       | locations as per availability of aquifers.                                                |        |
| 5.6   | Interpreted VES results of Basantapur PHC site, Manbazar-II block                         | <br>32 |
| 5.7   | Recommendation of water bearing zones at Basantapur PHC site as per                       | <br>32 |
|       | availability of aquifers                                                                  |        |
| 5.8   | Interpreted VES results of Eklyaba Model School and Pandit Ragunath Murmu                 | <br>33 |
|       | Model School, Manbazar-II block                                                           |        |
| 5.9   | Recommendation of water bearing zones at Eklyaba Model School and Pandit                  | <br>34 |
|       | Ragunath Murmu Model School, Manbazar-II block, as per availability of                    |        |
|       | aquifers                                                                                  |        |
| 5.10  | Interpreted VES results of Sirkabad PHC, Arsha block.                                     | <br>34 |
| 5.11  | Recommendation of water bearing zones at Sirkabad PHC, Arsha block, as per                | <br>35 |
|       | availability of aquifers                                                                  |        |
| 6.1   | Aquifer parameters for different litho units in Purulia district                          | <br>38 |
| 6.2   | Geology, Casing depth, Yield, Drawdown and zones tapped for the Aquifers in               | <br>39 |
|       | different blocks of Purulia District                                                      |        |
| 6.3   | Details of exploratory drillings carried out by CGWB, ER, Kolkata in Purulia              | <br>40 |
|       | District                                                                                  |        |
| 6.4   | Analysis of fracture zones in different formations                                        | <br>43 |
| 6.5   | Water Level and Long term trends (20 years) for Aquifer-I(Phreatic) during                | <br>48 |
|       | Pre-monsoon and post-monsoon season in Purulia district                                   |        |
| 6.6   | Occurrence, potentiality and abstraction structures feasible for the blocks               | <br>53 |
|       | under study area                                                                          |        |
| 7.1   | Ground water Recharge, Resource and Stage of Development for Purulia                      | <br>56 |
|       | district                                                                                  |        |
| 7.2   | Irrigation potential created and actual area irrigated with groundwater in the study area | <br>57 |

| Table                   | Description                                                                          | Page         |
|-------------------------|--------------------------------------------------------------------------------------|--------------|
| No.                     |                                                                                      | <br>         |
| 7.3                     | In-storage of groundwater for the study area                                         | <br>59       |
| 8.1                     | Characteristics of groundwater samples in different zones derived from               | <br>62       |
|                         | Chadha's diagram                                                                     |              |
| 8.2                     | Hardness Classification of groundwater of the study area                             | <br>64       |
| 8.3                     | Spatial Variation of Ionic Concentration in Study Area (Phreatic Aquifer and         | <br>64       |
|                         | Fractured Aquifer)                                                                   |              |
| 8.4                     | Summarized result for various indices to assess the suitability of the               | <br>68       |
|                         | groundwater for irrigation                                                           |              |
| 9.1                     | Status of Fluoride concentration, village and number of persons affected in          | <br>71       |
|                         | Purulia district                                                                     |              |
| 10.1                    | Artificial Recharge Structures constructed and completed in Purulia district.        | <br>76       |
| 10.2                    | Area suitable for recharge, Structures proposed and cost of construction in          | <br>77       |
| 40.0                    | Purulia district                                                                     | 50           |
| 10.3                    | Demand and Supply Side Intervention Strategies                                       | <br>79       |
| 10.4                    | District wise summary of water conservation structures and their cost                | <br>88       |
|                         | implications                                                                         |              |
|                         | DADT II                                                                              |              |
| 11 1 1                  | PARI - II                                                                            | 00           |
| 11.1.1                  | Details of Appual Painfall for the last five years in Archa block                    | <br>90       |
| 11.1.2                  | Salient Land use features of Archa block                                             | <br>91       |
| 11.1.3<br>11 1 <i>1</i> | Details of Ground Water Resource Availability and Utilization in Arsha Block         | <br>91<br>01 |
| 11.1.4                  | Details of aquifer disposition (fractured Aquifer) in ArshaBlock                     | <br>92       |
| 11.1.5                  | Aquifer-wise denth range and parameters (fractured Aquifer)in Arsha Block            | <br>92       |
| 11.1.0                  | Details of Aquifer Wise Water Level Ranges & seasonal long term water level          | <br>92       |
| 11.1./                  | trends.                                                                              | 2            |
| 11.1.8                  | Range of chemical parameters in Arsha Block                                          | <br>94       |
| 11.2.1                  | Details of population in Bagmundi block.                                             | <br>96       |
| 11.2.2                  | Details of Annual Rainfall for the last five years in Bagmundi block.                | <br>97       |
| 11.2.3                  | Salient Land use features of Bagmundi block                                          | <br>97       |
| 11.2.4                  | Details of Ground WaterResource Availability and Utilization in Bagmundi             | <br>97       |
|                         | Block.                                                                               |              |
| 11.2.5                  | Details of aquifer disposition (fractured Aquifer) in BagmundiBlock                  | <br>98       |
| 11.2.6                  | Aquifer-wise depth range and parameters (fractured Aquifer)in Bagmundi               | <br>98       |
|                         | Block                                                                                |              |
| 11.2.7                  | Details of Aquifer Wise Water Level Ranges & seasonal long term water level          | <br>98       |
|                         | trends.                                                                              |              |
| 11.2.8                  | Range of chemical parameters in Bagmundi Block                                       | <br>100      |
| 11.3.1                  | Details of population in Balarampur block.                                           | <br>101      |
| 11.3.2                  | Details of Annual Rainfall for the last five years in Balarampur block.              | <br>102      |
| 11.3.3                  | Salient Land use features of Balarampur block                                        | <br>102      |
| 11.3.4                  | Details of Ground WaterResource Availability and Utilization in Balarampur<br>Block. | <br>102      |
| 11.3.5                  | Details of aquifer disposition (fractured Aquifer) in BalarampurBlock                | <br>103      |
| 11.3.6                  | Aquifer-wise depth range and parameters (fractured Aquifer)in Balarampur             | <br>103      |
|                         | Block                                                                                |              |
| 11.3.7                  | Details of Aquifer Wise Water Level Ranges & seasonal long term water level          | <br>103      |
|                         | trends.                                                                              |              |
| 11.3.8                  | Range of chemical parameters in Balarampur Block                                     | <br>105      |
|                         |                                                                                      |              |

| Table  | Description                                                                    | Dago    |
|--------|--------------------------------------------------------------------------------|---------|
| No.    | Description                                                                    | I age   |
| 11.4.1 | Details of population in Barabazar block.                                      | <br>106 |
| 11.4.2 | Details of Annual Rainfall for the last five years in Barabazar block.         | <br>107 |
| 11.4.3 | Salient Land use features of Barabazar block                                   | <br>107 |
| 11.4.4 | Details of Ground WaterResource Availability and Utilization in Barabazar      | <br>107 |
|        | Block.                                                                         |         |
| 11.4.5 | Details of aquifer disposition (fractured Aquifer) in BarabazarBlock           | <br>108 |
| 11.4.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Barabazar        | <br>108 |
|        | Block                                                                          |         |
| 11.4.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level    | <br>108 |
|        | trends.                                                                        |         |
| 11.4.8 | Range of chemical parameters in Barabazar Block                                | <br>110 |
| 11.5.1 | Details of population in Bundwan block.                                        | <br>111 |
| 11.5.2 | Details of Annual Rainfall for the last five years in Bundwan block.           | <br>112 |
| 11.5.3 | Salient Land use features of Bundwan block                                     | <br>112 |
| 11.5.4 | Details of Ground WaterResource Availability and Utilization in Bundwan        | <br>112 |
|        | Block.                                                                         |         |
| 11.5.5 | Details of aquifer disposition (fractured Aquifer) in BundwanBlock             | <br>113 |
| 11.5.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Bundwan          | <br>113 |
|        | Block                                                                          |         |
| 11.5.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level    | <br>113 |
|        | trends.                                                                        |         |
| 11.5.8 | Range of chemical parameters in Bundwan Block                                  | <br>115 |
| 11.6.1 | Details of population in Hura block.                                           | <br>116 |
| 11.6.2 | Details of Annual Rainfall for the last five years in Hura block.              | <br>117 |
| 11.6.3 | Salient Land use features of Hura block                                        | <br>117 |
| 11.6.4 | Details of Ground WaterResource Availability and Utilization in Hura Block.    | <br>117 |
| 11.6.5 | Details of aquifer disposition (fractured Aquifer) in HuraBlock                | <br>118 |
| 11.6.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Hura Block       | <br>118 |
| 11.6.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level    | <br>118 |
|        | trends.                                                                        | 100     |
| 11.6.8 | Range of chemical parameters in Hura Block                                     | <br>120 |
| 11.7.1 | Details of population in Jaipur block.                                         | <br>121 |
| 11.7.2 | Details of Annual Rainfall for the last five years in Jaipur block.            | <br>122 |
| 11.7.3 | Salient Land use features of Jaipur block                                      | <br>122 |
| 11.7.4 | Details of Ground WaterResource Availability and Utilization in Jaipur Block.  | <br>122 |
| 11.7.5 | Details of aquifer disposition (fractured Aquifer) in JaipurBlock              | <br>123 |
| 11.7.6 | Aquifer-wise depth range and parameters (fractured Aquifer Jin Jaipur Block    | <br>123 |
| 11././ | Details of Aquifer Wise Water Level Ranges & seasonal long term water level    | <br>123 |
| 1170   | trends.<br>Dan za of chomical namenatore in Leinen Diach                       | 105     |
| 11.7.8 | Range of chemical parameters in Jaipur Block                                   | <br>125 |
| 11.8.1 | Details of population in Jnaida-I block.                                       | <br>126 |
| 11.8.2 | Details of Annual Rainfail for the last five years in Jhaida-i block.          | <br>127 |
| 11.8.3 | Salient Land use features of Jnaida-I block                                    | <br>127 |
| 11.8.4 | Details of Ground WaterKesource Availability and Utilization in Julia-I Block. | <br>127 |
| 11.ö.5 | Aquifer wise denth range and nerometers (freationed Aquifer) in Indide-IBlock  | <br>120 |
| 11.ö.b | Aquirer-wise deput range and parameters (fractured Aquirer Jin Jhalda-I Block  | <br>120 |
| 11.8./ | betails of Aquiller wise water Level Kanges & Seasonal long term water level   | <br>128 |
| 1100   | u ciius.<br>Danga of chamical parameters in Ihalda I Plack                     | 120     |
| 11.0.0 | Nange of chemical parameters in jualua-i Diuck                                 | <br>130 |

| Table   | Description                                                                           | Ροσο    |
|---------|---------------------------------------------------------------------------------------|---------|
| No.     | Description                                                                           | I age   |
| 11.9.1  | Details of population in Jhalda-II block.                                             | <br>131 |
| 11.9.2  | Details of Annual Rainfall for the last five years in Jhalda-II block.                | <br>132 |
| 11.9.3  | Salient Land use features of Jhalda-II block                                          | <br>132 |
| 11.9.4  | Details of Ground WaterResource Availability and Utilization in Jhalda-II             | <br>132 |
|         | Block.                                                                                |         |
| 11.9.5  | Details of aquifer disposition (fractured Aquifer) in Jhalda-IIBlock                  | <br>133 |
| 11.9.6  | Aquifer-wise depth range and parameters (fractured Aquifer)in Jhalda-II Block         | 133     |
| 11.9.7  | Details of Aquifer Wise Water Level Ranges & seasonal long term water level           | <br>133 |
|         | trends.                                                                               |         |
| 11.9.8  | Range of chemical parameters in Jhalda-II Block                                       | <br>135 |
| 11.10.1 | Details of population in Kashipur block.                                              | <br>136 |
| 11.10.2 | Details of Annual Rainfall for the last five years in Kashipur block.                 | <br>137 |
| 11.10.3 | Salient Land use features of Kashipur block                                           | <br>137 |
| 11.10.4 | Details of Ground Water Resource Availability and Utilization in Kashipur             | <br>137 |
|         | Block.                                                                                |         |
| 11.10.5 | Details of aquifer disposition (fractured Aquifer) in KashipurBlock                   | <br>138 |
| 11.10.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Kashipur                | <br>138 |
|         | Block                                                                                 |         |
| 11.10.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level           | <br>138 |
|         | trends.                                                                               |         |
| 11.10.8 | Range of chemical parameters in Kashipur Block                                        | <br>140 |
| 11.11.1 | Details of population in Manbazar-I block.                                            | <br>141 |
| 11.11.2 | Details of Annual Rainfall for the last five years in Manbazar-I block.               | <br>142 |
| 11.11.3 | Salient Land use features of Manbazar-I block                                         | <br>142 |
| 11.11.4 | Details of Ground Water Resource Availability and Utilization in Manbazar-I<br>Block. | <br>142 |
| 11.11.5 | Details of aquifer disposition (fractured Aquifer) in Manbazar-IBlock                 | <br>143 |
| 11.11.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Manbazar-I              | <br>143 |
|         | Block                                                                                 |         |
| 11.11.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level           | <br>143 |
|         | trends.                                                                               |         |
| 11.11.8 | Range of chemical parameters in Manbazar-I Block                                      | <br>145 |
| 11.12.1 | Details of population in Manbazar-II block.                                           | <br>147 |
| 11.12.2 | Details of Annual Rainfall for the last five years in Manbazar-II block.              | <br>148 |
| 11.12.3 | Salient Land use features of Manbazar-II block                                        | <br>148 |
| 11.12.4 | Details of Ground Water Resource Availability and Utilization in Manbazar-II          | <br>148 |
|         | Block.                                                                                |         |
| 11.12.5 | Details of aquifer disposition (fractured Aquifer) in Manbazar-IIBlock                | <br>149 |
| 11.12.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Manbazar-II             | <br>149 |
|         | Block                                                                                 |         |
| 11.12.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level           | <br>149 |
|         | trends.                                                                               |         |
| 11.12.8 | Range of chemical parameters in Manbazar-II Block                                     | <br>151 |
| 11.13.1 | Details of population in Neturia block.                                               | <br>152 |
| 11.13.2 | Details of Annual Rainfall for the last five years in Neturia block.                  | <br>153 |
| 11.13.3 | Salient Land use features of Neturia block                                            | <br>153 |
| 11.13.4 | Details of Ground Water Resource Availability and Utilization in Neturia Block.       | <br>153 |
| 11.13.5 | Details of aquifer disposition (fractured Aquifer) in NeturiaBlock                    | <br>154 |
| 11.13.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Neturia Block           | <br>154 |

| Table<br>No. | Description                                                                           | Page    |
|--------------|---------------------------------------------------------------------------------------|---------|
| 11.13.7      | Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.   | <br>154 |
| 11.13.8      | Range of chemical parameters in Neturia Block                                         | <br>156 |
| 11.14.1      | Details of population in Para block.                                                  | <br>157 |
| 11.14.2      | Details of Annual Rainfall for the last five years in Para block.                     | <br>158 |
| 11.14.3      | Salient Land use features of Para block                                               | <br>158 |
| 11.14.4      | Details of Ground Water Resource Availability and Utilization in Para Block.          | <br>158 |
| 11.14.5      | Details of aquifer disposition (fractured Aquifer) in ParaBlock                       | <br>159 |
| 11.14.6      | Aquifer-wise depth range and parameters (fractured Aquifer)in Para Block              | <br>159 |
| 11.14.7      | Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.   | <br>159 |
| 11.14.8      | Range of chemical parameters in Para Block                                            | <br>161 |
| 11.15.1      | Details of population in Puncha block.                                                | <br>163 |
| 11.15.2      | Details of Annual Rainfall for the last five years in Puncha block.                   | <br>164 |
| 11.15.3      | Salient Land use features of Puncha block                                             | <br>164 |
| 11.15.4      | Details of Ground Water Resource Availability and Utilization in Puncha Block.        | <br>164 |
| 11.15.5      | Details of aquifer disposition (fractured Aquifer) in PunchaBlock                     | <br>165 |
| 11.15.6      | Aquifer-wise depth range and parameters (fractured Aquifer)in Puncha Block            | <br>165 |
| 11.15.7      | Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.   | <br>165 |
| 11.15.8      | Range of chemical parameters in Puncha Block                                          | <br>167 |
| 11.16.1      | Details of population in Purulia-I block.                                             | <br>168 |
| 11.16.2      | Details of Annual Rainfall for the last five years in Purulia-I block.                | <br>169 |
| 11.16.3      | Salient Land use features of Purulia-I block                                          | <br>169 |
| 11.16.4      | Details of Ground Water Resource Availability and Utilization in Purulia-I<br>Block.  | <br>169 |
| 11.16.5      | Details of aquifer disposition (fractured Aquifer) in Purulia-IBlock                  | <br>170 |
| 11.16.6      | Aquifer-wise depth range and parameters (fractured Aquifer)in Purulia-I<br>Block      | <br>170 |
| 11.16.7      | Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.   | <br>170 |
| 11.16.8      | Range of chemical parameters in Purulia-I Block                                       | <br>172 |
| 11.17.1      | Details of population in Purulia-II block.                                            | <br>174 |
| 11.17.2      | Details of Annual Rainfall for the last five years in Purulia-II block.               | <br>175 |
| 11.17.3      | Salient Land use features of Purulia-II block                                         | <br>175 |
| 11.17.4      | Details of Ground Water Resource Availability and Utilization in Purulia-II<br>Block. | <br>175 |
| 11.17.5      | Details of aquifer disposition (fractured Aquifer) in Purulia-IIBlock                 | <br>176 |
| 11.17.6      | Aquifer-wise depth range and parameters (fractured Aquifer)in Purulia-II<br>Block     | <br>176 |
| 11.17.7      | Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.   | <br>176 |
| 11.17.8      | Range of chemical parameters in Purulia-II Block                                      | <br>178 |
| 11.18.1      | Details of population in Raghunathpur-I block.                                        | <br>180 |
| 11.18.2      | Details of Annual Rainfall for the last five years in Raghunathpur-I block.           | <br>181 |
| 11.18.3      | Salient Land use features of Raghunathpur-I block                                     | <br>181 |
| 11.18.4      | Details of Ground Water Resource Availability and Utilization in                      | <br>181 |
| 44.45 -      | Raghunathpur-I Block.                                                                 |         |
| 11.18.5      | Details of aquifer disposition (fractured Aquifer) in Raghunathpur-IBlock             | <br>182 |

| Table   | Description                                                                     | Dage     |
|---------|---------------------------------------------------------------------------------|----------|
| No.     | Description                                                                     | <br>гаде |
| 11.18.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in                   | <br>182  |
|         | Raghunathpur-I Block                                                            |          |
| 11.18.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level     | <br>182  |
|         | trends.                                                                         |          |
| 11.18.8 | Range of chemical parameters in Raghunathpur-I Block                            | <br>184  |
| 11.19.1 | Details of population in Raghunathpur-II block.                                 | <br>185  |
| 11.19.2 | Details of Annual Rainfall for the last five years in Raghunathpur-II block.    | <br>186  |
| 11.19.3 | Salient Land use features of Raghunathpur-II block                              | <br>186  |
| 11.19.4 | Details of Ground Water Resource Availability and Utilization in                | <br>186  |
|         | Raghunathpur-II Block.                                                          |          |
| 11.19.5 | Details of aquifer disposition (fractured Aquifer) in Raghunathpur-IIBlock      | <br>187  |
| 11.19.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in                   | <br>187  |
|         | Raghunathpur-II Block                                                           |          |
| 11.19.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level     | <br>187  |
|         | trends.                                                                         |          |
| 11.19.8 | Range of chemical parameters in Raghunathpur-II Block                           | <br>189  |
| 11.20.1 | Details of population in Santuri block.                                         | <br>190  |
| 11.20.2 | Details of Annual Rainfall for the last five years in Santuri block.            | <br>191  |
| 11.20.3 | Salient Land use features of Santuri block                                      | <br>191  |
| 11.20.4 | Details of Ground Water Resource Availability and Utilization in Santuri Block. | <br>191  |
| 11.20.5 | Details of aquifer disposition (fractured Aquifer) in SanturiBlock              | <br>192  |
| 11.20.6 | Aquifer-wise depth range and parameters (fractured Aquifer)in Santuri Block     | <br>192  |
| 11.20.7 | Details of Aquifer Wise Water Level Ranges & seasonal long term water level     | <br>192  |
|         | trends.                                                                         |          |
| 11.20.8 | Range of chemical parameters in Santuri Block                                   | <br>194  |
|         |                                                                                 |          |
|         | PART - III                                                                      |          |
| 12.1    | Details of existing exploratory wells (In-house) in the study area              | <br>197  |
| 12.2    | Details of proposed exploratory wells in Purulia district of West Bengal.       | <br>200  |
| 12.3    | List of details of Existing NHS wells in Purulia district of West Bengal.       | <br>202  |
| 12.4    | Details of proposed NHS wells in Purulia district of West Bengal.               | <br>205  |
| 12.5    | List of recommended VES to be carried out in Purulia district of West Bengal.   | <br>207  |

## **LIST OF FIGURES**

| Figure<br>No. | Description                                                                                                  | Page   |
|---------------|--------------------------------------------------------------------------------------------------------------|--------|
|               | PART - I                                                                                                     |        |
| 1.1           | Administrative map of Purulia District, West Bengal.                                                         | <br>3  |
| 1.2           | Pie Diagram depicting land use pattern of the district                                                       | <br>7  |
| 1.3           | Simplified Landuse-Landcover Map of Purulia District, West Bengal                                            | <br>7  |
| 1.4           | Forest Cover map of Purulia District, West Bengal                                                            | <br>8  |
| 2.1           | Monthly Average Rainfall(Normal) in Purulia District                                                         | <br>13 |
| 2.2           | Rainfall Isohyet zonation map for Purulia district                                                           | <br>14 |
| 2.3           | Average Monthly Temperatures for Purulia district                                                            | <br>15 |
| 3.1           | Land Elevation map of Purulia District                                                                       | <br>17 |
| 3.2           | Geomorphological map of Purulia District                                                                     | <br>19 |
| 3.3           | Drainage map of Purulia District                                                                             | <br>20 |
| 3.4           | Soil map for Purulia District of West Bengal                                                                 | <br>22 |
| 4.1           | Geological map of Purulia district                                                                           | <br>25 |
| 5.1           | Schematic diagram for mise-a-la-masse survey conducted at Bodaldih site,                                     | <br>29 |
| (1            | Dalabazai Diock.<br>Undragonalogical Man fan Durulia District of West Dangel                                 | 40     |
| 6.1           | Hydrogeological Map for Purulia District of west Bengal                                                      | <br>42 |
| 0.2           | Purulia district of West Bengal                                                                              | <br>44 |
| 6.3           | Map showing shear zones and fractures in Purulia district of West Bengal                                     | <br>44 |
| 6.4           | 3D Multi-log Model Diagram for the Aquifer Systems in Purulia District of                                    | <br>45 |
|               | West Bengal                                                                                                  |        |
| 6.5           | 2D Aquifer Cross-Sectional Diagram along NE – SW in Purulia District of West                                 | <br>45 |
|               | Bengal                                                                                                       |        |
| 6.6           | 2D Aquifer Cross-Section Diagram along NW – SE in Purulia District of West                                   | <br>46 |
|               | Bengal                                                                                                       |        |
| 6.7           | Location of Ground water monitoring wells(Phreatic aquifer) in Purulia                                       | <br>47 |
|               | District, West Bengal                                                                                        |        |
| 6.8           | Pre-Monsoon Depth to Water Level map for Shallow Aquifers of the study                                       | <br>48 |
|               | area                                                                                                         |        |
| 6.9           | Post-Monsoon Depth to Water Level map for Shallow Aquifers of the study                                      | <br>49 |
|               | area                                                                                                         |        |
| 6.10          | Water Level fluctuation map for Shallow Aquifers of the study area                                           | <br>49 |
| 6.11          | SWL Contour map for the Deeper Aquifers in the study area                                                    | <br>50 |
| 6.12          | Pre-Monsoon Water Table contour map for Shallow Aquifer of the study area                                    | <br>50 |
| 6.13          | Post-Monsoon Water Table contour map for Shallow Aquifer of the study area                                   | <br>51 |
| 6.14          | Representative Block wise hydrographs of Purulia District, West Bengal                                       | <br>51 |
| 7.1           | Stage of Ground Water Development in different CD Blocks of Purulia District                                 | <br>58 |
| 8.1           | (A) Piper tri-linear diagram for hydro-geochemical facies (B) Groundwater                                    | <br>60 |
|               | samples from phreatic aquifers of the Study Area plotted on modified Piper                                   |        |
| 0.2           | ulagram (Unauna, 1999)                                                                                       | (1     |
| 8.2           | (A) Piper tri-linear diagram for hydro-geochemical factes (B) Groundwater                                    | <br>01 |
|               | diagram (Chadha, 1000)                                                                                       |        |
| 0.2           | ulagram (Unauna, 1999)<br>Cibbo diogram for controlling fostor of successive two to successive for Diversity | ()     |
| <u></u>       | GIDDS GLAGRAM FOR CONTROLLING FACTOR OF GROUNDWATER QUALITY FOR Phreatic                                     | <br>62 |
| Q /           | ayunci<br>Cibbs diagram for controlling factor of groundwater quality for fractured                          | 61     |
| 0.4           | aquifer                                                                                                      | <br>04 |

| Figure                  | Description                                                                                                                                 | Ροσο    |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No.                     |                                                                                                                                             | i age   |
| 8.5                     | Box and Whisker Plot sowing Spatial Distribution of Major Cations and Anions<br>in the study area in Phreatic and Fractured Aquifer         | <br>65  |
| 8.6                     | (A) Wilcox Diagram and (B) United States Salinity Laboratory (USSL) Diagram for assessing the Irrigation water quality of Phreatic Aquifer  | <br>67  |
| 8.7                     | (A) Wilcox Diagram and (B) United States Salinity Laboratory (USSL) Diagram for assessing the Irrigation water quality of Fractured Aquifer | <br>68  |
| 9.1                     | Chemical quality map (Fluoride & Iron Spot values) for Purulia district.                                                                    | <br>70  |
| 10.1                    | Status of Piped Water Supply Schemes in Purulia District                                                                                    | <br>72  |
| 10.2                    | Artificial Recharge Map & Structures Implemented by Govt. of West Bengal for<br>Purulia district of West Bengal                             | <br>77  |
| 103                     | Demarcated Run-off zones, recharge and discharge zones in Purulia District                                                                  | <br>78  |
| 10.5                    | Suggested Gabion Structures in Purulia District West Bengal                                                                                 | <br>81  |
| 10.1                    | Suggested Check Dams in Purulia District West Bengal                                                                                        | <br>82  |
| 10.5                    | Suggested Percolation Tanks in Purulia District, West Bengal                                                                                | <br>83  |
| 10.0                    | Suggested Locations for utilization of Channel bars & Valley Fills in Purulia                                                               | <br>84  |
| 10.7                    | District, West Bengal                                                                                                                       | 01      |
| 10.8                    | Details of Site of Pilot Study for Locating sites for Subsurface Dyke and River<br>Lift Point in Purulia District, West Bengal              | <br>85  |
| 10.9                    | Suggested Locations REET in Purulia District, West Bengal                                                                                   | <br>86  |
| 10.10                   | Suggested Locations urban RTRWH in Purulia District, West Bengal                                                                            | <br>87  |
| 10.11                   | Composite layout of recommended water conservation structures                                                                               | <br>88  |
| 1111                    | PART - II                                                                                                                                   | 0.0     |
| 11.1.1                  | Location Map of Arsha Block                                                                                                                 | <br>90  |
| 11.1.2                  | 3-Dimensional Aquifer disposition model in Arsha Block                                                                                      | <br>93  |
| 11.1.3                  | 2-Dimensional Section in Arsha Block                                                                                                        | <br>93  |
| 11.1.4                  | Spot map of fluoride concentration in groundwater for Arsha Block                                                                           | <br>94  |
| 11.1.5                  | AQM-Recommended water Conservation Structures in Arsha Block                                                                                | <br>95  |
| 11.2.1                  | Location Map of Bagmundi Block                                                                                                              | <br>96  |
| 11.2.2                  | 3-Dimensional Aquifer disposition model in Bagmundi Block                                                                                   | <br>99  |
| 11.2.3                  | 2-Dimensional Section in Bagmunul Block                                                                                                     | <br>99  |
| 11.2.4                  | AQM-Recommended water Conservation Structures in Bagmundi Block                                                                             | <br>100 |
| 11.3.1                  | 2 Dimensional Aquifer disposition model in Balarampur Black                                                                                 | <br>101 |
| 11.3.4                  | 2 Dimensional Section in Palarampur Plock                                                                                                   | <br>104 |
| 11.3.3                  | 2-Dimensional Section in Balarampur Block                                                                                                   | <br>104 |
| 11.3.4                  | Location Man of Barahazar Block                                                                                                             | <br>105 |
| 11.4.2                  | 2-Dimensional Aquifer disposition model in Barabazar Block                                                                                  | <br>100 |
| 11.4.2                  | 2-Dimensional Section in Barabazar Block                                                                                                    | <br>100 |
| 11.4.5                  | AOM-Recommended Water Conservation Structures in Barabazar Block                                                                            | <br>110 |
| 11.4.4                  | Location Man of Bundwan Block                                                                                                               | <br>110 |
| 11.5.1                  | 2-Dimensional Aquifer disposition model in Bundwan Block                                                                                    | <br>111 |
| 11.5.2                  | 2-Dimensional Section in Bundwan Block                                                                                                      | <br>114 |
| 11.5.5<br>11 5 <i>A</i> | AOM-Recommended Water Conservation Structures in Bundwan Block                                                                              | <br>114 |
| 11.3.4                  | Location Man of Hura Block                                                                                                                  | <br>115 |
| 1167                    | 3-Dimensional Aquifer disposition model in Hura Block                                                                                       | <br>110 |
| 11.0.2                  | 2-Dimensional Aquiter disposition model in fidia Diock                                                                                      | <br>117 |
| 11.0.3                  | AOM-Recommended Water Conservation Structures in Hura Block                                                                                 | <br>119 |
| 1171                    | Location Man of Jainur Block                                                                                                                | <br>120 |
| × × · / · ×             | Location map of Julpar Block                                                                                                                | 141     |

| Figure<br>No. | Description                                                        | Page    |
|---------------|--------------------------------------------------------------------|---------|
| 11.7.2        | 3-Dimensional Aquifer disposition model in Jaipur Block            | <br>124 |
| 11.7.3        | 2-Dimensional Section in Jaipur Block                              | <br>124 |
| 11.7.4        | AQM-Recommended Water Conservation Structures in Jaipur Block      | <br>125 |
| 11.8.1        | Location Map of Jhalda-I Block                                     | <br>126 |
| 11.8.2        | 3-Dimensional Aquifer disposition model in Jhalda-I Block          | <br>129 |
| 11.8.3        | 2-Dimensional Section in Jhalda-I Block                            | <br>129 |
| 11.8.4        | AQM-Recommended Water Conservation Structures in Jhalda-I Block    | <br>130 |
| 11.9.1        | Location Map of Jhalda-II Block                                    | <br>131 |
| 11.9.2        | 3-Dimensional Aquifer disposition model in Jhalda-II Block         | <br>134 |
| 11.9.3        | 2-Dimensional Section in Jhalda-II Block                           | <br>134 |
| 11.9.4        | AQM-Recommended Water Conservation Structures in Jhalda-II Block   | <br>135 |
| 11.10.1       | Location Map of Kashipur Block                                     | <br>136 |
| 11.10.2       | 3-Dimensional Aquifer disposition model in Kashipur Block          | <br>138 |
| 11.10.3       | 2-Dimensional Section in Kashipur Block                            | <br>138 |
| 11.10.4       | AQM-Recommended Water Conservation Structures in Kashipur Block    | <br>140 |
| 11.11.1       | Location Map of Manbazar-I Block                                   | <br>141 |
| 11.11.2       | 3-Dimensional Aquifer disposition model in Manbazar-I Block        | <br>144 |
| 11.11.3       | Fence Diagram of Manbazar-I Block                                  | 144     |
| 11.11.4       | 2-Dimensional Section in Manbazar-I Block                          | <br>145 |
| 11.11.5       | AQM-Recommended Water Conservation Structures in Manbazar-I Block  | <br>146 |
| 11.12.1       | Location Map of Manbazar-II Block                                  | <br>147 |
| 11.12.2       | 3-Dimensional Aquifer disposition model in Manbazar-II Block       | <br>150 |
| 11.12.3       | 2-Dimensional Section in Manbazar-II Block                         | <br>150 |
| 11.12.4       | AQM-Recommended Water Conservation Structures in Manbazar-II Block | <br>151 |
| 11.13.1       | Location Map of Neturia Block                                      | <br>152 |
| 11.13.2       | 3-Dimensional Aquifer disposition model in Neturia Block           | <br>155 |
| 11.13.3       | 2-Dimensional Section in Neturia Block                             | <br>155 |
| 11.13.4       | AQM-Recommended Water Conservation Structures in Neturia Block     | <br>156 |
| 11.14.1       | Location Map of Para Block                                         | <br>157 |
| 11.14.2       | 3-Dimensional Aquifer disposition model in Para Block              | <br>160 |
| 11.14.3       | Lithological Fence Diagram of Para Block                           | <br>160 |
| 11.14.4       | 2-Dimensional Section in Para Block                                | <br>161 |
| 11.14.5       | AQM-Recommended Water Conservation Structures in Para Block        | <br>162 |
| 11.15.1       | Location Map of Puncha Block                                       | <br>163 |
| 11.15.2       | 3-Dimensional Aquifer disposition model in Puncha Block            | <br>166 |
| 11.15.3       | Lithological Fence Diagram of Puncha Block                         | <br>166 |
| 11.15.4       | 2-Dimensional Section in Puncha Block                              | <br>167 |
| 11.15.5       | AQM-Recommended Water Conservation Structures in Puncha Block      | <br>167 |
| 11.16.1       | Location Map of Purulia-I Block                                    | <br>168 |
| 11.16.2       | 3-Dimensional Aquifer disposition model in Purulia-I Block         | <br>171 |
| 11.16.3       | Lithological Fence Diagram of Purulia-I Block                      | <br>171 |
| 11.16.4       | 2-Dimensional Section in Purulia-I Block                           | <br>172 |
| 11.16.5       | AQM-Recommended Water Conservation Structures in Purulia-I Block   | <br>173 |
| 11.17.1       | Location Map of Purulia-II Block                                   | <br>174 |
| 11.17.2       | 3-Dimensional Aquifer disposition model in Purulia-II Block        | <br>177 |
| 11.17.3       | Lithological Fence Diagram of Purulia-II Block                     | <br>177 |
| 11.17.4       | 2-Dimensional Section in Purulia-II Block                          | <br>178 |
| 11.17.5       | AQM-Recommended Water Conservation Structures in Purulia-II Block  | <br>179 |
| 11.18.1       | Location Map of Raghunathpur-I Block                               | <br>180 |

| Figure  |                                                                                    | <br>    |
|---------|------------------------------------------------------------------------------------|---------|
| No.     | Description                                                                        | Page    |
| 11.18.2 | 3-Dimensional Aquifer disposition model in Raghunathpur-I Block                    | <br>183 |
| 11.18.3 | 2-Dimensional Section in Raghunathpur-I Block                                      | <br>183 |
| 11.18.4 | AQM-Recommended Water Conservation Structures in Raghunathpur-I Block              | <br>184 |
| 11.19.1 | Location Map of Raghunathpur-II Block                                              | <br>185 |
| 11.19.2 | 3-Dimensional Aquifer disposition model in Raghunathpur-II Block                   | <br>188 |
| 11.19.3 | 2-Dimensional Section in Raghunathpur-II Block                                     | <br>188 |
| 11.19.4 | AQM-Recommended Water Conservation Structures in Raghunathpur-II                   | <br>189 |
|         | Block                                                                              |         |
| 11.20.1 | Location Map of Santuri Block                                                      | <br>190 |
| 11.20.2 | 3-Dimensional Aquifer disposition model in Santuri Block                           | <br>193 |
| 11.20.3 | 2-Dimensional Section in Santuri Block                                             | <br>193 |
| 11.20.4 | AQM-Recommended Water Conservation Structures in Santuri Block                     | <br>195 |
|         | DADT - III                                                                         |         |
| 171     | FART - III<br>Man of ovicting Evaloratory wells in Durulia district of West Rongal | 107     |
| 12.1    | Map of proposed exploratory wells in the study area                                | <br>200 |
| 12.2    | Map of proposed exploratory wens in the study area.                                | <br>200 |
| 12.3    | Map snowing existing NHS wells in Purulia district of west Bengal                  | <br>202 |
| 12.4    | Map showing recommended NHS wells in Purulia district of West Bengal.              | <br>205 |
| 12.5    | Map showing recommended sites for VES/TEM in Purulia district of West              | <br>207 |
|         | Bengal                                                                             |         |

### **ANNEXURES**

| Annexure<br>No. | Description                                                                                                                                                               | Page    |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                 | PART - I                                                                                                                                                                  |         |
| 1               | Chemical parameters for Phreatic Aquifers assessed from various sampling points in Purulia district of West Bengal                                                        | <br>213 |
|                 |                                                                                                                                                                           |         |
| 2               | Decadal water level data (2010 to 2019)from various NHNS stations that<br>has been utilized for preparing Depth to Water Level Maps in Purulia<br>district of West Bengal | <br>215 |
| 3               | Decadal water level data (2010 to 2019)from various NHNS stations that<br>has been utilized for preparing Depth to Water Level Maps in Purulia<br>district of West Bengal | <br>217 |
| 4               | Annual water level data (2019)from various NHNS stations that have been<br>used for preparing the Depth to water Level Maps in Purulia district of West<br>Bengal         | <br>220 |

PART – I

(National Aquifer Mapping & Management Plan of Purulia District, West Bengal)

# Chapter – 1 INTRODUCTION

#### 1.0 INTRODUCTION

Groundwater is one of the prime sources of fresh water contributing significantly for the survival of mankind. However, overexploitation, surface runoff and subsurface groundwater discharge have depleted the fresh groundwater availability considerably. Assessing the groundwater potential zone is extremely important for the protection of water quantity & quality, and the management of groundwater system. In this context, the National Aquifer Mapping & Management Programme (NAQUIM) has been taken up by CGWB under XII<sup>th</sup> Plan. As per the annual action plan, groundwater management studies in 20 blocks of Purulia have been taken up by CGWB, ER, Kolkata. In this report the salient features of aquifer geometry, characteristics; ground water occurrences, availability, resource vis-a-vis quality, development & management, scope of ground water etc. of the20 blocks have been covered.

**1.1 OBJECTIVE :** The broad objective of the study is to establish the geometry of the underlying aquifer systems in horizontal and vertical domain, its resource potential in respect of quality & quantity, aquifer characterization, scope for development potential and prepare aquifer-wise management plans.

**1.2 SCOPE OF STUDY** : The scope of the present study is broadly within the framework of National Aquifer Mapping & Management Programme (NAQUIM) implemented by CGWB. There are four major components of this activity viz.:

- (i) Data gap analysis
- (ii) Data generation
- (iii) Data collection / compilation and
- (iv) Preparation of aquifer maps and management plan to achieve the primary objective.

Data compilation included collection, and wherever required procurement, of all maps from concerned agencies, such as the Survey of India, Geological Survey of India of the Union Govt. and offices of the Govt. of West Bengal (W.B.), computerization and analyses of all acquired data, and preparation of data bases of different themes. Identification of Data Gap included ascertaining requirement for further data generation in respect of hydro-geological, geophysical, chemical, hydrological, hydro-meteorological studies, etc. Relevant data in respect of the said subjects have been collected from different authorities, viz. Public Health Engineering Dept., State Water Investigation Dept., Agri.-Irrigation Dept., Bureau of economics & Statistics, Land & Land Reforms Dept., Data of Indian Meteorological Dept., National Bureau of Soil Survey & Land Use Planning, etc. of Govt. of India have also been used.

The existing data of hydro-geological data including those of exploratory wells, piezometers, slim holes, etc. by erstwhile E.T.O., CGWB as well as chemical quality data including trace elements in ground water, either by in-situ or out-sourcing, lying in the Central Ground Water Board, Eastern Region have been thoroughly studied. Besides, data have been generated by hydro-geological surveys and collection of water samples, followed by their laboratory analyses for all major parameters including arsenic. Additional data pertaining to sub-surface lithology and aquifer parameters were obtained through in-situ drilling of exploratory wells, pumping tests, etc.

**1.3 APPROACH & METHODOLOGY :** An approach and methodology adopted to achieve the major objective have been shown below step-wise.

(i) Compilation of existing data

- (ii) Identification of data gaps
- (iii) Data generation based on data gaps
- (iv) Preparation of thematic maps on GIS platform
- (v) Preparation of 2D/3D aquifer disposition maps
- (vi) Compilation of Block-wise Aquifer Maps and Management Plan

**1.4 LOCATION, EXTENT & ACCESSIBILITY :** The study area comprises 20 blocks of Purulia district in West Bengal. The present study area covers a total of 6259sq. km. geographical area. It is bounded by the North Latitudes 22° 43′ and 23°42′ & East Longitudes of 85° 49′& 86° 49′ falling in part of Survey of India Degreesheet no.s 73/E, 73/I and 73/J.

The district is bounded on the north by Paschim Barddhaman and Dhanbad (Jharkhand) districts, on the east by Bankura, on the south by Paschim Midnapur and Singbhum (Jharkhand) districts and in the west by Ranchi and Hazaribagh (Jharkhand) districts.



Figure 1.1: Administrative map of Purulia District, West Bengal.

**1.5 ADMINISTRATIVE DIVISION AND DEMOGRAPHY** : The district with its Headquarter at Purulia has 3 Sub-Divisions, 20 Blocks, 3 Municipal Towns (Jhalda, Purulia and Ragunathpur) and 25 Non-Municipal Towns(Census Towns) with total population of 29,30,115 as per 2011 Census. The administrative detail of the district is presented in table 1.1.

The study area covers a total of 20 Panchayat Samity(Community Development Blocks), 170 Gram Panchayats, 1,942 Gram Sansads, 2,683 Mouzas, 2,459 Inhibited villages, 5,67,824 Households, 3 Municipalities, 47 wards and 25 Census Towns. Distribution of population of the study area is presented in table 1.2.

| Sub-Division         | C.D.<br>Block/M | Р      | anchaya | ts             | Mouzas | Inhabited<br>Villages | House<br>holds | Mun | icipality | Census<br>Town | tal |
|----------------------|-----------------|--------|---------|----------------|--------|-----------------------|----------------|-----|-----------|----------------|-----|
|                      |                 | Samity | Gram    | Gram<br>Sansad | (2001) | (2011)                | (2011)         | No. | Ward      | (2011)         | τo  |
|                      | 7/1             | 7      | 59      | 693            | 930    | 882                   | 198703         | 1   | 12        | 6              | 7   |
|                      | Arsha           | 1      | 8       | 101            | 96     | 95                    | 28868          | -   | -         | -              | -   |
| t)                   | Baghmundi       | 1      | 8       | 92             | 142    | 138                   | 27508          | -   | -         | -              | -   |
| Ves                  | Balarampur      | 1      | 7       | 92             | 90     | 89                    | 26255          | -   | -         | 1              | 1   |
| r(v                  | Barabazar       | 1      | 10      | 122            | 215    | 202                   | 32467          | -   | -         | 1              | 1   |
| ada                  | Jaypur          | 1      | 7       | 90             | 113    | 109                   | 24257          | -   | -         | 1              | 1   |
| Si                   | Jhalda-I        | 1      | 10      | 97             | 143    | 131                   | 27709          | -   | -         | 1              | 1   |
|                      | Jhalda(M)       | -      | -       | -              | -      | -                     | 3676           | 1   | 12        | -              | 1   |
|                      | Jhalda-II       | 1      | 9       | 99             | 131    | 118                   | 27963          | -   | -         | 2              | 2   |
|                      | 7/1             | 7      | 62      | 677            | 971    | 890                   | 209758         | 1   | 22        | 5              | 6   |
| ÷                    | Bundwan         | 1      | 8       | 69             | 135    | 131                   | 20325          | -   | -         | 1              | 1   |
|                      | Hura            | 1      | 10      | 107            | 116    | 111                   | 28368          | -   | -         | -              | -   |
| asi                  | Manbazar -I     | 1      | 10      | 114            | 244    | 219                   | 31939          | -   | -         | 1              | 1   |
| r (East              | Manbazar -II    | 1      | 7       | 75             | 136    | 124                   | 20133          | -   | -         | -              | -   |
| ada                  | Puncha          | 1      | 10      | 97             | 109    | 99                    | 25262          | -   | -         | -              | -   |
| Si                   | Purulia(M)      | -      | -       | -              | -      | -                     | 23754          | 1   | 22        | -              | 1   |
|                      | Purulia-I       | 1      | 8       | 101            | 115    | 105                   | 28228          | -   | -         | 1              | 1   |
|                      | Purulia-II      | 1      | 9       | 114            | 116    | 101                   | 31749          | -   | -         | 2              | 2   |
|                      | 6/1             | 6      | 49      | 572            | 782    | 687                   | 159363         | 1   | 13        | 14             | 15  |
| ч                    | Kashipur        | 1      | 13      | 137            | 211    | 198                   | 40630          | -   | -         | 3              | 3   |
| ndı                  | Neturia         | 1      | 7       | 73             | 124    | 110                   | 18728          | -   | -         | 3              | 3   |
| lath                 | Para            | 1      | 10      | 136            | 135    | 118                   | 36548          | -   | -         | 5              | 5   |
| unu                  | Raghunathpur-I  | 1      | 7       | 89             | 102    | 79                    | 22702          | -   | -         | 1              | 1   |
| agl                  | Raghunathpur(M) | -      | -       | -              | -      | -                     | 4792           | 1   | 13        | -              | 1   |
| R                    | Raghunathpur-II | 1      | 6       | 80             | 106    | 90                    | 20847          | -   | -         | 1              | 1   |
|                      | Santuri         | 1      | 6       | 57             | 104    | 92                    | 15116          | -   | -         | 1              | 1   |
| District<br>Total- 3 | 20/3            | 20     | 170     | 1942           | 2683   | 2459                  | 567824         | 3   | 47        | 25             | 28  |

Table-1.1: Major administrative division of the study area

\*Source- District Statistical Handbook, 2014

| Sub-Division/   | Ru      | ral Populati | on      | Urb    | an Populat | tion   | Тс      | otal Populati | on      |
|-----------------|---------|--------------|---------|--------|------------|--------|---------|---------------|---------|
| C.D.Block/M     | Male    | Female       | Total   | Male   | Female     | Total  | Male    | Female        | Total   |
| Sadar (W)       | 486411  | 466594       | 953005  | 43430  | 40586      | 84016  | 529841  | 507180        | 1037021 |
| Arsha           | 78398   | 76338        | 154736  | -      | -          | -      | 78398   | 76338         | 154736  |
| Baghmundi       | 69520   | 66059        | 135579  | -      | -          | -      | 69520   | 66059         | 135579  |
| Balarampur      | 58314   | 55205        | 113519  | 12681  | 11750      | 24431  | 70995   | 66955         | 137950  |
| Barabazar       | 82158   | 80350        | 162508  | 4195   | 3861       | 8056   | 86353   | 84211         | 170564  |
| Jaypur          | 63633   | 59457        | 123090  | 5344   | 4915       | 10259  | 68977   | 64372         | 133349  |
| Jhalda-I        | 65247   | 62512        | 127759  | 4848   | 4536       | 9384   | 70095   | 67048         | 137143  |
| Jhalda-II       | 69141   | 66673        | 135814  | 6312   | 6030       | 12342  | 75453   | 72703         | 148156  |
| Jhalda(M)       | -       | -            | -       | 10050  | 9494       | 19544  | 10050   | 9494          | 19544   |
| Sadar (E)       | 457709  | 443727       | 901436  | 79285  | 74616      | 153901 | 536994  | 518343        | 1055337 |
| Bandowan        | 44686   | 44250        | 88936   | 3112   | 2881       | 5993   | 47798   | 47131         | 94929   |
| Hura            | 72867   | 70708        | 143575  | -      | -          | -      | 72867   | 70708         | 143575  |
| Manbazar-I      | 73172   | 71378        | 144550  | 4867   | 4654       | 9521   | 78039   | 76032         | 154071  |
| Manbazar-II     | 48943   | 48221        | 97164   | -      | -          | -      | 48943   | 48221         | 97164   |
| Puncha          | 62676   | 61179        | 123855  | -      | -          | -      | 62676   | 61179         | 123855  |
| Purulia-I       | 74873   | 70621        | 145494  | 2985   | 2709       | 5694   | 77858   | 73330         | 151188  |
| Purulia-II      | 80492   | 77370        | 157862  | 5970   | 5656       | 11626  | 86462   | 83026         | 169488  |
| Purulia(M)      | -       | -            | -       | 62351  | 58716      | 121067 | 62351   | 58716         | 121067  |
| Raghunathpur    | 360088  | 342272       | 702360  | 70073  | 65324      | 135397 | 430161  | 407596        | 837757  |
| Kashipur        | 88738   | 85587        | 174325  | 13063  | 12695      | 25758  | 101801  | 98282         | 200083  |
| Neturia         | 42707   | 40430        | 83137   | 9603   | 8687       | 18290  | 52310   | 49117         | 101427  |
| Para            | 86423   | 81574        | 167997  | 16883  | 15741      | 32624  | 103306  | 97315         | 200621  |
| Raghunathpur-I  | 49762   | 46726        | 96488   | 11135  | 10137      | 21272  | 60897   | 56863         | 117760  |
| Raghunathpur-II | 55463   | 52364        | 107827  | 3105   | 2858       | 5963   | 58568   | 55222         | 113790  |
| Raghunathpur(M) | -       | -            | -       | 13194  | 12367      | 25561  | 13194   | 12367         | 25561   |
| Santuri         | 36995   | 35591        | 72586   | 3090   | 2839       | 5929   | 40085   | 38430         | 78515   |
| District Total  | 1304208 | 1252593      | 2556801 | 192788 | 180526     | 373314 | 1496996 | 1433119       | 2930115 |

Table-1.2: Distribution of population in the administrative units of the study area.

\*Source- District Statistical Handbook, 2014.

| Table-1.3: Geogram | hical area and Ma  | ppable area for the  | given study area |
|--------------------|--------------------|----------------------|------------------|
| Tuble Libi deograp | moul al ou and blu | ppuble al caller the | given beaug area |

| Block_Name      | Geographical | Mappable | Normal   |
|-----------------|--------------|----------|----------|
|                 | Area         | Area     | Rainfall |
|                 | (Sq.Km)      | (Sq.Km)  | (mm)     |
| Arsha           | 393          | 215      | 1385.72  |
| Bagmundi        | 450          | 384      | 1384.51  |
| Balarampur      | 316          | 303      | 1368.64  |
| Barabazar       | 456          | 437      | 1332.66  |
| Bundwan         | 379          | 268      | 1358.22  |
| Hura            | 394          | 378      | 1354.43  |
| Jaipur          | 219          | 162      | 1351.84  |
| Jhalda-I        | 309          | 272      | 1365.12  |
| Jhalda-II       | 273          | 262      | 1370.54  |
| Kashipur        | 428          | 411      | 1333.21  |
| Manbazar-I      | 368          | 353      | 1341.17  |
| Manbazar-II     | 282          | 271      | 1331.39  |
| Neturia         | 185          | 177      | 1293.27  |
| Para            | 313          | 301      | 1363.80  |
| Puncha          | 323          | 310      | 1334.73  |
| Purulia-I       | 302          | 290      | 1387.95  |
| Purulia-II      | 312          | 299      | 1385.43  |
| Raghunathpur-I  | 193          | 185      | 1322.43  |
| Raghunathpur-II | 194          | 186      | 1322.24  |
| Santuri         | 170          | 163      | 1301.36  |
| TOTAL           | 6259         | 5627     | 1349.43  |

#### **1.6 LAND-USE, CROPPING PATTERN AND IRRIGATION :**

**Land-use:** The classification of land utilization in the district is given in Table 1.4. It is evident that 12% of the reporting area is under forest cover, 0.24% constitutes the barren and unculturable land and almost 50% is under net sown area. The forest under Purulia Forest Division falls under Northern tropical Dry Deciduous Forest. The Land use & land cover distribution of the district and the pie diagram depicting land use pattern is given in Table 1.4 & Fig. 1.2 respectively.

| Class name       | Geographical Area<br>(sq. km.) | Percentage of Total<br>Geographical Area |
|------------------|--------------------------------|------------------------------------------|
| Deciduous forest | 608.87                         | 9.96                                     |
| Crop land        | 5255.33                        | 86.00                                    |
| Built-up land    | 57.43                          | 0.94                                     |
| Mixed forest     | 43.26                          | 0.71                                     |
| Shrub land       | 118.49                         | 1.94                                     |
| Barren land      | 8.42                           | 0.14                                     |
| Fallow land      | 13.56                          | 0.22                                     |
| Waste land       | 5.43                           | 0.09                                     |

Table-1.4: Land use & land cover distribution of Purulia district

#### Table-1.5: Block-wise details of Land-use pattern in Purulia district (hectares)

| Block           | Reporting<br>Area | Forest<br>Area | Area Under<br>Non-<br>Agricultural<br>Waste | Barren<br>and Un-<br>culturable<br>land | Permanent<br>pastures<br>and grazing<br>lands | Land<br>under<br>misc<br>tree<br>crops | Culturable<br>wastes | Fallow<br>land<br>Other<br>than<br>current<br>fallow | Current<br>fallow | Net<br>Sown<br>Area | Cultivable<br>area |
|-----------------|-------------------|----------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------|----------------------|------------------------------------------------------|-------------------|---------------------|--------------------|
|                 |                   |                |                                             |                                         | (                                             | Ha)                                    |                      |                                                      |                   |                     |                    |
| Arsha           | 37102             | 3999           | 7105                                        | 94                                      | 240                                           | 252                                    | 186                  | 96                                                   | 5443              | 19687               | 25664              |
| Bagmundi        | 42588             | 15900          | 5098                                        | 59                                      | 30                                            | 517                                    | 205                  | 124                                                  | 3783              | 16872               | 21501              |
| Balarampur      | 29944             | 3053           | 2567                                        | 497                                     | -                                             | 215                                    | 207                  | 163                                                  | 8390              | 14852               | 23827              |
| Bandwan         | 35003             | 13619          | 5468                                        | 45                                      | -                                             | -                                      | -                    | -                                                    | 5536              | 10335               | 15871              |
| Barabazaar      | 41834             | 1902           | 9497                                        | -                                       | -                                             | -                                      | -                    | -                                                    | 5965              | 24470               | 30435              |
| Hura            | 39684             | 4265           | 6760                                        | -                                       | -                                             | 168                                    | 306                  | 988                                                  | 6223              | 20974               | 28659              |
| Jhalda I        | 31730             | 3026           | 7573                                        | -                                       | 41                                            | 230                                    | 184                  | 78                                                   | 4153              | 16445               | 21090              |
| Jhalda II       | 25655             | 2635           | 2802                                        | -                                       | -                                             | -                                      | -                    | -                                                    | 4023              | 16195               | 20218              |
| Jaypur          | 23049             | 958            | 4210                                        | -                                       | -                                             | 302                                    | -                    | -                                                    | 4013              | 13566               | 17881              |
| Kashipur        | 44314             | 4108           | 7567                                        | 171                                     | 44                                            | 194                                    | 694                  | 457                                                  | 8450              | 22629               | 32424              |
| Manbazaar I     | 37330             | 5166           | 5482                                        | 75                                      | -                                             | 405                                    | 234                  | -                                                    | 6163              | 19805               | 26607              |
| Manbazaar II    | 29141             | 1524           | 6040                                        | 44                                      | 27                                            | 206                                    | 108                  | 250                                                  | 5408              | 15534               | 21506              |
| Neturia         | 20385             | 1457           | 7072                                        | 38                                      | -                                             | 596                                    | 207                  | -                                                    | 4360              | 6655                | 11818              |
| Para            | 30773             | 913            | 5132                                        | -                                       | -                                             | 138                                    | -                    | -                                                    | 10002             | 14588               | 24728              |
| Puncha          | 32876             | 4585           | 4782                                        | -                                       | -                                             | 84                                     | 916                  | 84                                                   | 4739              | 17686               | 23509              |
| Purulia I       | 29495             | 659            | 8391                                        | 95                                      | -                                             | 245                                    | 304                  | 640                                                  | 4700              | 14461               | 20350              |
| Purulia II      | 30927             | 266            | 5033                                        | -                                       | -                                             | 225                                    | 756                  | 129                                                  | 7960              | 16558               | 25628              |
| Raghunathpur I  | 19767             | 443            | 4702                                        | 64                                      | 258                                           | 345                                    | 149                  | 71                                                   | 4450              | 9285                | 14300              |
| Raghunathpur II | 19767             | 237            | 3566                                        | 77                                      | -                                             | 319                                    | 304                  | 305                                                  | 6350              | 8609                | 15887              |
| Santuria        | 17949             | 0              | 32 78                                       | 221                                     | 140                                           | 287                                    | 294                  | 685                                                  | 3000              | 10044               | 14310              |
| τηται           | 619313            | 68715          | 112125                                      | 1480                                    | 780                                           | 4728                                   | 5054                 | 4070                                                 | 113111            | 309250              | 436713             |

\*Source- West Bengal Land use Land cover Department



Figure-1.2: Pie Diagram depicting land use pattern of the district (Area in sq.km)



Figure-1.3: Simplified Landuse-Landcover Map of Purulia District, West Bengal



Figure-1.4: Forest Cover map of Purulia District, West Bengal

**Cropping pattern:** The type of crops grown in the district is a direct influence of relief, soil, slope, climate, irrigation facilities and traditional social conditions. About 40-50 percent of the cultivated land is under single crop (mono cropping system) because of poor land fertility and lack of good irrigation facility. The proportion of double and triple cropped area is very limited. Paddy is the primary crop grown in the district along with some production of potato, wheat, dal, mustard, maize, maskalai, etc. 3,39,463 hectares of land is under Aman paddy alone as in 2013-2014. This Aman cultivation basically dominates the Kharif season. The crops grown in the district are usually rain fed with very low fertilizer consumption.

The overall agricultural production is low to medium. The main causes are its undulating topography, rocky and waste land, scarcity of water and medium to low soil fertility.

| DLULK           | AKEA/        |       |                  |             |               |               |                 |              |       |                       |         |              |            |
|-----------------|--------------|-------|------------------|-------------|---------------|---------------|-----------------|--------------|-------|-----------------------|---------|--------------|------------|
|                 | PKUD./       | Aus   | Aman             | Boro        | Wheat         | Maiza         | Maskalai        | Khosari      | Gram  | Mustard               | Til     | Poteto       | Sugarcano  |
|                 | YIELD        | лиа   | Aman             | 0010        | WIIGHT        | Maizs         | Maakalai        | Niisaari     |       | Muatoru               |         | 1 01010      | ougai canc |
| Arsha           | Area         | -     | 39094            | 17          | 114           | 122           | 686             | -            | 108   | 108                   | -       | 107          | 150        |
|                 | Production   | -     | 104.423          | 0.045       | 0.27          | 0.226         | 0.197           | -            | 0.136 | 0.077                 | -       | 3175         | 7.467      |
|                 | Yield        | -     | 2671             | 2676        | 2367          | 1852          | 288             | -            | 1256  | 715                   | -       | 29672        | 49783      |
| Baohmundi       | Area         | -     | 35241            | -           | 72            | 268           | 578             | 10           | -     | 604                   | -       | -            | -          |
| 5               | Production   | -     | 88 37            | -           | Π 17          | N 583         | N 7N8           | 0 006        | -     | 1115                  | -       | -            | -          |
|                 | Vield        |       | 2508             | -           | 2367          | 7174          | 360             | 647          | _     | 1846                  | _       | _            | _          |
| Balanamaun      |              |       | 2000             | 117         | 175           | 177           | 120             | UTL          |       | <u>الات</u><br>۸۱     | 102     | 75           | _          |
| naiaramhni.     | Area<br>Dead | -     | 30034<br>77 / DI | 000 UIU     | ובאו<br>חחפח  | ננו<br>פרפח   | 12 U<br>D D 0 / | -            | -     | 40<br>0 0 0           | 10Z     | /J<br>1/7E   | -          |
|                 |              | -     | /4.4UI           | 0.004       | 0.233         | 0.070         | 0.024           | -            | -     | 0.00                  | 0.032   | 14/3         | -          |
| <b>D</b> 1      | TIEIO        | -     | 24//             | 290Z        | 2309          | 2803          | 199             | -            | -     | /62                   | 0U0     | 19672        | -          |
| Barabazar       | Area         | /8    | 2//88            | //          | 25<br>8 8 4 5 | 134/<br>B (85 | 598             | -            | -     | 22                    | -       | 55           | -          |
|                 | Production   | 0.109 | 64.087           | 0.204       | 0.045         | 2.105         | 0.134           | -            | -     | 0.013                 | -       | 1155         | -          |
|                 | Yield        | 1396  | 2306             | 2869        | 1800          | 1563          | 224             | -            | -     | 569                   | -       | 19572        | -          |
| Jaypur          | Area         | -     | 10593            | -           | -             | 274           | 696             | -            | -     | 35                    | 82      | 27           | -          |
|                 | Production   | -     | 23.025           | -           | -             | 0.706         | 0.23            | -            | -     | 0.027                 | 0.041   | 798          | -          |
|                 | Yield        | -     | 2174             | -           | -             | 2576          | 331             | -            | -     | 775                   | 505     | 29543        | -          |
| Jhalda-I        | Area         | -     | 19014            | 256         | -             | -             | -               | 4            | 4     | 30                    | -       | -            | -          |
|                 | Production   | -     | 42.521           | 0.555       | -             | -             | -               | 0.001        | 0.005 | 0.017                 | -       | -            | -          |
|                 | Yield        | -     | 2236             | 2169        | -             | -             | -               | 229          | 1256  | 583                   | -       | -            | -          |
| Jhalda-II       | Area         | -     | 34155            | -           | 216           | 73            | 103             | 47           | 4     | 50                    | -       | 42           | -          |
|                 | Production   | -     | 85,194           | -           | 0.511         | 0.158         | 0.016           | 0.039        | 0.005 | 0.038                 | -       | 1149         | -          |
|                 | Yield        | -     | 7494             | -           | 2367          | 2163          | 151             | 839          | 1256  | 762                   | -       | 27365        | -          |
| Bundwan         | Area         | -     | 1739             | 16          | 9             | 1636          | -               | 4            | -     | 563                   | -       | 377          | -          |
| banawan         | Production   |       | 3 533            | л п29       | ם<br>מחח      | 7 7 8 6       | _               | י<br>חחח     | _     | D 677                 | _       | 10574        | _          |
|                 | Viold        |       | 2.000            | 1010        | 1000          | 1207          |                 | 0.001<br>766 |       | 0.022<br>ΠΠ/          |         | 79/7/        |            |
| ll              | 11eiu<br>A   | -     | 2002             | 1013<br>E   | 1303          | 1007          | -<br>חספס       | 200          | -     | 100                   | -       | 20424<br>20  | -          |
| пига            | Area         | -     | 2233             | ה היים ה    | םו<br>פפח ח   | -             | 0300            | -            | -     | I00                   | -       | 23           | -          |
|                 | Production   | -     | 3.0/3            | 0.013       | U.U3Z         | -             | 1.393           | -            | -     | 0.14                  | -       | 004<br>00000 | -          |
|                 | Yield        | -     | 1645             | 7691        | 1981          | -             | 190             | -            | -     | /43                   | -       | 29802        | -          |
| Manbazar-I      | Area         | -     | 1/40             | -           | 137           | 194           | -               | -            | -     | 135                   | 87      | 217          | -          |
|                 | Production   | -     | 3.542            | -           | 0.268         | 0.346         | -               | -            | -     | U.U84                 | 0.038   | 6111         | -          |
|                 | Yield        | -     | 2035             | -           | 1956          | 1783          | -               | -            | -     | 622                   | 434     | 28161        | -          |
| Manbazar-II     | Area         | -     | 14351            | -           | 170           | 1656          | 41              | 66           | 30    | 600                   | -       | 220          | -          |
|                 | Production   | -     | 34.381           | -           | 0.448         | 3.101         | 0.012           | 0.072        | 0.038 | 0.345                 | -       | 2911         | -          |
|                 | Yield        | -     | 2396             | -           | 2634          | 1873          | 295             | 1088         | 1256  | 575                   | -       | 13230        | -          |
| Puncha          | Area         | 14    | 1490             | -           | 9             | 240           | 452             | 5            | 14    | 164                   | 139     | 119          | 4          |
|                 | Production   | 0.02  | 3.103            | -           | 0.02          | 0.331         | 0.177           | 0.004        | 0.018 | 0.152                 | 0.081   | 3551         | 0.136      |
|                 | Yield        | 1396  | 2083             | -           | 2208          | 1381          | 391             | 799          | 1256  | 924                   | 579     | 29838        | 33930      |
| Purulia-l       | Area         | -     | 34693            | -           | 9             | 240           | 616             | 10           | 31    | 306                   | -       | 298          | 7          |
|                 | Production   | -     | 90.165           | -           | 0.02          | 0.331         | 0.119           | 0.001        | 0.039 | 0.198                 | -       | 6813         | 0.345      |
|                 | Yield        | -     | 2599             | -           | 2208          | 1381          | 193             | 89           | 1256  | 648                   | -       | 77863        | 49233      |
| Purulia-II      | Агеа         | -     | 1795             | -           | 90            | -             | 663             | -            | -     | 103                   | -       | 59           | -          |
|                 | Production   | -     | 7.668            | -           | D 186         | -             | D 143           | _            | -     | 0 0 0 0 0             | -       | 1544         | _          |
|                 | Viold        |       | 1/26             |             | 2062          |               | 215             |              |       | 0.000<br>876          |         | 76167        |            |
| Kaahinun        | Anna         | -     | 7900             | - 17        | 17            | -             | 210             | _            | -     | 000<br>CO             | 107     | 20107        |            |
| Kasilihni.      | Alea<br>Deed | -     | 22001<br>70.00C  | 12<br>D D9E | 1/<br>D D9E   | 4<br>0.000    | -               | -            | -     | 00                    |         | 22<br>779    | -          |
|                 | Production   | -     | 48.383           | 0.020       | U.UZ3         | 0.000         | -               | -            | -     | U.UJZ                 | 0.004   | //3          | -          |
| N               | Yield        | -     | 2193             | 2125        | 1496          | 1374          | -               | -            | -     | 112                   | 505     | 35121        | -          |
| Neturia         | Area         | -     | 1771             | -           | 1             | -             | -               | -            | 8     | 20                    | -       | -            | -          |
|                 | Production   | -     | 3.218            | -           | U.UU1         | -             | -               | -            | U.U1  | 0.005                 | -       | -            | -          |
|                 | Yield        | -     | 1817             | -           | 914           | -             | -               | -            | 1256  | 256                   | -       | -            | -          |
| Para            | Area         | -     | 14499            | -           | 48            | -             | -               | -            | -     | 54                    | -       | 50           | -          |
|                 | Production   | -     | 33.07            | -           | 0.119         | -             | -               | -            | -     | 0.046                 | -       | 1349         | -          |
|                 | Yield        | -     | 2281             | -           | 2476          | -             | -               | -            | -     | 852                   | -       | 26978        | -          |
| Raghunathpur-l  | Area         | -     | 1540             | -           | 5             | -             | 29              | -            | -     | 51                    | 85      | -            | -          |
|                 | Production   | -     | 3.158            | -           | 0.013         | -             | 0.014           | -            | -     | 0.078                 | 0.043   | -            | -          |
|                 | Yield        | -     | 2051             | -           | 2500          | -             | 477             | -            | -     | 1525                  | 505     | -            | -          |
| Ranhunathnur-II | Агеа         | - 1   | 6901             | 76          | 1             | 1             | 77              | -            | -     | 7                     | 95      | -            | -          |
| nagnanaripur il | Production   | 1.    | 16 719           | 0 062       | רחח           | ח חח          | <u>г</u>        | -            |       | ר ב <u>ר</u><br>וחח ח | Π Π// Ρ | -            |            |
|                 | 110006000    | 1     | 10.210           | 0.000       | U.UUZ         | U.UUZ         | U.UI            | 1            |       | 0.001                 | 0.040   | -            | -          |

Table-1.6: Area, yield and production of major crops in the study area.

| BLOCK   | AREA/           | CROP TYPE |       |      |       |       |          |         |      |         |     |        |           |  |
|---------|-----------------|-----------|-------|------|-------|-------|----------|---------|------|---------|-----|--------|-----------|--|
|         | prod./<br>Yield | Aus       | Aman  | Boro | Wheat | Maize | Maskalai | Khesari | Gram | Mustard | Til | Potato | Sugarcane |  |
|         | Yield           | -         | 2350  | 2608 | 2007  | 1569  | 467      | -       | -    | 704     | 505 | -      | -         |  |
| Santuri | Area            | -         | 1542  | -    | 112   | -     | -        | -       | -    | 44      | -   | 30     | -         |  |
|         | Production      | -         | 3.001 | -    | 0.205 | -     | -        | -       | -    | 0.025   | -   | 1461   | -         |  |
|         | Yield           | -         | 1946  | -    | 1833  | -     | -        | -       | -    | 572     | -   | 48690  | -         |  |

(Source: District Statistical Handbook, 2014)

Area = hectare, \* Production = thousand million tones, \*\*Yield= Kg/hect.

**Irrigation:** There are no major/medium irrigation schemes running in the entire district. Irrigation on a large scale is surface water dependent due to the non-availability of adequate ground water owing to its discrete hydrogeological settings. Irrigation plays a major role in district's agriculture though tube wells of various depths.

A total of 12154.12 hectares of land was irrigated from 1379 sources during 2013-2014. The district has a cultural command area of 110041.86 hectares and out of which 86524.94 hectares can be covered by surface water source and the rest 23516.92 hectares by ground water source. 85745.97 hectares of Irrigation Potential can be created in the district. Table 1.7 explains the area irrigated by different sources in the study area. Table 1.8 explains the total culturable command area created so far by groundwater and surface water irrigation schemes. Table 1.9 gives the details of irrigation potential created (IPC) in the district.

| BLOCKS          | Canal    |       | Tank     |     | RLI    | 0    | DW    |     | Others  |       | Total     |
|-----------------|----------|-------|----------|-----|--------|------|-------|-----|---------|-------|-----------|
|                 | Area     | No.   | Area     | No. | Area   | No.  | Area  | No. | Area    | No.   | Area      |
| Arsha           | 10984.2  | 881   | 3763.71  | 7   | 10.57  | 239  | 192.2 | 19  | 599.3   | 1146  | 15549.98  |
| Baghmundi       | 5627     | 88    | 1366.75  | 6   | 47.92  | 129  | 103.8 | 41  | 646.2   | 264   | 7791.67   |
| Balarampur      | 3393.69  | 130   | 3736.67  | 4   | 61.57  | 124  | 99.8  | 26  | 300     | 284   | 7591.73   |
| Barabazar       | 6927.81  | 638   | 1419.05  | 12  | 112.86 | 186  | 149.2 | 62  | 302.9   | 898   | 8911.82   |
| Joypur          | 600      | 1568  | 2866.6   | 3   | 66.38  | 154  | 124.2 | 110 | 715.8   | 1835  | 4372.98   |
| Jhalda-l        | 2585     | 386   | 7491.95  | 13  | 59.55  | 156  | 126   | 89  | 970.1   | 644   | 11232.6   |
| Jhalda-11       | 3832     | 416   | 7228.65  | 3   | 42.21  | 250  | 201.8 | 102 | 552.2   | 771   | 11856.86  |
| Bandowan        | 1694     | 376   | 4833.9   | 8   | 58.84  | 153  | 122.8 | 30  | 624.6   | 567   | 7334.14   |
| Hura            | 1198     | 663   | 8397.97  | 4   | 11.21  | 230  | 185.4 | 82  | 3368.1  | 979   | 13160.68  |
| Manbazar-I      | -        | 644   | 6570.42  | 10  | 40.92  | 266  | 213.6 | 12  | 651     | 932   | 7475.94   |
| Manbazar-II     | 1909     | 471   | 1322.12  | 5   | 67.38  | 149  | 119.8 | 54  | 787.3   | 679   | 4205.6    |
| Puncha          | -        | 652   | 6342.35  | 9   | 70.6   | 267  | 214.2 | 9   | 565     | 937   | 7192.15   |
| Purulia-1       | 170      | 295   | 4606.47  | 7   | 27.91  | 222  | 179   | 28  | 574     | 552   | 5557.38   |
| Purulia-II      | 2378     | 756   | 4141.91  | 8   | 49.66  | 233  | 186.8 | 46  | 465     | 1043  | 7221.37   |
| Kashipur        | 2367.4   | 136   | 4435.92  | 14  | 44.68  | 284  | 228.6 | 46  | 1924.7  | 480   | 9001.3    |
| Neturia         | -        | 487   | 3303.99  | 4   | 13.64  | 145  | 116.2 | 22  | 372     | 658   | 3805.83   |
| Para            | 2792     | 379   | 6132.63  | 6   | -      | 341  | 235   | 25  | 635     | 751   | 9794.63   |
| Raghunathpur-l  | -        | 376   | 7749.54  | 4   | 47     | 304  | 243.2 | 27  | 1035.5  | 711   | 9075.24   |
| Raghunathpur-II | 1547     | 185   | 1303.94  | 4   | 18.89  | 282  | 225.6 | 15  | 991.7   | 486   | 4087.13   |
| Santuri         | 4117.16  | 1168  | 6747.47  | 4   | 20.59  | 183  | 147.8 | 24  | 1121.1  | 1379  | 12154.12  |
| TOTAL           | 52122.26 | 10695 | 93762.01 | 135 | 872.38 | 4297 | 3415  | 869 | 17201.5 | 15996 | 167373.15 |

| Table-1.7: Source of irrig | ation and area irr | igated by differe | ent sources | 2013-20 | )14).    |
|----------------------------|--------------------|-------------------|-------------|---------|----------|
| Tuble 11/1000100 01 1111   | sucion una urcu nr | isuccu by unitere | ne sour ces |         | / ± ± j• |

RLI= River Lift Irrigation, ODW= Open Dug well.

(Source: 5<sup>th</sup> MI Census, West Bengal)

| BLOCK           | Dug well STW |              | rw  | M            | TW  | DTW          |     | Surface Flow |       | Surface Lift |      | CCA (ha.)    |                 | Total            |              |
|-----------------|--------------|--------------|-----|--------------|-----|--------------|-----|--------------|-------|--------------|------|--------------|-----------------|------------------|--------------|
|                 | No.          | CCA<br>(ha.) | No. | CCA<br>(ha.) | No. | CCA<br>(ha.) | No. | CCA<br>(ha.) | No.   | CCA<br>(ha.) | No.  | CCA<br>(ha.) | Ground<br>Water | Surface<br>Water | CCA<br>(ha.) |
| Arsha           | 60           | 73.02        | 1   | 1            | 0   | 0            | 15  | 872          | 602   | 5401.27      | 64   | 1273.02      | 946.02          | 6674.29          | 7620.31      |
| Baghmundi       | 478          | 674.57       | 2   | 5            | 3   | 3            | 13  | 717.5        | 289   | 2949.8       | 172  | 898.44       | 1400.07         | 3848.24          | 5248.31      |
| Balarampur      | 27           | 45.7         | 0   | 0            | 0   | 0            | 10  | 1053.2       | 390   | 1723.55      | 6    | 138          | 1098.9          | 1861.55          | 2960.45      |
| Bandwan         | 23           | 23.88        | 0   | 0            | 1   | 3.9          | 4   | 312.5        | 631   | 3479.5       | 29   | 475.1        | 340.28          | 3954.6           | 4294.88      |
| Barabazar       | 157          | 476.31       | 8   | 9.7          | 5   | 4.03         | 23  | 1416.6       | 805   | 6133.29      | 546  | 3237.98      | 1906.64         | 9371.27          | 11277.91     |
| Hura            | 99           | 215.09       | 0   | 0            | 0   | 0            | 30  | 1682.2       | 889   | 4328.19      | 14   | 245.54       | 1897.29         | 4573.73          | 6471.02      |
| Jhalda-I        | 646          | 1388.95      | 0   | 0            | 0   | 0            | 20  | 1645.7       | 570   | 3421.45      | 7    | 120          | 3034.65         | 3541.45          | 6576.1       |
| Jhalda-II       | 273          | 591.31       | 0   | 0            | 0   | 0            | 20  | 1196.6       | 657   | 3586.33      | 5    | 100          | 1787.91         | 3686.33          | 5474.24      |
| Joypur          | 278          | 530.16       | 1   | 2            | 0   | 0            | 11  | 529          | 282   | 1150.8       | 122  | 373.15       | 1061.16         | 1523.95          | 2585.11      |
| Kashipur        | 369          | 663.59       | 2   | 3            | 3   | 5.5          | 8   | 567.8        | 867   | 6577.55      | 314  | 2557.34      | 1239.89         | 9134.89          | 10374.78     |
| Manbazar-I      | 82           | 113.68       | 3   | 4            | 0   | 0            | 9   | 751          | 436   | 3969.44      | 318  | 2581.17      | 868.68          | 6550.61          | 7419.29      |
| Manbazar-II     | 18           | 28.36        | 1   | 0.1          | 0   | 0            | 20  | 659.2        | 385   | 2818.15      | 27   | 277.23       | 687.66          | 3095.38          | 3783.04      |
| Neturia         | 54           | 79.2         | 4   | 9.86         | 0   | 0            | 5   | 195          | 484   | 2202.65      | 102  | 863.47       | 284.06          | 3066.12          | 3350.18      |
| Para            | 94           | 178.08       | 0   | 0            | 0   | 0            | 6   | 407          | 913   | 3995.69      | 10   | 100.1        | 585.08          | 4095.79          | 4680.87      |
| Puncha          | 89           | 174          | 0   | 0            | 0   | 0            | 4   | 610          | 620   | 2046.99      | 10   | 117.2        | 784             | 2164.19          | 2948.19      |
| Purulia-I       | 89           | 125.9        | 0   | 0            | 0   | 0            | 15  | 1206         | 1241  | 3503.84      | 12   | 168.5        | 1331.9          | 3672.34          | 5004.24      |
| Purulia-II      | 121          | 132.96       | 3   | 4.4          | 2   | 2.05         | 9   | 1022.05      | 943   | 3678.72      | 215  | 1655.41      | 1161.46         | 5334.13          | 6495.59      |
| Raghunathpur-I  | 1            | 1.03         | 0   | 0            | 0   | 0            | 18  | 1207.5       | 448   | 3830.79      | 22   | 210.65       | 1208.53         | 4041.44          | 5249.97      |
| Raghunathpur-II | 37           | 68           | 2   | 4.5          | 0   | 0            | 15  | 649.4        | 525   | 1977.76      | 10   | 40.21        | 721.9           | 2017.97          | 2739.87      |
| Santuri         | 54           | 130.04       | 1   | 2.6          | 0   | 0            | 20  | 1038.2       | 781   | 4172.67      | 11   | 144          | 1170.84         | 4316.67          | 5487.51      |
| Total           | 3049         | 5713.83      | 28  | 46.16        | 14  | 18.48        | 275 | 17738.45     | 12758 | 70948.43     | 2016 | 15576.51     | 23516.92        | 86524.94         | 110041.9     |

#### Table-1.8: Source wise Culturable command area, Purulia district.

RLI= River Lift Irrigation, MTW= Medium Tube-well, DTW= Deep Tube-well, STW= Shallow Tube-well

(Source: 5<sup>th</sup> MI Census, West Bengal)

| Tahle-1 9  | Irrigation      | Potential  | (IP) | created by | , different | sources i    | n Puu | rulia | district        | - |
|------------|-----------------|------------|------|------------|-------------|--------------|-------|-------|-----------------|---|
| 1 abie 1.9 | . II I Igaululi | FULEIILIAI |      | cieateu Dy | ' umerent   | . 3001 CES I | пги   | luna  | $u_1 S u_1 u_1$ |   |

| Block Name      | Dugwel |         | STW |       | MTW |       | DTW |          | Surface | Flow     | Surfac | e Lift  | IP       |          | Total    |
|-----------------|--------|---------|-----|-------|-----|-------|-----|----------|---------|----------|--------|---------|----------|----------|----------|
|                 |        |         |     |       |     |       |     |          |         |          |        |         | (ha.)    |          | IP       |
|                 | No.    | IP      | Na. | IP    | Na. | IP    | No. | IP       | Na.     | IP       | Na.    | IP      | Ground   | Surface  | (ha.)    |
|                 |        | (ha.)   |     | (ha.) |     | (ha.) |     | (ha.)    |         | (ha.)    |        | (ha.)   | Water    | Water    |          |
| Arsha           | 60     | 61.45   | 1   | 1     | 0   | 0     | 15  | 1120.52  | 602     | 4463.97  | 64     | 919.46  | 1182.97  | 5383.43  | 6566.4   |
| Baghmundi       | 478    | 834.23  | 2   | 7.6   | 3   | 3     | 13  | 1040     | 289     | 1688.66  | 172    | 677.35  | 1884.83  | 2366.01  | 4250.84  |
| Balarampur      | 27     | 46.37   | 0   | 0     | 0   | 0     | 10  | 715      | 390     | 1645.3   | 6      | 243     | 761.37   | 1888.3   | 2649.67  |
| Bandwan         | 23     | 22.5    | 0   | 0     | 1   | 3.9   | 4   | 320      | 631     | 3040.41  | 29     | 604.07  | 346.4    | 3644.48  | 3990.88  |
| Barabazar       | 157    | 146.82  | 8   | 5     | 5   | 1.8   | 23  | 1367     | 805     | 1440.38  | 546    | 909.06  | 1520.62  | 2349.44  | 3870.06  |
| Hura            | 99     | 215.49  | 0   | 0     | 0   | 0     | 30  | 2149     | 889     | 3148.8   | 14     | 335.2   | 2364.49  | 3484     | 5848.49  |
| Jhalda-I        | 646    | 1359.8  | 0   | 0     | 0   | 0     | 20  | 1420     | 570     | 3929.16  | 7      | 150     | 2779.8   | 4079.16  | 6858.96  |
| Jhalda-II       | 273    | 569.83  | 0   | 0     | 0   | 0     | 20  | 1545     | 657     | 3496.49  | 5      | 95      | 2114.83  | 3591.49  | 5706.32  |
| Joypur          | 278    | 529.56  | 1   | 2     | 0   | 0     | 11  | 880      | 282     | 858.25   | 122    | 138     | 1411.56  | 996.25   | 2407.81  |
| Kashipur        | 369    | 395.31  | 2   | 2     | 3   | 3     | 8   | 640      | 867     | 5269.07  | 314    | 2137.09 | 1040.31  | 7406.16  | 8446.47  |
| Manbazar-I      | 82     | 91.17   | 3   | 1.68  | 0   | 0     | 9   | 660      | 436     | 3082.65  | 318    | 1578.33 | 752.85   | 4660.98  | 5413.83  |
| Manbazar-II     | 18     | 16.2    | 1   | 0     | 0   | 0     | 20  | 1191.1   | 385     | 769.51   | 27     | 95      | 1207.3   | 864.51   | 2071.81  |
| Neturia         | 54     | 55.21   | 4   | 2.86  | 0   | 0     | 5   | 345      | 484     | 638.46   | 102    | 299.35  | 403.07   | 937.81   | 1340.88  |
| Para            | 94     | 178.99  | 0   | 0     | 0   | 0     | 6   | 480      | 913     | 3955.21  | 10     | 110.1   | 658.99   | 4065.31  | 4724.3   |
| Puncha          | 89     | 172.98  | 0   | 0     | 0   | 0     | 4   | 320      | 620     | 2057.96  | 10     | 95.12   | 492.98   | 2153.08  | 2646.06  |
| Purulia-l       | 89     | 127.84  | 0   | 0     | 0   | 0     | 15  | 730      | 1241    | 2887.43  | 12     | 259.35  | 857.84   | 3146.78  | 4004.62  |
| Purulia-II      | 121    | 45.92   | 3   | 0.1   | 2   | 0     | 9   | 641      | 943     | 569.17   | 215    | 139.39  | 687.02   | 708.56   | 1395.58  |
| Raghunathpur-l  | 1      | 2       | 0   | 0     | 0   | 0     | 18  | 1101     | 448     | 3058.47  | 22     | 195.65  | 1103     | 3254.12  | 4357.12  |
| Raghunathpur-II | 37     | 68      | 2   | 4.2   | 0   | 0     | 15  | 1145     | 525     | 1927.69  | 10     | 44.33   | 1217.2   | 1972.02  | 3189.22  |
| Santuri         | 54     | 150.12  | 1   | 2.4   | 0   | 0     | 20  | 1600     | 781     | 4035.13  | 11     | 219     | 1752.52  | 4254.13  | 6006.65  |
| Total           | 3049   | 5089.79 | 28  | 28.84 | 14  | 11.7  | 275 | 19409.62 | 12758   | 51962.17 | 2016   | 9243.85 | 24539.95 | 61206.02 | 85745.97 |

RLI= River Lift Irrigation, MTW= Medium Tube-well, DTW= Deep Tube-well, STW= Shallow Tube-well, IP= Irrigation potential (Source: 5<sup>th</sup> MI Census, West Bengal)

**1.7 URBAN AREA, INDUSTRIES & MINING ACTIVITIES:** Purulia has three (3) Municipalities namely Jhalda (M), Purulia (M) and Ragunathpur (M). The urban population as per 2011 census is 373314. The level of urbanization of the district is very low. Only Purulia town has concentrate 32.43% of the total urban population. Levels of urbanization of five blocks namely Ashra, Bagmundi, Hura, Puncha, and Manbazar-II are zero, where not an urban center has been grown. The urban area of these blocks was added only in the last census, i.e., 2011 Census. Purulia-II and Raghunathpur-I blocks

have the highest concentrate of urban population. One of the most important feature that is found in this district is that, the urban populations in some blocks are decreasing. They are Raghunathpur-I & II and Balarampur. Highest negative growth rate was found in Raghunathpur-II (-12.61). The highest rate of urbanization found in Para block (138.14). The urban density of all the blocks is very low and is below the national and state average (328 per sq.km). Four blocks namely, Balarampur, Raghunathpur-I, Para and Neturia blocks have the highest urban density.

All the areas of a district are not uniformly endowed with resource; neither have they had equal potentiality for Industrial developments. An unbalanced growth structure is a common characteristic of present day industrial scenario. Industries thus tend to concentrate around certain centre which are naturally more suited towards development and which have strong forward and backward linkages. The region saw a number of industries being established in the province since the year 2001 owing to the Industry policy of the government of West Bengal.

There are two main industrial areas in Purulia district namely, Purulia IE., Ranibandh & Raghunathpur Industrial Park. There are so far 96 registered industrial units *(Source: District Statistical Handbook of BAES & Economic Review, 2011-12, Govt. of W.B).* The list of Large Scale Industries / Public Sector undertakings includes Ispat Damodar Ltd., Santhaldi Thermal Plant, Bengal arc Steel Pvt. Ltd., Purulia Steel Pvt. Ltd. & Damodar Cement and Slag Ltd. A number of medium and small scale industries have also been established in the region like lac industry and sericulture.

Purulia has wide range of mineral resources. GSI have identified ten types of mineral deposits in this district. Some common minerals include coal, feldspar, limestone, apatite, china clay, quartz, etc. The main mineral resource in the district is Gondwana coal which is being mined at two big collieries namely Ranipur and Parbelia in Santuri block. Other coal mines of importance are Deuli and Bhamuria. Decorative stones/building materials are also being excavated from Deuli, Bero, Dhunia, etc.

# Chapter – 2 CLIMATE

#### 2.0 CLIMATE

Climate of the district is probably one of the important factors that have shaped the present day landscape of the area. Purulia has sub-tropical type of climate which is characterized by high evaporation coupled with low precipitation. It is one of the drought prone districts of West Bengal. Winter in the area lasts normally from November to February while the summer lasts from March to June. Monsoon generally lasts from June to September. It has been observed that moderate drought occur once in every 3 years and severe type of drought occur once in every 10 years in the district.

#### 2.1 RAINFALL

The normal annual rainfall for the district is 1321.9 mm. The average annual rainfall of the district ranges from 1100-1500 mm. The rainfall in the area is not uniform each year but is erratic and scanty as a result the Kharif crops fails and drought takes place. Monsoon Lasts from July to September. The main source of rainfall in the district is the South-West monsoon, which accounts for 80% of the total rainfall in the district. The average monthly rainfall graph for Purulia district is shown Figure-2.1 and its corresponding average annual rainfall(2001-19) isohyets zonation is shown in Figure 2.2. The annual rainfall data for a period of 2001 – 2019, along with meteorological analysis have been tabulated and presented in Table -2.1.



Figure 2.1 : Monthly Average Rainfall(Normal) in Purulia District
| rubio Eli mormar minuar manar ana motoro robero analysis |            |                   |                         |                  |  |
|----------------------------------------------------------|------------|-------------------|-------------------------|------------------|--|
| Year                                                     | RF<br>(mm) | Departure<br>(mm) | Percentage<br>Departure | Analysis         |  |
| 2001                                                     | 1001.5     | -320.4            | -24.24                  | Normal           |  |
| 2002                                                     | 1193.9     | -128.0            | -9.68                   | Normal           |  |
| 2003                                                     | 1026.8     | -295.1            | -22.32                  | Normal           |  |
| 2004                                                     | 1135.0     | -186.9            | -14.14                  | Normal           |  |
| 2005                                                     | 975.5      | -346.4            | -26.20                  | Moderate Drought |  |
| 2006                                                     | 1317.9     | -4.0              | -0.30                   | Normal           |  |
| 2007                                                     | 1783.8     | 461.9             | 34.94                   | Excess Rainfall  |  |
| 2008                                                     | 1383.4     | 61.5              | 4.65                    | Normal           |  |
| 2009                                                     | 1165.8     | -156.1            | -11.81                  | Normal           |  |
| 2010                                                     | 901.3      | -420.6            | -31.82                  | Moderate Drought |  |
| 2011                                                     | 989.5      | -332.4            | -25.15                  | Moderate Drought |  |
| 2012                                                     | 1023.1     | -298.8            | -22.60                  | Normal           |  |
| 2013                                                     | 997.5      | -324.4            | -24.54                  | Normal           |  |
| 2014                                                     | 1026.7     | -295.2            | -22.33                  | Normal           |  |
| 2015                                                     | 1208.7     | -113.2            | -8.56                   | Normal           |  |
| 2016                                                     | 1367.9     | 46.0              | 3.48                    | Normal           |  |
| 2017                                                     | 1565.9     | 244.0             | 18.46                   | Normal           |  |
| 2018                                                     | 1140.2     | -181.7            | -13.75                  | Normal           |  |
| 2019                                                     | 1219.1     | -102.8            | -7.78                   | Normal           |  |





Figure-2.2: Rainfall Isohyet zonation map for Purulia district. (Source: IMD)

#### 2.2 TEMPERATURE

Purulia district is characterized by dry tropical climate, marked by a moderately cold winter with night time temperatures reaching around 10°C. Summers are highly oppressive summer and often scorching with day time temperatures reaching above 40°C. Winter which lasts from November to February. Late March signals the advent of summer, which maintains its oppressive spell till June. The maximum and minimum temperature of the district for the preceding 5 years in degree Celsius is given below in table 2.2.

| District | Year | Maximum | Minimum |
|----------|------|---------|---------|
|          |      | (°C)    | (°C)    |
|          | 2016 | 32.8    | 22.9    |
| PURULIA  | 2017 | 33      | 22.3    |
|          | 2018 | 32.75   | 22.41   |
|          | 2019 | 33      | 24      |
|          | 2020 | 32.5    | 23.8    |

Table 2.2: Maximum and Minimum Temperature of the District



Figure-2.3: Average Monthly Temperatures for Purulia district. (Source: IMD)

#### 2.3 HUMIDITY AND WIND

The relative humidity is high in monsoon season, being 75% to 85%. But in summer it comes down to 25% to 35%. Dry, hot wind in summer blows across the district with velocity ranging between 5-6 Km/hr.

### Chapter – 3 PHYSIOGRAPHY

#### 3.1 PHYISOGRAPHY

Purulia district which is located in the eastern slope of Chottanagpur Plateau is characterized by a hilly terrain. The elevation of the area varies from 63meters to 712 meters above sea level. The general elevation of the land surface ranges between 150 meters to 300 meters. The master slope of the land surface is towards the east and south-east. The elevation map of the study area is shown in Figure-3.1.The location and extent of different types of slopes in Purulia district is tabulated in Table -3.1

The district can be sub-divided physiographically into two units. The one is hilly terrain in the western and southern parts, which are the continuation of Chottanagpur Plateau. The other one is the undulating plain with isolated mounds and hills, comprising the rest of the district covering about 80% of the total area.

The hilly terrain in the western part has parallel hill ranges roughly trending NW-SE in Jhalda – Baghmundi-Balarampur area. This includes the Ajodhya hill which is a small plateau with surrounding hills. The highest peak of Ajodhya hills is Chamtaburu (712 m). The prominent hill near Jhalda is Bansa Pahar. The rugged terrain south to southeast of Bundwan is a continuation of the hill ranges from the adjacent Singhbum district in an approximately NW-SE trend. Raika Pahar, ChurniPaharand Gurma Pahar are some of the hills in this part.

The undulating plain covering rest of the district is characterized by high lands alternating with long stretches of low lying areas, where most of the culturable lands are located.

| Class | Slope<br>(%) | Area<br>(Hectares) | Percentage of total area | Location                                                                                                                    |
|-------|--------------|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1     | <10          | 4,89,494           | 79.49                    | Erosional Plains of central and eastern parts of Purulia district                                                           |
| 2     | 10-20        | 90,000             | 14.62                    | Lower slopes of plateau fringes & residual hills in the<br>western, south-eastern and north eastern part of the<br>district |
| 3     | 20-30        | 35,156             | 5.71                     | Upper slopes of plateau region, extreme south western part of the district                                                  |
| 4     | >30          | 1,125              | 0.18                     | Top of the plateau and eroded steep rock<br>hills of western part and north-eastern part of the<br>district                 |
| T     | 'otal        | 6,15,775           | 100                      |                                                                                                                             |

Table 3.1 Location and extent of different land relief types in Purulia District



Figure - 3.1: Land Elevation map of Purulia District

#### 3.2 **GEOMORPHOLOGY**

The study area can be divided into several geomorphic units. The geomorphological map of Purulia district is shown in Figure-3.2. The brief description of each unit is explained below:

- *Flood Plain:* Flood plain deposits in the district are found alongside the RiverDamodar in the extreme northern part bordering Santuri, Neturia and Ragunathpur-II blocks. These floodplains act as good aquifers due to their high permeability.
- *Valley Fills:* These are accumulation zone of colluvial materials derived from the surrounding uplands. They are characterized by fine loamy to clayey soils and are found as narrow strips along the river channels in the district.
- *Pediment-pediplain complex:* Pediplain is a relatively flat surface formed by joining of several pediments. They may have a thin veneer of sediments and are characteristics of semi-arid to arid climates. This landform accounts for almost 80% of the total area in Purulia district.
- *Low to highly dissected structural hills:* These are formed due to combined effect of denudation and tectonism. These regions act as runoff zones. This type of landform is found as patches in blocks like Jhalda-I & Jhalda-II, Barabazar, Manbazar-II and Bundwan.
- *Low to highly dissected denudational hills:* Denudational hills consist of jointed and fractured granites and gneisses, and are formed due to differential erosion and weathering processes. The presence of fractures, joints and topographic cuts makes infiltration of groundwater possible but with increasing slope the runoff possibility also increases limiting the groundwater recharge process. Therefore, the highly dissected hills with sharp relief, formed due to the severe erosion process have very less groundwater prospect than the low-dissected hills. The Ajodhya hill range and the intermittent valleys are examples of denunational hills. They are characterized by steep to moderately steep relief; rounded to sharp crest and the lithology

comprises of different variants of Chottanagpur Gneissic Complex with enclaves of meta-sedimentaries. This type of landform feature is found in Bundwan, Baghmundi and in some portions of Santuri and Neturia blocks.



Figure-3.2: Geomorphological map of Purulia District

#### 3.3 DRAINAGE

The river Kasai which flows through the central part of the district, along with Damodar and Subarnarekha are the main perennial rivers, which drain the district. Kasai is the most important river of Purulia which is joined by its major tributary, Kumariin the southern part of the district. Darakeswar and Silai or Sialabati rivers drain small area in the north- eastern and eastern part of the district respectively. In general, the streams of the district flow eitherin easterly or south easterly directions. The drainage pattern developed in the district is also either dendritic or radial pattern. The important ephemeral streams of the district are Sahara, Jorh, Bandhu, Nangsai, Vanumata, etc. The drainage map of the study area is shown in Figure-3.3.



Figure- 3.3: Drainage map of Purulia District

#### 3.4 PEDOLOGY

Soils found in the district are in general of the residual type which is derived directly from the weathering of the Achaean granites, gneisses and schists. Lateritic soil prevails in the uplands whereas, in the valleys, reddish clay loam or white to reddish clay are common. Many textural classes are met with; such as sandy loam, reddish loam, white or reddish stiff clay etc. Because of the undulating nature of the topography, the soil cover is thin and the soil is generally gravelly. The soil in the entire district is found to be acidic in nature. On an average the soil contains 0.04% nitrogen, 0.005% P<sub>2</sub>O<sub>5</sub> and 0.01% K<sub>2</sub>O. The maximum nitrogen contentof the soil is 0.87% and the minimum is

0.036%. The fertility is also low as the soils contain very little organic matter except in the valley fills and river alluvium. The soil map of the study area is shown in Figure- 3.4. Three main soil groups according to the landscape and its association with rock-types have been identified. The details of the same is shown in Table-3.2.

| Group                                                    | Туре                                                                        | Location                                                                                                                                                         | Area<br>(sq. Km) | % of<br>total |
|----------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
|                                                          |                                                                             |                                                                                                                                                                  |                  | area          |
|                                                          | Deep, well drained to<br>moderately drained,<br>sandy loamy soil            | Gently sloping to undulating<br>plains of Jhalda, Arsa,<br>Bagmundi, Barabazar, Para,<br>Kashipur, Hura and Santuri.                                             | 2,744.50         | 43.84         |
| Soils associated<br>with Granite-<br>Gneiss<br>Landscape | Shallow, well drained,<br>gravelly loamy soils                              | Gently sloping ridges of<br>Bagmundi and subdued ridges<br>of Jhalda, undulating plains of<br>Joypur, Purulia I, Purulia II,<br>Barabazar, Manbazar and<br>Para. | 1,577.50         | 25.20         |
|                                                          | Very deep,<br>imperfectly, drained<br>fine soil                             | Undulating plains of eastern<br>part of Neturia and Santuri,<br>Hura                                                                                             | 975.00           | 15.58         |
|                                                          | Very shallow, semi-<br>white excessively<br>drained gravelly<br>loamy soils | Gently sloping narrow hill slopes of Bundwan                                                                                                                     | 150.00           | 2.40          |
| with Singhbhum<br>landscape:                             | Shallow, moderately<br>well drained, coarse<br>loamy soils                  | Subdued hill slopes of<br>Bundwan                                                                                                                                | 25.00            | 0.40          |
|                                                          | Deep, moderately<br>well drained, fine<br>loamy soils                       | Very gently sloping<br>undulating uplands of<br>Bundwan and in small patches<br>in Barabazar                                                                     | 387.50           | 6.19          |
| Soils associated with Gondwana                           | Shallow, imperfectly<br>drained, coarse loamy<br>soils                      | Undulating plains of<br>Raghunathpur block                                                                                                                       | 300.00           | 4.79          |
| landscape                                                | Shallow, moderately<br>well drained, gravelly<br>loamy soils                | Undulating plains of Neturia,<br>Santuri and Raghunathpur I                                                                                                      | 100.00           | 1.60          |
| Total                                                    |                                                                             |                                                                                                                                                                  | 6259.00          | 100           |

| Table 3.2 | : Location | wise soil | distribution |
|-----------|------------|-----------|--------------|
| rubic 5.2 | . Docution |           | uistibution  |

(Source: District Survey Report, Purulia, Feb-2021)



Figure-3.4: Soil map for Purulia District of West Bengal (Source: District Survey Report, Purulia, Feb-2021)

## Chapter – 4 GEOLOGY

#### 4.1 GENERAL GEOLOGY

Purulia district is underlain by Precambrian metamorphics belonging to Chottanagpur Gneissic Complex. Permo-Triassic Gondwana formations occurs in the north eastern parts. Unconsolidated sediments are found to occur, adjacent to major rivers & streams as discontinuous patches. The generalized succession of Purulia district is as follows:

| <u>Age</u>  | <u>Group Name/Forn</u> | nation     | <u>Lithology</u>                                                                              |  |
|-------------|------------------------|------------|-----------------------------------------------------------------------------------------------|--|
| Quaternary  | Sijua                  |            | Coarse to fine sand slit & clay, Lithomargic clay yellow clay, Calcareous modules & laterite. |  |
|             | ~~~~                   | ~~~~ Unco  | onformity ~~~~~~                                                                              |  |
| Triassic    | Upper Gondwana         |            | Sandstone (Supra-panchet)                                                                     |  |
|             | ~~~~                   | ~~~~ Unco  | onformity ~~~~~~~                                                                             |  |
| Permian     |                        |            | Sandstone & Shale,                                                                            |  |
|             | Lower Gondwana         | Panchet    | Raniganj formation                                                                            |  |
|             |                        |            | Sand, shale & coal seams                                                                      |  |
|             |                        | Damuda     | Barren measures formation                                                                     |  |
|             |                        |            | Ironstone, shale & ferruginous Sandstone.                                                     |  |
|             | ~~~~                   | ~~~~ Unco  | onformity ~~~~~~                                                                              |  |
| Proterozoic | Intrusive granite /    |            | Pegmatites,granite, quartz &chert veins, epidote-                                             |  |
|             | Dalma volcanics        | s/Singbhum | feldspar-quartz veins, aplites& quartz - magnetite                                            |  |
|             | Granite complex        |            | veins underlain by Chotanagpur gneissic complex.                                              |  |
| Archean     | Chottanagpur           | Gneissic   | Chotanagpur Granite Gneiss                                                                    |  |
|             | Complex                |            | Porphyroblastic granite – gneiss, biotite - granite                                           |  |
|             |                        |            | composite gneiss, Migmatites, granetiferous granitic                                          |  |
|             |                        |            | gneiss                                                                                        |  |
|             |                        |            | Amphibolites, meta norite, Hornblende-schist.                                                 |  |
|             |                        |            | (Source: GeologicalSurvey of India.)                                                          |  |

#### Table 4.1: Stratigraphic Succession of Purulia district

Metamorphic rocks encompass granite gneiss (Chotanagpur Granite Gneiss Complex), biotite granite gneiss, calc-granulite, ultrabasic, metabasic, meta-sedimentaries, and pegmatite and quartz veins. Geologically the meta- sedimentaries are the older group of rocks here. They comprise of calc- granulite, crystalline limestone, and garnetiferoussillimanite schist. Within the vast occurrence of granites and granite gneisses, metabasics occur as intrusive. The rocks of Gondwana i.e. of Permian & Triassic age in the north-eastern part of the district are represented by shales& ferruginous sandstones of the Barren Measure Formation along with sandstones, shales and coal seams of the Raniganj Formation.

The unconsolidated sediments comprising of coarse to fine sand, silt, clay, lithomargic clay, yellow clay, calcareous nodules and laterite play a vital role in forming the unconsolidated sediments.

Rocks with various geological ages ranging from Archeans to Recent that found in the district(Figure-4.1) may be grouped into following categories:

- I. Chotanagpur Gneissic Complex:
- a) *Granite gneiss and Migmatite:* They cover almost 56 percent of the total area of the district and are found in all blocks except the Bundwan& the southern part of Barabazar, Balarampur, Manbazar, north eastern part of Neturia and southern Santuri. These rocks are hard & foliated and can easily be weathered.
- b) *Quartz and Quartz Schists:* These hard-layered rocks occur mainly in extreme north-western part of Jhalda and as small patches in Barabazar and Para.
- c) *Calc-granulites, calcschists and crystalline limestones:* These rocks are found in northern part of Jhalda and as small patches in Jaipur and Neturia.
- d) *Mica schist:*These soft and flaky rocks occur in central part of Jhalda II, north of Arsha, southern part of Bagmundi, Balarampur, Barabazar, as patches in Joypur, Purulia II, Para, Kashipore, Santuri, extreme north-western part of Raghunathpur and eastern part of Manbazar.
- e) *Amphibolites and Hornblende schists:* In Jaypur, Jhalda II, Arsa, Bagmundi, Para, Raghunathpur and Santuri, amphibolites and hornblende schists occur as insignificant patches.
- II. Singhbhum Group:
- a) Phyllite sand mica schists: Southern part of Balarampur, Barabazar and most part of Bundwan block are covered by these soft flaky rocks.
- b) Quartzite: Insignificant patches of quartzite are found in Balarampur and Bundwan.

#### III. Intrusive Granites:

a) Kuilapal (GRk), Manbhum (GRm) and other Granites: These hard & massive rocks occur mainly in north Jhalda, Joypur , Arsha , Purulia , Para , Raghunathpur, Neturia, Balarampur , Barabazar , Manbazar and as small patches in Bagmundi and in Bundwan blocks.

#### IV. GondwanaSupergroup Of Sedimentaries With Coal Seams:

- a) Clays with caliche concretions: These rocks are soft and unconsolidated and occur as small patches in Hura and Manbazar blocks
- b) Red sandstones and red clays: Very insignificant patches of these medium hard to soft layered sedimentary rocks are found mainly in Neturia.
- c) Sandstones, clays and shales: These are found in Neturia and Santuri blocks.
- d) Coal bearing sandstones and shales: These rocks are considered as a part of Raniganj Formation and found mainly in Neturia and Santuri.



#### 4.2 **STRUCTURAL FEATURES**

The regional structure indicates the presence of isoclinal folds, in which the fold axes are either horizontal or plunging at low angles towards east or west. General E-W strike of the formations is predominant with moderate to steep northerly and southerly dips. Reversals of dips are the manifestations of regional folding and shearing of the concerned rocks locally. Well-developed and prominent foliations in the metasediments having uniform WNW-ESE strike and with steep dips due north are also noticeable here. Presences of quartzites give the picturesque of weathering and formed low ridges & the intervening valleys which are usually composed of the easily weathered schistose rocks.

The granitic rocks generally form hills and mounds. The porphyritic granite shows planar banding of alternate layer of feldspar phenocrysts and a finer grain assemblage of quartz, feldspar and accessories. It gives supportive evidence to the structural trend of the schistose country rocks. They are often well jointed. Common joints developed in the granite gneiss are as follows:

| (i) | N-S — Vertical. | (ii) | E-W — Dip 15° towards North. |
|-----|-----------------|------|------------------------------|
|     | _               |      |                              |

- (iii) E-W — Vertical.
- (v) ENE-WSW — Vertical.
- ESE- WNW Vertical. (vii)
- N-S Dip 35° towards West. (iv)
- NNE-SSW Dip 65° towards ESE (vi)
- NE-SW Dip 65° towards SE. (viii)

The sedimentary rocks of the Gondwana system such as the sandstones and shales have bedding planes and open joints. Carbonaceous shale are compact but highly jointed. The junction between the Gondwanas and Archeans is marked by the boundary fault.

Two shear zones are observed in the district. One of them, known as South Purulia Shear Zone (SPSZ) exists along the boundary between the Singhbhum Group and Gneissic Complex and another Shear Zone (North Purulia Shear Zone, *i.e.*, NPSZ) has been traced further to the north between Jhalda and Ragunathpur. These shear zones are susceptible to erosional activity. The most prominent rock type observed in the region is an E-W to NE- SW trending porphyritic granite body extending from Tulin in the west to northeast of Bero in the east. To the south of the porphyritic granite body lies a vast area comprising grey granite, granite gneiss, migmatite, basic granulites, charnockite, sillimanite schist and anorthosite.

### Chapter – 5 GEOPHYSICAL STUDIES

Geophysical study in field can be broadly divided into two categories, namely surface geophysical investigation or resistivity survey (VES and profiling) and electrical borehole logging.Surface geophysical investigation is the pre-drilling approach and in ground waterexploration it has many objectives depending upon the formation characteristicswhether they are unconsolidated, semi-consolidated or consolidated formations.

In hard rock terrain it is required to identify a) Saturated fractures/joints, faults, shear zones, dykes, quartz veins and reefs which may control the ground water occurrence/movement at varied depths, b) Thickness of the water bearing overburden (weathered residuum), c) depth to the bed rock and resistivity values and d) delineation of water filled cavities in limestone.

Electrical resistivity investigation is also adopted in exploratory drilling program to locate a tube/bore-well site due to its wide simplicity in field proceedings and low cost of operation. It also helps for mapping potential aquifers in buried stream channels and also demarcating the areas suitable for artificial recharge and prone to water logging.

Electrical well logging measures the physical properties of surrounding rocks with a sensor located in a borehole. It is performed by lowering a 'logging tool' - or a string of one or more instruments on the end of a wire-line into a borehole and recording the physical properties using a variety of sensors. Several types of logging methods are available. However the most commonly used is the electrical resistivity method. This method works by characterizing the rock or sediment in a borehole by measuring its electrical resistivity which is the ability to impede the flow of electric current. Resistivity is expressed in ohm meter ( $\Omega$ m), and is frequently charted on a logarithm scale versus depth because of the large range of resistivity. The natural resistivity in hard rocks are mentioned in Table-5.1.

| Table-5.1: Range of resistivity in Hard rocks |                                     |  |  |  |
|-----------------------------------------------|-------------------------------------|--|--|--|
| LITHOLOGY                                     | <b>RANGE OF RESISTIVITY</b> (IN Ωm) |  |  |  |
| Highly weathered and fractured granite        | 220-300                             |  |  |  |
| Fractured granite                             | 350-500                             |  |  |  |
| Less fractured granite                        | 1000-2000                           |  |  |  |
| Fresh and massive granite                     | >20,000                             |  |  |  |
| Laterites (hard)                              | 100-150                             |  |  |  |
| Weathered laterite                            | 40-100                              |  |  |  |
| Weathered basalt                              | 45-130                              |  |  |  |
| Hard and compact                              | >800                                |  |  |  |
|                                               |                                     |  |  |  |

In the present study area, CGWB, ER has carried out geophysical studies using different instruments and methods to pinpoint sites for drilling exploratory wells. The details for each site are discussed thoroughly in the following pages.

5.1 Bodaldih, Barabazar block: The surface resistivity investigation was done using a CRM 500, auto-c, resistivity meter, (Anvic, Pune). One mise-a-la-masse survey was conducted in the borehole where drilling was done and fracture was detected. In mise-a-la-masse survey the one current electrode is kept in infinity and one current electrode is kept inside the borehole at fracture depth. The two potential electrodes are kept radially 5 meters interval in each reading. Different sets of radial readings are taken when current is allowed to pass. These potential values for different positions of electrodes are plotted in centimeter graph paper radially. Equipotential lines are drawn. From the equi-potential line direction, the orientation of fracture is predicted. A rough sketch for the method adopted is shown in Figure-5.1.

To confirm the presence of fracture and the depth of the fracture along the contour orientations, 2 Nos. of VES were conducted in the investigated area using Schlumberger configuration. The maximum current electrode separation was kept at 360 meter to get the maximum depth of investigation. The interpreted results for VES conducted at Bodaldih site is given in Table-5.2.



Figure-5.1: Schematic diagram for mise-a-la-masse survey conducted at Bodaldih site, Barabazar block.

| VES   | Area/Co ordinate                                                                                                      | Layer                                                                   | Layer Resistivity and Depth |                                      |                                                         | Fractures          |
|-------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------------------------|---------------------------------------------------------|--------------------|
| No.   | Location                                                                                                              | Layer No.                                                               | Resistivity<br>(Ωm)         | Depth<br>(mbgl)                      |                                                         | ( mbgl)            |
| VES 1 | Along 130° North and<br>5 metre distance from<br>the existing 1 <sup>st</sup> drilling<br>point (Exploratory<br>well) | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 81<br>24<br>1854            | 0 - 2.0<br>2.0 - 4.2<br>4.2 - contd. | Top soil<br>Weathered<br>rock<br>Hard formation         | 60- 80,<br>120-160 |
| VES 2 | Along 30° North and 5<br>metre distance from<br>the existing 1 <sup>st</sup> drilling<br>point ( Exploratory<br>well) | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 67<br>44<br>550             | 0 - 2.1<br>2.1 - 5.25<br>5.25 - 48.5 | Top soil<br>Weathered<br>rock<br>Partially<br>fractured | 60-70,<br>140-150  |
|       |                                                                                                                       | 4 <sup>th</sup> Layer                                                   | 12800                       | 48.5 - contd.                        | Hard formation                                          |                    |

Based on the resistivity sounding studies, it is observed that the sub-surface formations may be composed of top soil, weathered/partially weathered rock and hard formation (may be granite). The top soil shows the resistivity order of 67 to 81  $\Omega$ m and is detected down to a maximum depth 2.1 mbgl. The second layer of resistivity from 24 to 44  $\Omega$ m is assumed to be weathered rock and generally exist within the maximum depth range 2 to 5.25 mbgl. The partially fracture formation of resistivity 550  $\Omega$ m is found within the depth range 5.25 to 48.5 mbgl. The weathered formation may provide sufficient water at shallow depths. The consolidated hard formations exhibit resistivity range from 1854 to 12800  $\Omega$ m.

The recommendations thus provided through the investigation done at Bodaldih high school site are given in Table-5.3.

| VES No.       | Location                                   | Recommended water<br>zone in weathered a<br>formation (n | Drilling<br>depth (mbgl) |     |  |  |  |
|---------------|--------------------------------------------|----------------------------------------------------------|--------------------------|-----|--|--|--|
|               |                                            | Weathered/Partially                                      | Fractured                |     |  |  |  |
|               |                                            | Weathered                                                | formation                |     |  |  |  |
|               |                                            | formation                                                |                          |     |  |  |  |
| <b>VES 01</b> | Along 130° North and 5 metre               | 2.0 - 4.2                                                |                          | 200 |  |  |  |
|               | distance from the existing 1 <sup>st</sup> |                                                          | 60-80,                   |     |  |  |  |
|               | drilling point                             |                                                          | 120-160                  |     |  |  |  |
|               | (Exploratory well)                         |                                                          |                          |     |  |  |  |
| <b>VES 02</b> | Along 30° North and 5 metre                | 2.1 - 5.25                                               | 60-70,                   |     |  |  |  |
|               | distance from the existing 1 <sup>st</sup> | 5.25 - 48.5                                              | 140-150                  | 200 |  |  |  |
|               | drilling point (Exploratory                |                                                          |                          |     |  |  |  |
|               | well)                                      |                                                          |                          |     |  |  |  |

Table-5.3: Recommendation of water bearing zones for different locations at Bodaldih High School site as per availability of aquifers.

**5.2 Ankhro PHC site, Manbazar-II block :** Total 3 Nos. of VES was conducted at Ankhro PHC site using Schlumberger configuration. The maximum current electrode separation was kept at 460 meter to get the maximum depth of investigation. The interpreted results for VES conducted at Ankhro PHC site are given in Table-5.4.

|         | Table -5.4. Interpreted VES results of Ankin of the site, Mandazar -n block |                                                                                         |                                                                         |                        |                                           |                                                         |          |
|---------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-------------------------------------------|---------------------------------------------------------|----------|
| VES No. | Co-ordinate                                                                 | Location                                                                                | Layer                                                                   | <b>Resistivity and</b> | Depth                                     | Lithology                                               | Fracture |
|         |                                                                             |                                                                                         | Layer No.                                                               | Resistivity<br>(Ωm)    | Depth<br>(mbgl)                           |                                                         | ( mbgl)  |
| VES 01  | 22°54′44.30″<br>86°33′3.35″                                                 | 40 mRHS of the<br>main gate,30m<br>WWN of cement                                        | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer                          | 43<br>301<br>VH        | 0 - 4<br>4 - 44.85                        | Top soil<br>Partially<br>weathered<br>Hard              | 120-160  |
|         |                                                                             | wall                                                                                    | 5 Layer                                                                 | VII                    | contd.                                    | formation                                               |          |
| VES 02  | 22°54′45.73″<br>86°33′4.14″                                                 | 30 m from the<br>back side wall, in<br>between the<br>main hospital<br>building and sub | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 57<br>143<br>VH        | 0 - 4.6<br>4.6 - 16.6<br>16.6 -<br>contd. | Top soil<br>Partially<br>Weathered<br>Hard<br>formation | -        |
|         |                                                                             | centre                                                                                  |                                                                         |                        |                                           |                                                         |          |
| VES 03  | 22°54′46.5″<br>86°33′2.5″                                                   | 40 m VES2 along NWW direction.                                                          | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer                          | 105<br>68              | 0 – 2.1<br>2.1 – 11.97<br>11.97 –         | Top soil<br>Weathered<br>Hard                           | -        |
|         |                                                                             |                                                                                         | 3 <sup>rd</sup> Layer                                                   | VH                     | contd.                                    | formation                                               |          |

Table -5.4: Interpreted VES results of Ankhro PHC site, Manbazar-II block

Based on the resistivity sounding studies, it is observed that the sub-surface formations may be composed of top soil, weathered/partially weathered rock and hard formation (may be granite). The top soil shows the resistivity order of 43 to 105  $\Omega$ m and is detected down to a maximum depth 0 to 4.6 mbgl. The second layer of resistivity, 68 to 301  $\Omega$ m is assumed to be made of weathered and partially weathered rock and generally exist down to a maximum depth range 2.1 to 44.85 mbgl. Below this second layer, hard formation layer with higher resistivity order of VH ( $\alpha$ )  $\Omega$ m exist below 21.84 to 32.2 mbgl. The recommendations thus provided through the investigation done at Ankhro PHC site are given in Table-5.5.

| VES No.       | <b>Co-ordinates</b> | Recommended water    | bearing   | Drilling |
|---------------|---------------------|----------------------|-----------|----------|
|               |                     | depth zone in weathe | ered and  | depth    |
|               |                     | fracture formation   | (mbgl)    | (mbgl)   |
|               |                     | Partially            | Fractured |          |
|               |                     | Weathered/Weathered  | formation |          |
|               |                     | formation            |           |          |
| <b>VES 01</b> | 22°54'44.30"        | 4 - 44.85            | 120-160   | 200      |
|               | 86°33'3.35"         |                      |           |          |
| <b>VES 02</b> | 22°54'46.5"         | 2.1 - 11.97          |           | 25       |
|               | 86°33'2.5"          |                      |           |          |
| <b>VES 03</b> | 22°54'45.73"        | 4.6 - 16.6           |           | 30       |
|               | 86°33'4.14"         |                      |           |          |

Table-5.5: Recommendation of water bearing zones at Ankhro PHC site for different locations as per availability of aquifers.

**5.3 Basantapur PHC site, Manbazar-II block :** Total 1 Nos. of VES was conducted in the investigated area (Fig. 2) using Schlumberger configuration (Fig. 3 to 7). The maximum current

electrode separation was kept (AB) 400 meter to get the maximum depth of investigation. The interpreted results for VES conducted at Basantapur PHC site are given in Table-5.6.

| VES       | Area/Co                | Location                                                            | Layer                                                                   | Resistivity an      | Lithology                                   | Fractures                                          |         |
|-----------|------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------|---------------------------------------------|----------------------------------------------------|---------|
| No.       | ordinate               |                                                                     | Layer No.                                                               | Resistivity<br>(Ωm) | Depth<br>(mbgl                              |                                                    | ( mbgl) |
| VES<br>01 | 22°58'19"<br>86°37'09" | 20m from<br>NNE of pump<br>house and<br>towards<br>boundary<br>wall | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 22<br>28<br>1560    | 0 - 3.9<br>3.9 - 16.38<br>16.38 -<br>contd. | Top soil<br>Weathered<br>rock<br>Hard<br>formation | 100-160 |

 Table -5.6: Interpreted VES results of Basantapur PHC site, Manbazar-II block.

Based on the resistivity sounding studies, it is observed that the subsurface formations are comprised of top soil, weathered rock and hard formation (may be granite). In general it is observed that the top soil shows the resistivity order of 22  $\Omega$ m and is detected within the depth range of 0 to 3.9 mbgl. The second layer of resistivity 28  $\Omega$ m is assumed to be made up of weathered rock and exists within the depth range 3.9 to 16.38 mbgl. Below this second layer, hard formation layer of higher resistivity within the order of 1560  $\Omega$ m is assumed to exist below the depth of 16.38 mbgl. The recommendations thus provided through the investigation done at Ankhro PHC site are given in Table-5.7.

Table-5.7: Recommendation of water bearing zones at Basantapur PHC site as peravailability of aquifers.

|               | 6                                      |                 |             |        |
|---------------|----------------------------------------|-----------------|-------------|--------|
| VES           | Location                               | Recommended v   | Drilling    |        |
| No.           |                                        | depth zone in w | depth       |        |
|               |                                        | fracture forma  | tion (mbgl) | (mbgl) |
|               |                                        | Weathered       | Fractured   |        |
|               |                                        | formation       | formation   |        |
| <b>VES 01</b> | 20m from NNE of pump house and towards | 3.9 - 16.38     | 100-160     | 180    |
|               | boundary wall                          |                 |             |        |

**5.4 Eklabya Model School and Pandit Raghunath Murmu Model School, Manbazar-II block :** Total 4 Nos. of VES was conducted in the investigated area using Schlumberger configuration. The maximum current electrode separation was kept at 360 meter to get the maximum depth of investigation. The interpreted results for VES conducted at Eklabya Model School and Pandit Ragunath Murmu Model School PHC site are given in Table-5.8.

| VES No.       | Co- ordinate | Location  | Layer                 | Resistivity a | nd Depth       | Lithology           | Fractur |
|---------------|--------------|-----------|-----------------------|---------------|----------------|---------------------|---------|
|               |              |           |                       |               |                |                     | es      |
|               |              |           | Laver No.             | Resistivi     | Depth (mbgl)   |                     | (mbgl)  |
|               |              |           | 5                     | ty<br>(Ωm)    | 1 ( 0)         |                     |         |
| Eklabya       | 22°57'23.74" | Closed to | 1 <sup>st</sup> Layer | 32            | 0 - 2.0        | Top soil            | -       |
| VES 01.       | 86°36'30.44" | school    | 2 <sup>nd</sup> Layer | 16            | 2.0 - 6.4      | Weathered rock      |         |
|               |              | wall      | 3 <sup>rd</sup> Layer | 133           | 6.4 - 21.76    | Partially fractured |         |
|               |              |           |                       |               |                |                     |         |
|               |              |           | 4 <sup>th</sup> Layer | VH            | 21.76 - contd. | Hard formation      |         |
| Eklabya       | 22°57′23″    | Close to  | 1 <sup>st</sup> Layer | 23            | 0 - 2.05       | Top soil            |         |
| VES 02.       | 86°36'30″    | the dug   | 2 <sup>nd</sup> Layer | 12            | 2.05 - 6.56    | Weathered rock      | -       |
|               |              | well, 15  | 3 <sup>rd</sup> Layer | 70            | 6.56 - 15.11   | Partially fractured |         |
|               |              | m SW of   |                       |               |                |                     |         |
|               |              | VES 1     | 4 <sup>th</sup> Layer | VH            | 15.11 - contd. | Hard formation      |         |
| Pandit        | 22°57'33.93" | Central   | 1 <sup>st</sup> Layer | 24            | 0 - 1.7        | Top soil            | -       |
| VES 01.       | 86°36′50.78″ | point     | 2 <sup>nd</sup> Layer | 7             | 1.7 – 9.86     | Highly weathered    |         |
|               |              | within    |                       |               |                |                     |         |
|               |              | the       | 3 <sup>rd</sup> Layer | VH            | 9.86 - contd.  | Hard formation      |         |
|               |              | School    |                       |               |                |                     |         |
|               |              | ground    |                       |               |                |                     |         |
| Pandit        | 22°57'32.94" | Back side | 1 <sup>st</sup> Layer | 27            | 0 - 1.9        | Top soil            | -       |
| <b>VES 02</b> | 86°36′51.44″ | of the    | 2 <sup>nd</sup> Layer | 8             | 1.9 – 9.5      | Highly Weathered    |         |
|               |              | School    |                       |               |                |                     |         |
|               |              |           | 3 <sup>rd</sup> Layer | VH            | 9.5 – contd.   | Hard formation      |         |

| Table -5.8: Interpreted VES results of Eklyaba Model School and Pandit Ragunath Murmu |
|---------------------------------------------------------------------------------------|
| Model School, Manbazar-II block.                                                      |

Based on the resistivity sounding studies it is observed that the subsurface formations are comprised of top soil, weathered to highly weathered rock and hard formation (may be granite). In general it is observed that the top soil shows the resistivity order of 24 to 32  $\Omega$ m and is detected within the depth range of 1.7 to 2.05 mbgl. The second layer shows resistivity range from 7 to 8  $\Omega$ m and from 12 to 16  $\Omega$ m. This layer is assumed to be composed of highly weathered rock layer generally exist within the maximum depth range of 1.7 to 9.89 mbgl. The third layer has a resistivity range of 70 to 133  $\Omega$ m and exists within the depth range of 6.4 to 21.76 mbgl. The hard formation layer with higher resistivity order is assumed to exist below 9.5 to 21.76 mbgl. The recommendations thus provided through the investigation done at Ankhro PHC site are given in Table-5.9.

| Table-5.9: Recommendation of water bearing zones at Eklyaba Model School and Pandit |
|-------------------------------------------------------------------------------------|
| Ragunath Murmu Model School, Manbazar-II block, as per availability of aquifers.    |

| VES No.       | Location                          | Recommended water b<br>zone in weathered an<br>formation (ml | Recommended water bearing depth<br>zone in weathered and fracture<br>formation (mbgl) |    |  |
|---------------|-----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|----|--|
|               |                                   | Weathered formation                                          | Partially                                                                             |    |  |
|               |                                   |                                                              | Fractured                                                                             |    |  |
|               |                                   |                                                              | formation                                                                             |    |  |
| Eklabya       | Close to the school wall          | 2 -6.4                                                       | 6.4 -21.76                                                                            | 30 |  |
| VES 01.       | 22°57'23.74": 86°36'30.44"        |                                                              |                                                                                       |    |  |
| Eklabya       | Close to the dug well, 15 m SW of | 2.05 - 6.56                                                  | 6.56 - 15.11                                                                          | 20 |  |
| <b>VES 02</b> | VES 01.                           |                                                              |                                                                                       |    |  |
|               | 22°57'23": 86°36'30"              |                                                              |                                                                                       |    |  |

**5.5 Sirkabad PHC, Arsha block** : Total 5 Nos. of VES was conducted in the investigated area using Schlumberger configuration). The maximum current electrode separation was kept at 660 meters to get the maximum depth of investigation. The interpreted results for VES conducted at Sirkabad PHC, Arsha block site are given in Table-5.10.

| VES       | <b>Co-ordinates</b>          | Location                                 | Layer                                                                   | · Resistivity an    | ld Depth                                 | Lithology                                         | Fractures                    |
|-----------|------------------------------|------------------------------------------|-------------------------------------------------------------------------|---------------------|------------------------------------------|---------------------------------------------------|------------------------------|
| No.       |                              |                                          | Layer No.                                                               | Resistivity<br>(Ωm) | Depth<br>(mbgl)                          |                                                   | ( mbgl)                      |
| VES<br>01 | 23°16′30.24″<br>86°11′38.32″ | Left side of<br>the PHC<br>main gate     | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 98<br>12<br>17903   | 0 - 2.5<br>2.5 - 17.4<br>17.4 - contd.   | Top soil<br>Weathered rock<br>Hard formation      | 50-60                        |
| VES<br>02 | 23°16′29.28″<br>86°11′37.85″ | 27 m SSW<br>of VES 1                     | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 99<br>21<br>771     | 0 – 2.06<br>2.06 – 26.5<br>26.5 - contd. | Top soil<br>Weathered rock<br>Hard formation      | 80-100,<br>140-160           |
| VES<br>03 | 23°16′30.98″<br>86°11′38.55″ | 20 m NNE<br>of VES 2                     | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 80<br>5<br>20752    | 0 – 4.22<br>4.22 – 8.81<br>8.81 – contd. | Top soil<br>Highly<br>weathered<br>Hard formation | 40-60,<br>80-100,<br>120-140 |
| VES<br>04 | 23°16′30.20″<br>86°11′41.09″ | In front of<br>Quarter<br>no. 14         | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 68<br>17<br>5498    | 0 – 1.89<br>1.89 – 21<br>21 – contd.     | Top soil<br>Weathered rock<br>Hard formation      | 60-80                        |
| VES<br>05 | 23°16′32.17″<br>86°11′39.87″ | Near the<br>old<br>destroyed<br>building | 1 <sup>st</sup> Layer<br>2 <sup>nd</sup> Layer<br>3 <sup>rd</sup> Layer | 63<br>5<br>6025     | 0 – 4.21<br>4.21 – 9.26<br>9.26 – contd. | Top soil<br>Highly<br>weathered<br>Hard formation | 100-140 &<br>below 200       |

 Table -5.10: Interpreted VES results of Sirkabad PHC, Arsha block.

Based on the resistivity sounding studies, the following observations have been made. The subsurface formations are assumed to be comprised of top soil, weathered/highly weathered rock and hard formation (may be granite). In general, it is observed that the top soil shows resistivity order of 63 to 99  $\Omega$ m and lies within the depth range of 1.89 to 4.22 mbgl. The second layer with resistivity order of 5 to 21  $\Omega$ m is assumed to be composed of moderate to highly weathered rock and generally exist within the maximum depth range of 8.81 to 26.5 mbgl. Below this second layer, hard formation layer with higher resistivity order is assumed to exist at a depth range of 8.81 to 26.5 mbgl. The recommendations thus provided through the investigation done at Sirkabad PHC site, Arsha block are given in Table-5.11.

| VES No. | Location                                                            | Recommended water b<br>weathered and fractu | pearing depth zone in re formation (mbgl) | Drilling<br>depth |  |  |  |  |  |
|---------|---------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------|--|--|--|--|--|
|         |                                                                     | Weathered formation                         | (mbgl)                                    |                   |  |  |  |  |  |
| VES 02  | 23°16′29.28″<br>86°11′37.85″                                        | 2.06 -26.5                                  | 80-100,<br>140-160                        | 160               |  |  |  |  |  |
| VES 03  | 23°16′30.98″<br>86°11′38.55″                                        |                                             | 40-60,<br>80-100,<br>120-140              | 160               |  |  |  |  |  |
| VES 05  | Near an old and<br>damaged building<br>23°16'32.17"<br>86°11'39.87" |                                             | 100-140 & below 200                       | 260               |  |  |  |  |  |

Table-5.11: Recommendation of water bearing zones at Sirkabad PHC, Arsha block, as per<br/>availability of aquifers.

## Chapter – 6 HYDROGEOLOGY

#### 6.1 OCCURRENCE AND MOVEMENT OF GROUNDWATER

The district of Purulia is underlain by pre-Cambrian metamorphics except in a small area in the north eastern part where sedimentary of Gondwana age predominate. At places particularly in the eastern and southern parts- quartzite, slate, phyllite, schist also occurs in patches. Unconsolidated sediments of Recent to Sub-Recent age are restricted to the narrow river channels and to the valleys. The most common rock of widespread occurrence in the district is granites and granite gneiss into which metabasics occur as intrusives.

Groundwater is primarily restricted to the upper weathered mantle, saprolitic zones and in the fractured zones of consolidated Chottanagpur Gneissic Complex Formations and in the semi-consolidated Gondwana sedimentaries. The narrow strips of unconsolidated sediment along the major river valleys behave as groundwater repositories in the study area. Groundwater occurs under water table condition in weathered zones and in the valley sediments. In the deeper fractures zones, ground water generally occurs under semi-confined to confined condition. The topographic slope and direction of flow of the rivers indicates that groundwater movement is from North-West to South-East.

### 6.2 AQUIFER PROPERTIES AND YIELD, WATER BEARING FORMATIONS

Ground water in the district occurs mainly in (I) weathered zone (II) saprolitic zone (III) Fractured zones of Consolidated Formations (IV) Semi-Consolidated Formations (V) Unconsolidated Formations.

**(I)The weathered zone:** This zone vary in thickness, attains a maximum thickness of the order of 25m. Ground water occurs under water table condition and groundwater in this zone is mostly developed by a system of open dug wells. At some places these wells go dry during peak summer months. The dug wells from this zone yield up to 2.75 lps.

**(II)Saprolitic zone:** This zone is sandwiched between weathered mantle and fresh rock mass in granitic terrain. The depth of this zone varies between 10-30 mbgl, with an average thickness of 4m. Ground water occurs under semi confined condition and yield up to 2.5 lps is recorded. Drawdown in the wells tapping in this zone is much less and recovery is also quite fast.

(III)Consolidated Formations: CGC group of rocks represented by granite gneiss, granite, metabasics, metasediments, gabbro, quartzite, etc. form the consolidated Formations of the study area. This CGC covers almost 95% of the study area and forms the crystalline basement. Groundwater in this formation occurs in unconfined condition in the upper weathered and under semi-confined to confined condition in the fractured zones. Study from dug wells within the CGC gives the inference that weathered and shallow fracture zones in general occurs within 15 mbgl.

Electrical resistivity surveys conducted in CGC formations by CGWB suggests that water bearing fracture zones in general are likely to have been formed at two distinctly different depth levels mostly occurring within 80 mbgl, with most potential zones at about 20-35 mbgl and 45-65 mbgl. Bore wells sunk within 80 mbgl are having the prospect of high yield most probably.

As per the exploratory bore well records from CGWB, the fractures encountered from the borewells constructed in CGC upto a depth of 60 mbgl has a cumulative thickness of 2-3 m generally, forming very thin aquifers at different depth levels. Few wells in Barabazar and Jhalda-I blocks have fractures encountered at depths within 200-261.6 mbgl that gives very promiscuous yield. The yield prospect for the aquifers in hard rock is generally very low, mostly less than 5 m<sup>3</sup>/hr. The drawdown is very high, ranging from 8-24m.

**(IV)Semi-Consolidated Formation:** Gondwana sedimentaries occupies not more than 5% of the study area, being limited to Santuri and Neturia blocks which lies in the north-eastern part of Purulia district and adjacent to Damodar River. A number of dug wells exist in this part of the Gondwana basin. This suggests that weathered/fractured sandstones and shales, siltstones etc. constitutes the unconfined aquifers within the

depth of 12 mbgl. Three (3) Exploratory wells have been sunk by CGWB so far in this Formation, two (2) in Neturia and one (1) in Santuri. The maximum depth explored is upto 103.25 mbgl. Potential fracture zones are encountered within the depth zone of 11-36 mbgl. Yield prospect in the Gondwanas is limited, being less than 20 m<sup>3</sup>/hr. Drawdown is very high and generally ranges from 15-20m.

**(V)Unconsolidated Formation:** This Quaternary sediment column of limited thickness (<3m) occupies the narrow strips of valleys along the major ephemeral rivers like Dwarakeswar and Kangsabati. It is composed of assorted mass of gravel, pebble and medium to coarse sand, forming thin but highly potential river bed aquifers under water table conditions. A good number of shallow tube wells have been sunk in the river beds by PHED down to a depth of 8 mbgl to tap the base-flow for domestic supply in the nearby semi-urban areas during lean period. Geoelectric resistivity study along the river beds of Dwarakeswar, Futuari and Darubhanga Rivers near Pirra and Gamarkuri villages reveals the presence of water saturated zones generally occurring within 10 mbgl (few meters below the original river bed). The yield prospect for the river bed aquifers is about 0.01m<sup>3</sup>/hr. The nature and occurrence of different sub-units is given in Table-6.1. The discharge, drawdown, Fracture zones, etc for both Aquifer-I & II is given in Table 6.2

| Formation                                                  | Aquifer<br>depth | occurrence<br>of             | Range of<br>Yield   | Aquifer<br>parameter | Storativity<br>(S) | Suitability for<br>Drinking                                                       |
|------------------------------------------------------------|------------------|------------------------------|---------------------|----------------------|--------------------|-----------------------------------------------------------------------------------|
|                                                            | ranges<br>(mbgl) | fractures<br>(m)             | (m³<br>/hour)       | (T in<br>m²/day)     |                    |                                                                                   |
| Weathered<br>Zone                                          | 0-25             |                              | Up to 9.9           |                      |                    | Potable                                                                           |
| Saprolite Zone                                             | 10-45            |                              | Up to 9.0           |                      |                    | Potable                                                                           |
| Consolidated<br>Formation<br>(Granite &<br>Granite gneiss) | 50-230           | 50 - 60 100<br>- 150<br>>200 | 3.6-9.97<br>18-28.8 | -                    | -                  | 17 blocks out of 20<br>are having sporadic<br>occurrence of<br>fluoride in ground |
| Semi-<br>Consolidated<br>Formations<br>(Gondwanas)         | 0-50             | 24-36                        | 11.88 -19.8         | :                    | :                  | water above<br>permissible limit (><br>1.5 mg/l)                                  |
| Unconsolidated sediment                                    | 05-13            |                              | Up to 72            |                      |                    | Potable                                                                           |

Table 6.1 : Aquifer parameters for different litho units in Purulia district

| DL              | Carlann.                                         | <b>Casing Depth</b> | Depth ra  | nge (mbgl) | Fracture                                                 | e Zones                                                                                                          | Yield (m³/hour) |             | Drawdown (m) |              |
|-----------------|--------------------------------------------------|---------------------|-----------|------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--------------|--------------|
| BIOCK           | Geology                                          | (mbgl)              | Aquifer I | Aquifer II | Aquifer I                                                | Aquifer II                                                                                                       | Aquifer I       | Aquifer II  | Aquifer I    | Aquifer II   |
| Jhalda-I        | Banded Gneiss<br>&Schists                        | 16.5 - 25.5         | 0-50      | 50-200     | 17.10-25.70<br>25.70-28.80<br>28.80-31.80<br>44.00-47.10 | 50-68.4<br>92.80-98.90<br>98.90-138.60<br>220.90-227                                                             | 7.63-19.8       | 3.24-28.8   | 5.5-8.7      | 9.5-12.5     |
| Manbazar-II     | Banded Gneiss<br>&Schists/ Phyllites             | Upto 13             | 0-50      | 50-200     | 19.60-22.70<br>28.80-31.80                               | 187.4 - 190.4                                                                                                    | 7.2             | 10.8        | Ι            | Ι            |
| Neturia         | Sandstone                                        |                     | 0-50      | 50-200     | 24.44-36.44                                              | -                                                                                                                | 11.95-19.94     | -           | 15-20        | -            |
| Puncha          | Banded Gneiss                                    | 7.4-18.5            | 0-50      | 50-200     | 16.60 - 19.60<br>35.00 - 36.00                           | -                                                                                                                | 7.92-15.70      | -           | -            | -            |
| Purulia-I       | Banded Gneiss &<br>Granites                      | 8-32.5              | 0-50      | 50-200     | 16.60 - 19.60                                            | 50.10 - 53.20                                                                                                    | 0.72-25.2       | 7.56        | -            | -            |
| Purulia-II      | Banded Gneiss &<br>Granites                      | 8.1-12.3            | 0-50      | 50-200     | 10.4 - 16.50<br>16.5 - 28.70<br>28.70 - 40.90            | 86.70 - 92.80<br>147.7 - 159.9<br>159.9 - 200.5                                                                  | 0.72 - 9        | 1.08 - 10.8 | ≈ 5          | 5.75 - 8.13  |
| Raghunathpur-I  | Granite/Granite<br>gneiss/Porphyritic<br>granite | 7-12.3              | 0-50      | 50-200     | 13.0 - 37.0<br>31.92 - 34.41<br>34.46 - 37.45            | 48.0 - 62.24                                                                                                     | 1.19 - 9.97     | 1.76 - 9.97 | 15 - 24      | 15 - 18      |
| Raghunathpur-II | Hornblende<br>gneiss/Granite<br>gneiss           | 7-12.3              | 0-50      | 50-200     | 15.00 -17.10<br>16.00 - 18 .00<br>22.5 - 31.00           | 40.45-59.51                                                                                                      | 3.49 - 9.97     | 0.29 - 7.96 | 9.1 - 13     | 8.12 - 10.12 |
| Santuri         | Granite gneiss                                   | upto 12.5           | 0-50      | 50-200     | 11.0-12.87                                               | -                                                                                                                | 3.49            | -           | 6            | -            |
| Para            | Granite gneiss                                   | upto 12.5           | 0-50      | 50-200     | 26.0-28.0                                                | _                                                                                                                | 4.1             | -           | 15           | -            |
| Manbazar        | Banded Gneiss                                    | 12.00 - 15.00       | 0-50      | 50-200     | 19.6-25.7                                                | -                                                                                                                | 4.2-8.6         |             | 4.2-8.7      | -            |
| Kashipur        | Garnetiferous<br>Schist                          |                     | 0-50      | 50-200     | 17.67-19.0<br>22.13-24.61                                | -                                                                                                                | 0.18 - 1.19     | -           | 6.4 -10      | -            |
| Joypur          | Banded Gneiss &<br>Granite Gneiss                | 10.00 - 15.00       | 0-50      | 50-200     | 21.6-24.2                                                | 50.50-53.20<br>111.2-114.1                                                                                       | 4.4             | 2           | -            | -            |
| Jhalda-II       | Banded Gneiss &<br>Granites                      | 5.4-48.5            | 0-50      | 50-200     | 31.80-37.90                                              | 62.30-68.40<br>95.90-105.00<br>164.7-193.5                                                                       | 4.68            | 1.8         | -            | -            |
| Bundwan         | Phyllites                                        | 10.00 - 12.00       | 0-50      | 50-200     | 18.2-21.7<br>31.9-33.7                                   | 123.7-125.9<br>179.2-182.1<br>187.68-189                                                                         | 7.5-7.2         | 10.8-12     | 4.2-8.7      | -            |
| Barabazar       | Banded Gneiss                                    | 12.00 - 32.00       | 0-50      | 50-200     | 16.6-19.6<br>28.7-31.8<br>34.9-37.9                      | 16.60 - 19.60<br>77.60 - 80.6<br>114.2 - 117.2<br>120.3 - 123.3<br>126.4 - 129.4<br>242.3-246.3<br>249.4 - 252.4 | 7.63-19.8       | 3.6-45      | 5.5-8.7      | 5.75-19.4    |
| Balarampur      | Banded Gneiss,<br>Granite & Granite<br>Gneiss    | 17                  | 0-50      | 50-200     | 18-23                                                    | -                                                                                                                | 11.56           | -           | 19.1         |              |
| Arsha           | Banded Gneiss,<br>Granite & Granite<br>Gneiss    | 7.4-18.5            | 0-50      | 50-200     | 19.60-22.70<br>16.60-25.70                               | 53.20 - 56.20<br>83.70 -86.70<br>156.4 - 159.4<br>163 - 166.00<br>187.4-196.5<br>227.2 - 229.8                   | 0.36            | 4.36-17.17  | 6.4- 8.12    | 9.5- 19.4    |
| Baghmundi       | Granite Gneiss,<br>Metabasic rocks               | 15-20.5             | 0-50      | 50-200     | 22.30-25.70<br>30.10-32.30<br>30.10-32.30                | 80.10 - 82.60<br>119 - 121.30<br>152 - 155.60                                                                    | 5-12.6          | 4.2-25.9    | 5.5-9        | 8.2-13       |

# Table 6.2: Geology, Casing depth, Yield, Drawdown and zones tapped for the Aquifers indifferent blocks of Purulia District

| Bieck /<br>Taluka      | Location                                  | Latitudo           | Longitudo          | Type of<br>Well | brill<br>Dopth<br>(mbgl) | Well<br>Construction<br>depth<br>(m bgt) | Casing<br>Depth<br>(m<br>bgl) | Najer<br>Lithology<br>Encountered                                 | Zone tapped/<br>Fractures<br>encountered<br>(mbgl)                              | 8.W.L.<br>(m<br>hgD | Discharge<br>(lpm) | Draw<br>Down<br>(m) | T<br>(m2/day) | 8          |
|------------------------|-------------------------------------------|--------------------|--------------------|-----------------|--------------------------|------------------------------------------|-------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------|--------------------|---------------------|---------------|------------|
| Arsha                  | Sirkabad                                  | 23.267807          | <u> 86.19342</u>   | EW              | 233.1                    | NĂ                                       | ŇA                            | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 19.60-22.70,<br>53.2-56.2,<br>144.70-147.70,<br>153.80-156.90,<br>227.00-230.00 | NA                  | 577                | N/A                 | NA.           | N/A        |
| Arsha                  | Sirkabad                                  | 23.267807          | 86.19342           | 0W - I          | 129.4                    | N/A                                      | N/A                           | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 12.60-18.00,<br>83.7-86.7                                                       | NA                  | 45                 | N/A                 | VA            | N/A        |
| Arsha                  | Sirkabad                                  | 23.267807          | 86.19342           | OW - 11         | 233.1                    | N/A                                      | N/A                           | Pre-Cambrian<br>Neta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 12.60-18.00,<br>141.00-147.00,<br>153.00-159.00                                 | N/A                 | 430                | N/A                 | N/A           | N/A        |
| Arsha                  | Arsha                                     | 23.322209          | 86.178135          | EW-I            | 300.2                    | NA                                       | NA                            | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 19.60-22.70,<br>187.4-196.5                                                     | NA                  | 76                 | N/A                 | VA            | N/A        |
| Arsha                  | Arsha                                     | 23.322209          | 86.178135          | EW-II           | 300.2                    | N/A                                      | N/A                           | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 16.60-25.70                                                                     | NA.                 | 6                  | N/A                 | N/A           | N/A        |
| Arsha                  | JHUNJKA                                   | 23.275133          | 86.192385          | EW              | 300.2                    | N/A                                      | N/A                           | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 156.9-159.9,<br>190.4-192.0                                                     | 10.7                | 286                | N/A                 | VA            | N/A        |
| Arsha                  | JHUNJKA                                   | 23.275133          | 86.192385          | OW              | 300.2                    | N/A                                      | N/A                           | Pre-Cambrian<br>Neta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 47.1-50.1,<br>102.0-105.0,<br>156.8-159.9,<br>163.0-166.0                       | N/A                 | 336                | N/A                 | N/A           | N/A        |
| Balarampur             | Salboni (Borewell)                        | 23.0837            | 86.2689            | EW              |                          | 183.42                                   | N/A                           | Meta-<br>sediments                                                | 18.0-23.0                                                                       | N/A                 | 192.6              | 19.1                | NA            | N/A        |
| Barabazar              | Bodaldih (OW - D                          | 23.1508            | 86.4175            | OW • I          | 118.7                    | N/A                                      | 12                            | Granite gneiss                                                    | 114.2-118.50                                                                    | 8.89                | 750                | N/A                 | N/A           | N/A        |
| Barabazar<br>Barabazar | Bodaldih (OW - 11)<br>Shankhari-Bansberia | 23.1508<br>23.051  | 86.4175<br>86.3571 | OW - II<br>EW-I | 118.7<br>166             | NA<br>NA                                 | 15<br>32                      | Granite gneiss<br>Pelitic Schist                                  | 114.2-118.50<br>77.6-80.6,<br>159 9.166                                         | 8.89<br>9.56        | 750<br>76          | NA<br>NA            | NA<br>NA      | N/A<br>N/A |
| Barabazar              | Shankhari-Bansberia                       | 23.0516            | 86.357             | EW-II           | 139.6                    | NA                                       | 28                            | Pelitic Schist                                                    | 28.8-31.8,<br>34.9-37.9,<br>132.5-135.5                                         | 5.83                | 426                | NA                  | NA            | N/A        |
| Barabazar              | Shankhari-Bansberia                       | 23.0516            | 86.357             | OW              | 178.2                    | N/A                                      | 25.2                          | Pelitic Schist                                                    | 34.9-37.9,<br>126.4-129.4,<br>135.5-138.6                                       | 5.25                | 132                | NA                  | VA            | N/A        |
| Barabazar              | Bamundiha<br>Damundiha                    | 23.1159<br>23.1159 | 86.3654<br>se ac i | EW-I            | 303.1<br>204.0           | N/A                                      | 22                            | Granite gneiss                                                    | 193-196<br>114 a 117 a                                                          | 23.54               | 60<br>610          | N/A<br>N/A          | N/A<br>N/A    | N/A        |
| GaraDazar              | bamunduna                                 | 23.1190            | 80.304             | EM-II           | 201.0                    | MA                                       | 17.9                          | oramte gneiss                                                     | 114.2-117.2,<br>243.3-246.3,<br>249.4-252.4,<br>258.5-261.6                     | 21.12               | 610                | NA                  | NA            | NA         |
| Barabazar              | Bamundiha                                 | 23.1156            | 86.364             | OW              | 248.4                    | N/A                                      | 19.6                          | Granite gneiss                                                    | 233.1-236.2,<br>242.3-245.3                                                     | 24.46               | 690                | N/A                 | N/A           | NA         |
| Barabazar              | Bodaldih                                  | 23.1508            | 86.4175            | EW              | 147.7                    | NA                                       | 12                            | Granite gneiss                                                    | 92.8-95.8,<br>98.9-102,<br>132.5-135.5                                          | 7.9                 | 720                | NA                  | MA            | N/A        |
| Hura                   | Laxmanpur                                 | 23.3409            | 86.5732            | THE .           | 220.9                    | 12.6                                     | 12.6                          | Granite gneiss                                                    | Not Tapped                                                                      | N/A                 | 12                 | N/A                 | N/A           | N/A        |
| Hura<br>Jhalda-I       | Goria                                     | 23.2001<br>23.3284 | 86.2336            | EW              | 193.8<br>190.04          | N/A                                      | 12.0<br>16.5                  | Granite gneiss<br>SCOI                                            | Not Tapped<br>Not Tapped                                                        | N/A<br>N/A          | 60<br>330          | NA<br>NA            | NA<br>NA      | NA<br>NA   |
| Jhalda-I               | Goria                                     | 23.3284            | 86.2336            | OW              | 65.3                     | N/A                                      | 18.13                         | SC01                                                              | Not Tapped                                                                      | N/A                 | 127.2              | N/A                 | NA            | NA         |
| Jhalda-I               | lchag                                     | 23.3326            | 85.9251            | EW              | 129.4                    | N/A                                      | 19.5                          | Granite gneiss                                                    | Not Tapped                                                                      | N/A                 | 108                | N/A                 | NA            | N/A        |
| Jhalda-I               | Jhaldah-I, BDO, Office                    | 23,3655            | 85.9616            |                 | 200                      | N/A                                      | 25.5                          | Granite gneiss                                                    | Not Tapped                                                                      | N/A                 | 1530               | N/A                 | NA            | N/A        |
| Jhalda-I               | Tulin                                     | 23.3776            | 85.9006            | SEW             | 60                       | N/A                                      | 18.38                         | Granite gneiss                                                    | Not Tapped                                                                      | N/A                 | 54                 | N/A                 | NA            | N/A        |
| Jhalda-11              | Mahatomara                                | 23.4236            | 85.9124            | SEW             | 47.1                     | N/A                                      | 45.5                          | Basic Granulite                                                   | 34-42                                                                           | N/A                 | 78                 | N/A                 | N/A           | N/A        |
| Jhalda-11              | Kotshila EW_III)                          | 23.4055            | 86.0717            | EW_III          | 111.1                    | N/A                                      | 8.74                          | Granite gneiss                                                    | Not Tapped                                                                      | N/A                 | 30                 | N/A                 | MA            | N/A        |
| Jhalda-11              | Kotshila                                  | 23,4055            | 86.0717            | EW-I            | 172.1                    | N/A                                      | 5.4                           | Granite gneiss                                                    | Not Tapped                                                                      | 2.02                | 30                 | N/A                 | NA            | N/A        |
| Jhalda-11              | Kotshila                                  | 23.4055            | 86.0717            | EW-II           | 220.9                    | N/A                                      | 12                            | Granite gneiss                                                    | Not Tapped                                                                      | 2.05                | N/A                | N/A                 | N/A           | N/A        |

#### Table 6.3: Details of exploratory drillings carried out by CGWB, ER, Kolkata in Purulia District

| Bieck /<br>Taluka | Location               | Latitude  | Longitado        | Type of<br>Well | Drill<br>Dopth<br>(mbgi) | Well<br>Construction<br>depth<br>(m bgD | Casing<br>Depth<br>(m<br>bgl) | Najer<br>Lithology<br>Encountered                                 | Zono tapped/<br>Fractures<br>encountered<br>(mbgl)              | 8.W.L.<br>(m<br>bgD | Discharge<br>(lpm) | Draw<br>Down<br>(m) | T<br>(m2/day) | 8   |
|-------------------|------------------------|-----------|------------------|-----------------|--------------------------|-----------------------------------------|-------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------|--------------------|---------------------|---------------|-----|
| Jhalda-11         | Gokulnagar             | 23.3528   | 85.971           | EW              | 300.2                    | N/A                                     | 6.1                           | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | N/A                | MA                  | N/A           | N/A |
| Jhalda-11         | Tulin                  | 23.3776   | 85,9006          | EW-I            | 141.6                    | N/A                                     | 16.4                          | Granite gneiss                                                    | Not Tapped                                                      | 5.38                | 300                | N/A                 | NA            | NA  |
| Jhalda-11         | Tulin                  | 23.3776   | 85.9007          | EW              | 233.1                    | N/A                                     | 19                            | Granite gneiss                                                    | Not Tapped                                                      | 5.85                | 480                | N/A                 | N/A           | N/A |
| Jhalda-11         | Mahatomara             | 23.4236   | 85.9124          | EW              | 300.3                    | N/A                                     | 48.5                          | Basic Granulite                                                   | Not Tapped                                                      | N/A                 | N/A                | N/A                 | N/A           | NA  |
| Kashipur          | Kashipur (Borewell)    | 23.4245   | 86.6687          | EW              |                          | 93.39                                   | N/A                           | Garnetiferous<br>schist                                           | 22.13-24.61                                                     | N/A                 | 3                  | N/A                 | NA            | N/A |
| Kashipur          | Talajuri (Borewell)    | 23.3959   | 86.7954          | EW              |                          | 41.1                                    | N/A                           | Garnetiferous<br>schist                                           | 17.67-19.0                                                      | N/A                 | 19.8               | 10                  | N/A           | N/A |
| Manbazar-I        | Gopalnagar             | 23.1325   | 86.5879          | EW              |                          | N/A                                     | N/A                           | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | N/A                | N/A                 | N/A           | N/A |
| Manbazar-I        | Mogalda (Borewell)     | 23.0757   | 86.6474          | EW              |                          | 183.42                                  | N/A                           | Granite gneiss                                                    |                                                                 | N/A                 | N/A                | N/A                 | N/A           | NA  |
| Manbazar-I        | Manbazar (Borewell)    | 23.0781   | 86.6865          | EW              |                          | 150                                     | N/A                           | Granite gneiss                                                    | 110-112.00                                                      | N/A                 | 398.4              | 8.675               | N/A           | N/A |
| Manbazar-I        | GOKIDI                 | 23.060852 | 86.659518        | EW              | 184.3                    | N/A                                     | N/A                           | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 37.90-39.0,<br>65.40-67.10                                      | N/A                 | 72                 | N/A                 | N/A           | NA  |
| Manbazar-II       | BASANTAPUR             | 22.974015 | 86.60436         | EW              | 300.2                    | N/A                                     | N/A                           | Phylltes and<br>Mica Schists of<br>Singbhum<br>Group              | 19.60-22.70,<br>28.80-31.80,<br>187.4-190.4                     | 4.05                | 201                | N/A                 | N/A           | NA  |
| Manbazar-II       | BASANTAPUR             | 22.974015 | <u> 86.60436</u> | OW              | 300.2                    | N/A                                     | NA                            | Phylltes and<br>Mica Schists of<br>Singbhum<br>Group              | 19.60-22.70,<br>28.80-34.90,<br>126.4-129.4                     | 4.56                | 266                | N/A                 | NA            | NA  |
| Neturia           | Innanpur (Borewell)    | 23.682    | 86.8181          | EW              |                          | 97.74                                   | N/A                           | Sandstone                                                         | 28.91-31.91                                                     | 5.75                | 332.4              | 15                  | N/A           | NA  |
| Neturia           | Sarborimore (Borewell) | 23.6456   | 86.7844          | EW              |                          | 103.25                                  | N/A                           | Sandstone                                                         | 24.44-36.44                                                     | 14.32               | 199.2              | 20                  | N/A           | N/A |
| Para              | Anara (Borewell)       | 23.4916   | 86.5621          | EW              |                          | 81.27                                   | N/A                           | Granite gneiss                                                    | 26.0-28.0                                                       | N/A                 | 66.6               | 15                  | N/A           | NA  |
| Puncha            | Lolara                 | 23.1742   | <b>86.661</b> 8  | EW              | 147.7                    | 18.5                                    | 18.5                          | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | 132                | N/A                 | NA            | N/A |
| Puncha            | Napara                 | 23.2262   | 86.6462          | EW              | 184.3                    | 21                                      | 21                            | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | 200.4              | N/A                 | NA            | NA  |
| Puncha            | Balakdih               | 23.2209   | 86.5098          | EW              |                          | NA                                      | N/A                           | Granite gneiss                                                    | Not Tapped                                                      | N/A                 |                    | N/A                 | NA            | N/A |
| Puncha            | Kuruktupa, PHC         | 23.1478   | 86.5249          | EW              |                          | N/A                                     | N/A                           | Granite gneiss                                                    | Not Tapped                                                      | N/A                 |                    | N/A                 | N/A           | N/A |
| Puncha            | Napara                 | 23.221    | 86.6454          | OW              | 181.3                    | 21                                      |                               | Granite gneiss                                                    | Not Tapped                                                      | 10.05               | 261.6              | N/A                 | NA            | N/A |
| Purulia           | Chakoltore             | 23.2425   | 86.3534          | EW              |                          | N/A                                     | N/A                           | Granite gneiss                                                    | Not Tapped                                                      | N/A                 |                    | N/A                 | NA            | N/A |
| Purulia-I         | Charrah                | 23.3707   | 86.4193          | EW              | 200                      | 12.5                                    | 12.5                          | Granite                                                           | Not Tapped                                                      | N/A                 | 12                 | N/A                 | NA            | N/A |
| Purulia-I         | Ladurkha               | 23.3521   | 86.5309          | EW              | 200.5                    | N/A                                     | 18.4                          | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | 108                | N/A                 | NA            | N/A |
| Purulia-I         | Ladurkha               | 23.3521   | S6.5309          | OW              | 150.5                    | N/A                                     | 18.5                          | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | 108                | N/A                 | NA            | N/A |
| Purulia-I         | Ladurkha               | 23.3521   | S6.5309          | SEW             | 60.3                     | N/A                                     | 18.5                          | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | 108                | N/A                 | NA            | N/A |
| Purulia-I         | Lalpur                 | 23.3066   | 86.6248          | EW              | 200.5                    | N/A                                     | 19.5                          | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | 54                 | N/A                 | NA            | N/A |
| Purulia-I         | Belguma                | 23.3271   | 86.3457          | EW              | 300.4                    | N/A                                     | 32.5                          | Granite gneiss                                                    | Not Tapped                                                      | 12.9                | 204                | N/A                 | NA            | N/A |
| Purulia-I         | Belguma                | 23.3271   | 86.3457          | OW              | 220.9                    | N/A                                     | 20.2                          | Granite gneiss                                                    | Not Tapped                                                      | 13                  | 156                | N/A                 | N/A           | N/A |
| Purulia-I         | Ambagan, PHED          | 23.3255   | 86.3437          | EW              | 151.5                    | N/A                                     | 12.5                          | Granite gneiss                                                    | Not Tapped                                                      | 12.8                | 264                | N/A                 | NA            | N/A |
| Purulia-I         | Ambagan, PHED          | 23.3255   | 86.3437          | OW              | 166                      | N/A                                     | 8                             | Granite gneiss                                                    | Not Tapped                                                      | ß                   | 420                | N/A                 | N/A           | N/A |
| Purulia-I         | PANDRAMA               | 23.265263 | 86.321211        | EW              | 300.2                    | N/A                                     | N/A                           | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 16. <mark>60-19.60,</mark><br>50.1-53.2                         | 4.02                | 126                | NA                  | N/A           | WA  |
| Purulia-I         | PANDRAMA               | 23.265263 | 86.321211        | OW              | 263.6                    | N/A                                     | NA                            | Pre-Cambrian<br>Meta-morphics<br>(Chhotonagpur<br>Granite Gneiss) | 16.60-19.60,<br>62.30-65.40,<br>199.60-202.60,<br>248.40-251.40 | 4.17                | 129                | NA                  | N/A           | NA  |
| Purulia-11        | Gangara                | 23.3439   | 86.4241          | EW              | 200.5                    | 12.3                                    | 12.3                          | Granite gneiss                                                    | Not Tapped                                                      | N/A                 | 180                | N/A                 | NA            | N/A |

| Bieck /<br>Taluka | Location                | Latitudo | Longitado      | Type of<br>Well | Drill<br>Dopth<br>(mbgi) | Well<br>Construction<br>depth<br>(m bgD | Casing<br>Dopth<br>(m<br>bgl) | Majer<br>Lithology<br>Encountered | Zone tapped/<br>Fractures<br>encountered<br>(mbgl) | 8.W.L.<br>(m<br>bgD | Discharge<br>(lpm) | Draw<br>Down<br>(m) | T<br>(m2/day) | 8   |
|-------------------|-------------------------|----------|----------------|-----------------|--------------------------|-----------------------------------------|-------------------------------|-----------------------------------|----------------------------------------------------|---------------------|--------------------|---------------------|---------------|-----|
| Purulia-11        | Gangara                 | 23.3439  | 86.4241        | OW              | 160                      | 12.3                                    | 12.3                          | Granite gneiss                    | Not Tapped                                         | N/A                 | 150                | N/A                 | N/A           | N/A |
| Purulia-11        | Hutmura                 | 23.3524  | 86.4737        | EW              | 202.5                    | 8.1                                     | 8.1                           | Granite                           | Not Tapped                                         | N/A                 | 18                 | N/A                 | N/A           | N/A |
| Purulia-11        | Charrah                 | 23.3707  | <b>86.4193</b> | EW              | 200.5                    | NA                                      | 9.75                          | Granite                           | Not Tapped                                         | N/A                 | 12                 | N/A                 | N/A           | N/A |
| Raghunathpur-I    | Madhutali (Borewell)    | 23.5037  | 86.7232        | EW              | N/A                      | 54.18                                   | N/A                           | Granite                           | 31.92-34.41                                        | 3.93                | 19.8               | 18                  | N/A           | N/A |
| Raghunathpur-I    | Raghunathpur (Borewell) | 23.5572  | 86.6805        | EW              | N/A                      | 70.35                                   | N/A                           | Porphyritic<br>granite            | 13.0-37.0,48.0-<br>62.24                           | N/A                 | 29.4               | 18                  | N/A           | N/A |
| Raghunathpur-I    | Raghunathpur (Borewell) | 23.5572  | 86.6805        | EW              | N/A                      | 71                                      | N/A                           | Porphyritic<br>granite            | Not Tapped                                         | N/A                 | 41.4               | 15                  | N/A           | N/A |
| Raghunathpur-I    | Babugram (Borewell)     | 23.583   | 86.7206        | EW              | N/A                      | 70.56                                   | N/A                           | Granite gneiss                    | 34.46-37.45                                        | 4.43                | 166.2              | 24                  | NA            | ŇA  |
| Raghunathpur-II   | Barasoni (Borewell)     | 23.5584  | 86.662         | EW              | N/A                      | 48.75                                   | N/A                           | Hornblende<br>gneiss              |                                                    | 6.29                | 166.2              | 9.1                 | NA            | N/A |
| Raghunathpur-II   | Montore (Borewell)      | 23.6075  | 86.5517        | EW              | N/A                      | 55.18                                   | N/A                           | Granite gneiss                    | 15.0-<br>17.10,22.5-31.0                           | 3.78                | 132.6              | 13                  | NA            | N/A |
| Raghunathpur-II   | Kanke (Borewell)        | 23.5909  | 86.6016        | EW              | N/A                      | 60.33                                   | N/A                           | Granite gneiss                    | 16.0-18.0                                          | 4.97                | 58.2               | 10.12               | N/A           | N/A |
| Raghunathpur-II   | Chelyama (Borewell)     | 23.6567  | 86.593         | EW              | N/A                      | 72.5                                    | N/A                           | Granite gneiss                    | 40.45-59.51                                        | N/A                 | 4.8                | 8.12                | NA            | N/A |
| Santuri           | Santuri (Borewell)      | 23.5505  | 86.8543        | EW              | N/A                      | 30.3                                    | N/A                           | Granite gneiss                    | 11.0-12.87                                         | 2.79                | 58.2               | 6                   | N/A           | N/A |



Figure- 6.1: Hydrogeological Map for Purulia District of West Bengal

#### 6.3 FRACTURE ANALYSIS

CGWB has constructed 70 bore wells all over the district so far and out of which 47 wells have been analyzed (39 EW & 8 OW). The number of fractures encountered at specific depth ranges has been identified. As from the analysis, the zone within the range of 0-50 mbgl provides more probability for encountering fractures through drillings and explorations. The aquifers from these shallow fracture zones occur mostly under unconfined or semi-confined conditions. Prolific aquifers are also encountered from the fractures within the depth range of 50-150 mbgl. The fracture analysis details is given in Table-6.3. Map showing the depth to overburden thickness with major shear zones as well as the minor fracture zones and the yield prospect for the study area is given in Figure-6.2 and 6.3.

| Block           | Formation                                        |     | Yield |        |         |         |       |                        |
|-----------------|--------------------------------------------------|-----|-------|--------|---------|---------|-------|------------------------|
|                 |                                                  | Nil | 0-50  | 50-100 | 100-150 | 150-200 | > 200 | (m <sup>3</sup> /hour) |
| Arsha           | Granite & Granite Gneiss                         | -   | 3     | 1      | 2       | 3       | -     | 0.36-1.08              |
| Baghmundi       | Granite Gneiss & Schist                          | -   | -     | -      | -       | -       | -     | -                      |
| Balarampur      | Meta- sediments                                  | -   | 1     | -      |         | -       | -     | 11.56                  |
| Bandwan         | Granite gneiss                                   | -   |       | -      |         | -       | -     | -                      |
| Barabazar       | Granite Gneiss & Schist                          | -   | 3     | 3      | 3       | 2       | 4     | 3.6-45                 |
| Hura            | Granite Gneiss                                   | -   |       | -      | 1       | 1       | -     | 0.72-3.6               |
| Jhalda-I        | Granite Gneiss & Schist                          | -   | 3     | 3      | 1       | -       | 1     | 1.74-45                |
| Jhalda-II       | Granite Gneiss & Schist                          | 1   | 1     | 2      | 1       | 1       | -     | 1.8-28.8               |
| Joypur          | Granite Gneiss & Schist                          | -   |       | -      | -       | -       | -     | -                      |
| Kashipur        | Garnetiferous schist                             | -   | 2     | -      | -       | -       | -     | 0.18-1.19              |
| Manbazar-I      | Granite Gneiss                                   | -   | 1     | -      | 1       | -       | -     | 22.08                  |
| Manbazar-II     | Granite Gneiss & Schist                          | -   | 2     |        | -       | 1       | -     | 7.2-10.8               |
| Neturia         | Sandstone                                        | -   | 2     | -      | -       | -       | -     | 11.95-19.94            |
| Para            | Granite gneiss                                   | -   | 1     | -      | -       | -       | -     | 4                      |
| Puncha          | Granite gneiss                                   | 1   | 2     |        | -       | -       | -     | 7.92-15.70             |
| Purulia-I       | Granite & Granite Gneiss                         | -   | 2     | 1      | -       | -       | -     | 0.72-25.2              |
| Purulia-II      | Granite & Granite Gneiss                         | -   | 3     | 2      | 3       | 3       | -     | 0.72-10.8              |
| Raghunathpur-I  | Granite/Granite<br>gneiss/Porphyritic<br>granite | -   | 3     | 1      | -       | -       | -     | 1.19-9.97              |
| Raghunathpur-II | Hornblende<br>gneiss/Granite gneiss              | -   | 4     | 1      | -       | -       | -     | 0.29-9.97              |
| Santuri         | Granite gneiss                                   | -   | 1     | -      | -       | -       | -     | 3.49                   |

Table 6.4 : Analysis of fracture zones in different formations

Discharge is comparatively higher for the wells constructed along the major fracture zones. The probability of occurrence of fracture zones is generally more from the zones between 0 to 50 mbgl. The blocks showing high fracture density Jhalda-I & II, Balarampur, Barabazar, etc, has subsequent bore wells that yield higher than those devoid of proper fracture systems. Geophysical surveys done in the study area also support these findings as well.



Figure-6.2: Map showing Depth to overburden and area prone to bore well collapse in Purulia district of West Bengal



Figure-6.3: Map showing shear zones and fractures in Purulia district of West Bengal



Figure-6.3: 3D Multi-log Model Diagram for the Aquifer Systems in Purulia District of West Bengal



Figure- 6.5: 2D Aquifer Cross-Sectional Diagram along NE - SW in Purulia District of West Bengal



Figure- 6.6: 2D Aquifer Cross-Section Diagram along NW – SE in Purulia District of West Bengal

6.4 GROUND WATER REGIME, DEPTH TO WATER LEVEL, WELLS AND FLUCTUATIONS : Water levelsduring pre-monsoon and post-monsoon periods were studied from 99 NHNS wells, all dug wells tapping the weathered residuum/shallow fractures in CGC and Gondwana Formation. Water level rests mostly at depths ranging from 5 to 8 mbgl during pre-monsoon period, being deeper (8 to 12 mbgl) in some isolated pockets in the northern (south of Damodar River) and southern part of the district. Deepest water level recorded in the district is from Baghmundi block (11.77 mbgl). Water level during the post-monsoon generally occurs within the depth range of 2-5 mbgl, being deeper (5-8 mbgl) mainly in areas adjacent to Damodar River in the north. The water level rises by 2-4 m in most of the areas during pre-monsoon period. Rise with less than 2m takes place in some areas in the northern, western and central parts. The water level fluctuation in the area generally rests between 2-5 m in these shallow Aquifers.

Due to the prevailing Covid-19 Pandemic, the target for establishing key wells tapping groundwater from deeper fractures could not be achieved. Hence, the only data incorporated about water level from the deeper zones are the static water level (SWL) recorded from the exploratory wells drilled by CGWB over the years. The SWL in the area ranges from 4-24.46 mbgl.

Hydrographs for different localities for the past two decades (2001-19)show either rising or nearly steady water level in both pre and post-monsoon periods except in some wells in Baghmundi, Balarampur and bundwan blocks where the declining trend during the post-monsoon is more 14, 13 and 16 cm/year respectively. The decline in water level may be considered not so alarming over the years since the water lever recover appreciably in post-monsoon period to attain a steady state over the years. Long term decline during the pre-monsoon period may be attributed to the increasing water demand in the area, while that during the post-monsoon may be the result of increased practice of groundwater irrigation during September-October months in order to supplement the maximum crop water requirement for Kharif paddy.

Overall, the ground water level condition in the study area do not practically very much over the years and suggest a stable groundwater regime persisting for years. The water level contour maps, water table contour maps and fluctuation maps for both shallow and deeper aquifers are shown in the following pages.



Figure-6.7: Location of Ground water monitoring wells(Phreatic aquifer) in Purulia District, West Bengal

|                 | Pre-               | monsoon WL       | /Trend        | Post-monsoon WL/ Trend |                  |                  |  |  |
|-----------------|--------------------|------------------|---------------|------------------------|------------------|------------------|--|--|
| Block           | WL Range<br>(mbgl) | Rise<br>(m/year) | Fall (m/year) | WL Range<br>(mbgl)     | Rise<br>(m/year) | Fall<br>(m/year) |  |  |
| Arsha           | 7.82-9.59          | 0.193            |               | 3.43- 6.29             |                  | 0.103            |  |  |
| Baghmundi       | 5.1-11.77          | 0.136            |               | 2.96-6.43              |                  | 0.142            |  |  |
| Balarampur      | 3.16-7.08          | 0.487            |               | 2.85-2.92              |                  | 0.137            |  |  |
| Bandwan         | 9.41-11.68         | 0.511            |               | 2.68- 6.61             |                  | 0.167            |  |  |
| Barabazar       | 6.00-9.11          | 0.211            |               | 2.27-4.29              |                  | 0.078            |  |  |
| Hura            | 2.3-11.60          |                  | 0.217         | 1.50- 5.73             |                  | 0.065            |  |  |
| Jhalda-I        | 3.50-8.09          | 0.361            |               | 2.49-5.37              | 0.055            |                  |  |  |
| Jhalda-II       | 8.49 - 8.99        | 0.361            |               | 3.54 -4.62             | 0.025            |                  |  |  |
| Joypur          | 2.82 - 7.46        | 0.363            |               | 1.66 -4.39             | 0.096            |                  |  |  |
| Kashipur        | 5.17 - 8.56        | 0.324            |               | 2.02 -5.09             | 0.094            |                  |  |  |
| Manbazar-I      | 6.03 - 7.99        | 0.324            |               | 1.52 -2.97             | 0.141            |                  |  |  |
| Manbazar-II     | 7.17 - 7.18        | 0.015            |               | 3.97 -4.23             | 0.041            |                  |  |  |
| Neturia         | 4.26 - 5.96        | 0.015            |               | 1.92 - 3.64            |                  | 0.038            |  |  |
| Para            | 3.16 - 8.66        | 0.118            |               | 2.34 -5.53             |                  | 0.075            |  |  |
| Puncha          | 5.25-9.98          | 0.235            |               | 2.57-6.52              | 0.156            |                  |  |  |
| Purulia-I       | 4.47-9.9           |                  | 0.432         | 1.65-3.53              |                  | 0.048            |  |  |
| Purulia-II      | 5.77- 6.67         | 0.583            |               | 2.49-4.02              |                  | 0.035            |  |  |
| Raghunathpur-I  | 4.67-5.91          | 0.303            |               | 2.58-4.41              |                  | 0.067            |  |  |
| Raghunathpur-II | 4.66-10.49         |                  |               | 2.80-6.61              |                  | 0.046            |  |  |
| Santuri         | 3.76-5.58          | 0.481            |               | 3.03-6.61              |                  | 0.065            |  |  |

Table-6.5: Water Level and Long term trends (20 years) for Aquifer-I(Phreatic) duringPre-monsoon and post-monsoon season in Purulia district.



Figure-6.8: Pre-Monsoon Depth to Water Level map for Shallow Aquifers of the study area



Figure-6.9: Post-Monsoon Depth to Water Level map for Shallow Aquifers of the study area



Figure-6.10: Water Level fluctuation map for Shallow Aquifers of the study area


Figure- 6.11: SWL Contour map for the Deeper Aquifers in the study area



Figure- 6.12: Pre-Monsoon Water Table contour map for Shallow Aquifer of the study area



Figure-6.13: Post-Monsoon Water Table contour map for Shallow Aquifer of the study area



#### **Blockwise Hydrographs(Representative)**





Figure 6.14 : Representative Block wise hydrographs of Purulia District, West Bengal

| Table-6.6: Occurrence, potentiality and abstraction structures feasible for the blocks |
|----------------------------------------------------------------------------------------|
| under study area.                                                                      |

| Block      | Occurrence of Aquifers & its potentiality                                         | Feasibility of GW abstraction structures       |
|------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| Arsha      | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                         |
|            | -60 mbgl, yielding $2.5 - 2.75$ lps.                                              | Bore well 80 mbgl.                             |
| Baghmundi  | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                         |
|            | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Dug cum bored well at 20-40 mbgl. Bore well 80 |
|            | Deeper fracture at a depth of 110 m has been encountered, yielding 0.88-2.77 lps. | mbgl                                           |
| Balarampur | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50- | Dug well upto 20 mbgl.                         |
|            | 60 mbgl, yielding 2.5-2.5 lps.                                                    | Dug cum bored well at 20-40 mbgl. Bore well 80 |
|            | Deeper fracture at a depth of 110 m has been encountered, yielding 0.88-2.77 lps  | mbgl.                                          |
| Barabazar  | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                         |
|            | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Dug cum bored well at 20- 40 mbgl.             |
|            | Deeper fracture at a depth of 110 m has been encountered, yielding 0.88-2.77 lps. | Bore well 80 mbgl                              |
| Bandwan    | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                         |
|            | - 60 mbgl.                                                                        | Dug cum bored well at 20-40 mbgl.              |
|            | Deeper fracture at a depth of 110 m has been encountered, yielding 0.88-2.77 lps  | Bore well 80 mbgl.                             |
| Hura       | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                         |
|            | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Dug cum bored well at 20- 40 mbgl.             |
|            | Deeper fracture at a depth of 110 m has been encountered, yielding 0.88-2.77 lps. | Bore well 80 mbgl.                             |
| Jhalda-I   | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                         |
|            | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 80 mbgl.                             |

| Block           | Occurrence of Aquifers & its potentiality                                         | Feasibility of GW abstraction structures |
|-----------------|-----------------------------------------------------------------------------------|------------------------------------------|
| Jhalda — II     | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 60 mbgl.                       |
| Puncha          | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl,                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 80 mbgl.                       |
|                 | Deeper fracture at a depth of 110 m has been encountered, yielding 0.88-2.77 lps. |                                          |
|                 | In Gondwana rocks the existence of fractures within the depth of 24-26 mbgl       |                                          |
| Purulia —I      | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 60 mbgl.                       |
| Purulia —II     | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 60 mbgl.                       |
| Raghunathpur-I  | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl                    |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 60 mbgl.                       |
| Raghunathpur-II | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 60 mbgl.                       |
| Santuri         | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Dug cum bored well at 20- 40 mbgl.       |
|                 | In Gondwana rocks the existence of fractures within the depth of 24-26 mbgl       | Bore well 60 mbgl.                       |
| Manbazar — I    | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl                    |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 60 mbgl.                       |
| Manbazar - II   | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl Bore well 60 mbgl. |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 |                                          |
| Joypur          | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl Bore well 60 mbgl. |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 |                                          |
| Neturia         | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Dug cum bored well at 20- 40 mbgl.       |
|                 |                                                                                   | Bore well 60 mbgl.                       |
| Kashipur        | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Dug cum bored well at 20- 40 mbgl.       |
|                 |                                                                                   | Bore well 60 mbgl.                       |
| Para            | Within 20 mbgl saturated weathered zone occurs and potential fracture zone at 50  | Dug well upto 20 mbgl.                   |
|                 | — 60 mbgl, yielding 2.5-2.75 lps.                                                 | Bore well 60 mbgl.                       |

## Chapter - 7 GROUND WATER RESOURCE ESTIMATION

#### 7.1 DYNAMIC RESOURCE

The present chapter deals with the resources available in the study area. The Dynamic Resource of the area for 2013 has been calculated jointly by CGWB and SWID (State Water Investigation Directorate) using GEC-1997 methodology. The irrigation data available to the 5th Minor Irrigation Census, block wise demographic data of 2011 Census, CGWB water level data, cropping pattern, annual monsoon rainfall and normal rainfall provided the basic input for calculating the resources of the state. Block wise (Groundwater assessment unit) geographical area, area under different hydrogeological sub-provinces (sub-units), area under command and non-command, poor ground water quality area and ground worthy recharge area has also been considered. Gross current draft for all uses, recharge from rainfall, recharge from other sources like tanks, ponds, canal seepages, return flow from ground water and surface irrigation has all been considered. The number of abstraction structures and their unit draft has been taken into account for computation of irrigation draft. The projected population of 2025 (based on census 2011) and per capita consumption (60 lpcd) have been considered for computation and 70 % of the obtained figure is taken as the domestic and industrial draft.

#### 7.1.1 Recharge and resource

Rainfall is the principal source of groundwater recharge in the area and a very minor part of it comes from seepage through irrigation canals, rivers and return flow from irrigation. The weathered mantle has a high degree of porosity, as a result of which a substantial part of the total annual precipitation percolates downward and gets stored. The present utilization of groundwater in the study area is mainly for agriculture use and domestic.

#### 7.1.2 Groundwater Draft

Groundwater draft has been computed on the basis of quantum of water likely to be used for domestic, irrigation and industrial purposes. The estimate is done by projecting the population and the number of ground water abstraction structures. The total extraction for the blocks as a whole is 6859.89 ham with Kashipur being the highest with 597.99 Ham.

#### 7.1.3 Stage of development and category

The unit of assessment is categorized for groundwater development based on two criteria; Stage of ground water development and long term water level trends. The level of ground water development in Purulia district (9.43%) is very low as compared to the state average of 42%. All the blocks in the district are under 'Safe' category as their stage of groundwater development is < 70% and there is steady water level over the years. This offers a scope for further exploitation of available un-utilized resource in future. The stage of groundwater development map is shown in Plate 7. The following table gives an account of the groundwater recharge, their draft, and allocation of resource for future use, stage of development and categorization of the blocks in Purulia district.

| Assessment Units | Annual         | Fresh In-  | Total Availability | Gross Ground      | Stage of   | Category |
|------------------|----------------|------------|--------------------|-------------------|------------|----------|
| Name / Block     | Extractable GW | storage GW | of Ground Water    | Water Abstraction | Ground     | ÷ •      |
|                  | resource       | resource   | Resources          | for all uses      | Water      |          |
|                  | (Ham)          | (Ham)      | (Ham)              | (Draft)           | Extraction |          |
|                  |                |            |                    | (Ham)             | (%)        |          |
| Arsha            | 5385.43        | 8395.00    | 13780.43           | 281.19            | 5.22       | Safe     |
| Bagmundi         | 2789.31        | 5510.00    | 8299.31            | 451.53            | 16.19      | Safe     |
| Balarampur       | 3251.38        | 3732.00    | 6983.38            | 259.84            | 7.99       | Safe     |
| Barabazar        | 5414.00        | 6641.00    | 12055.00           | 369.62            | 6.83       | Safe     |
| Bundwan          | 2951.97        | 4489.00    | 7440.97            | 178.67            | 6.05       | Safe     |
| Hura             | 3748.66        | 4433.00    | 8181.66            | 453.28            | 12.09      | Safe     |
| Jaipur           | 1930.32        | 3168.00    | 5098.32            | 445.09            | 23.06      | Safe     |
| Jhalda-I         | 2714.83        | 3111.00    | 5825.83            | 681.75            | 25.11      | Safe     |
| Jhalda-II        | 2566.13        | 6254.00    | 8820.13            | 402.48            | 15.68      | Safe     |
| Kashipur         | 8160.63        | 13130.00   | 21290.63           | 597.99            | 7.33       | Safe     |
| Manbazar-I       | 4925.41        | 10152.00   | 15077.41           | 278.77            | 5.66       | Safe     |
| Manbazar-II      | 2527.31        | 4535.00    | 7062.31            | 161.52            | 6.39       | Safe     |
| Neturia          | 3099.18        | 7822.00    | 10921.18           | 213.36            | 6.88       | Safe     |
| Para             | 3248.14        | 2319.00    | 5567.14            | 385.34            | 11.86      | Safe     |
| Puncha           | 4378.48        | 10474.00   | 14852.48           | 258.05            | 5.89       | Safe     |
| Purulia-I        | 4084.22        | 4851.00    | 8935.22            | 485.81            | 11.89      | Safe     |
| Purulia-II       | 3846.73        | 5127.00    | 8973.73            | 347.52            | 9.03       | Safe     |
| Raghunathpur-I   | 2319.96        | 3065.00    | 5384.96            | 230.13            | 9.92       | Safe     |
| Raghunathpur-II  | 2680.78        | 2424.00    | 5104.78            | 203.41            | 7.59       | Safe     |
| Santuri          | 2701.21        | 3204.00    | 5905.21            | 174.54            | 6.46       | Safe     |
| Total            | 72724.08       | 112836.00  | 185560.08          | 6859.89           | 9.43       |          |

Table 7.1 Ground water Recharge, Resource and Stage of Development for Purulia district.

#### 7.1.4 Irrigation Potential created and utilized

The net ground water availability for future irrigation use in the district is estimated at 70198.07 Ham. This available balance resource could be utilized efficiently as per feasibility of the area. Presently, irrigation in the district is practiced maximum through surface flows (Table-1.7). It is seen from the table that surface water dependence is 79% whereas the groundwater dependence is 21%. Since these blocks falls under 'Safe' category, there is further scope for expansion of ground water irrigation through additional irrigation potential with available resource. The irrigation potential created and the net irrigated area through means of various abstraction structures are given below in Table 7.2.

| Block           | Irrigation | Actual/net     | Achievement |
|-----------------|------------|----------------|-------------|
|                 | potential  | area irrigated |             |
|                 | created    |                |             |
|                 | (HaM)      | (Ha)           | (%)         |
| Arsha           | 6566.40    | 15549.98       | 42          |
| Bagmundi        | 4250.84    | 7791.67        | 5 5         |
| Balarampur      | 2649.67    | 7591.73        | 35          |
| Barabazar       | 3870.06    | 8911.82        | 43          |
| Bundwan         | 3990.88    | 7334.14        | 54          |
| Hura            | 5848.49    | 13160.68       | 44          |
| Jaipur          | 2407.81    | 4372.98        | 55          |
| Jhalda-I        | 6858.96    | 11232.60       | 61          |
| Jhalda-II       | 5706.32    | 11856.86       | 48          |
| Kashipur        | 8446.47    | 9001.30        | 94          |
| Manbazar-I      | 5413.83    | 7475.94        | 72          |
| Manbazar-II     | 2071.81    | 4205.6         | 49          |
| Neturia         | 1340.88    | 3805.83        | 35          |
| Para            | 4724.30    | 9794.63        | 48          |
| Puncha          | 2646.06    | 7192.15        | 37          |
| Purulia-I       | 4004.62    | 5557.38        | 72          |
| Purulia-II      | 1395.58    | 7221.37        | 19          |
| Raghunathpur-I  | 4357.12    | 9075.24        | 48          |
| Raghunathpur-II | 3189.22    | 4087.13        | 78          |
| Santuri         | 6006.65    | 12154.12       | 49          |
| Total           | 85745.97   | 167373.15      | 51          |

Table-7.2 Irrigation potential created and actual area irrigated with groundwater in thestudy area (Source: 5th MI census)

Apart from common abstraction structures like dug wells, shallow tube wells and deep tube wells, there are number of surface water bodies in use for irrigation in this district. As per 5<sup>th</sup> MI Census record, there are a total of 17276 water bodies in the district out of which 1212 are for non-irrigation purpose, 13882 water bodies are in use for irrigation and 970 are defunct.



Figure 7.1 : Stage of Ground Water Development in different CD Blocks of Purulia District

#### 7.2 STATIC WATER RESOURCE/IN-STORAGE

Computation of in-storage is essential not only for estimation of emergency storage available for utilization in case of natural extremities like drought conditions but also for assessment of storage depletion in over-exploited areas for sensitizing stakeholders about the damage done to environment. The in-storage for the blocks under study area is listed in Table-7.3 (as of 2013).

| SI. | Block           | Area   | Average | Bottom       | Total     | Average  | In-storage |
|-----|-----------------|--------|---------|--------------|-----------|----------|------------|
| No  |                 | (Ha)   | Pre-    | of the       | saturated | Specific | Resource   |
|     |                 |        | Monsoon | aquifer      | thickness | Yield    |            |
|     |                 |        | WL      | <sup>2</sup> |           |          |            |
|     |                 |        | (mbgl)  | (m)          | (m)       |          | (HaM)      |
| 1   | Arsha           | 37504  | 6.1     | 20.0         | 13.9      | 0.04     | 20852.22   |
| 2   | Baghmundi       | 42795  | 6.36    | 20.0         | 13.6      | 0.02     | 8755.86    |
| 3   | Balarampur      | 30088  | 4.72    | 20.0         | 15.3      | 0.02     | 9194.89    |
| 4   | Bandwan         | 35125  | 5.74    | 25.0         | 19.3      | 0.02     | 13530.15   |
| 5   | Barabazar       | 41806  | 5.86    | 20.0         | 14.1      | 0.02     | 11822.74   |
| 6   | Hura            | 38221  | 6.42    | 20.0         | 13.6      | 0.02     | 7785.62    |
| 7   | Jhalda-I        | 31897  | 7.05    | 20.0         | 13.0      | 0.02     | 6195.99    |
| 8   | Jhalda-II       | 25661  | 6.59    | 20.0         | 13.4      | 0.03     | 10323.42   |
| 9   | Joypur          | 23047  | 5.69    | 20.0         | 14.3      | 0.02     | 6596.05    |
| 10  | Kashipur        | 45131  | 6.47    | 20.0         | 13.5      | 0.04     | 24424.90   |
| ll  | Manbazar-I      | 38132  | 6.36    | 20.0         | 13.6      | 0.04     | 20804.82   |
| 12  | Manbazar-II     | 28581  | 7.78    | 20.0         | 12.2      | 0.02     | 6985.20    |
| 13  | Neturia         | 20365  | 3.3     | 20.0         | 16.7      | 0.05     | 17004.78   |
| 14  | Para            | 31259  | 6.14    | 20.0         | 13.9      | 0.01     | 4332.50    |
| 15  | Puncha          | 33011  | 5.08    | 20.0         | 14.9      | 0.04     | 19700.96   |
| 16  | Purulia-I       | 29540  | 6       | 20.0         | 14.0      | 0.02     | 8271.20    |
| 17  | Purulia-II      | 31010  | 6.19    | 20.0         | 13.8      | 0.02     | 8564.96    |
| 18  | Raghunathpur-I  | 21477  | 5.56    | 20.0         | 14.4      | 0.02     | 6202.56    |
| 19  | Raghunathpur-II | 19767  | 5.17    | 20.0         | 14.8      | 0.03     | 8794.34    |
| 20  | Santuri         | 17969  | 5.58    | 20.0         | 14.4      | 0.03     | 6477.82    |
|     | TOTAL           | 622386 |         |              |           |          | 226620.97  |

Table-7.3 In-storage of groundwater for the study area (Purulia)

## Chapter - 8

### **GROUND WATER QUALITY**

#### 8.1 MAJOR ION CHEMISTRY AND HYDRO-GEOCHEMICAL FACIES

The geochemical evolution of groundwater can be understood by plotting the concentrations of major cations and anions in the Piper tri-linear diagram. For demarcating the hydro-chemical facies existing in the phreatic and fractured aquifer in the study area, Piper (1953) and the modified Piper diagram by Chadha (1999) were used. The sample plotting falls in different areas are:

- The Piper's tri-linear diagram (Figure-8.1) for phreatic aquifer shows that 45% of groundwater samples fall into No dominant cation type. Whereas 46% of the samples fall into the Magnesium Type and remaining 9% samples in Sodium and Potassium type in the cation facies. Hence, the plotting on the Piper diagram for the samples from the study area shows dominance of Magnesium and mixed cation.
- Regarding anions, 38% of samples fall into HCO<sub>3</sub>- type, 45% is Cl- type and rest 17% samples fall in 'no dominant' type of anion facies for phreatic aquifer.



Figure-8.1: (A) Piper tri-linear diagram for hydro-geochemical facies (B) Groundwater samples from phreatic aquifers of the Study Area plotted on modified Piper diagram (Chadha, 1999)



Figure-8.2: (A) Piper tri-linear diagram for hydro-geochemical facies (B) Groundwater samples from fractured aquifers of the Study Area plotted on modified Piper diagram (Chadha, 1999)

✤ The Piper's tri-linear diagram (Figure-8.2) for fractured aquifer reveals that 91% of the groundwater samples fall in the fields of 'alkaline earth exceeds alkalies' and remaining 9% fall in the fields of 'alkalies exceed alkaline earth'. 60% of groundwater sample fall in the 'strong acids (SO<sub>4</sub> + Cl) exceeds weak acids (CO<sub>3</sub> + HCO<sub>3</sub>)', 40% fall in 'Weak acids (CO<sub>3</sub> + HCO<sub>3</sub>) exceed strong acids (SO<sub>4</sub> + Cl)'.

Facies classification (Piper Tri-linier Diagram) indicates that maximum groundwater samples belong to Ca-Mg-Cl type and Ca-Mg-HCO3 type in phreatic aquifer as well as fractured aquifer.

The above analysis indicates that the hydro-chemical characteristics of groundwater in the phreatic aquifers show considerable variations, which could be attributed to various factors such as the composition of the litho units, soil type and even water contamination. The Ca-Mg-HCO<sub>3</sub> and Ca-Mg-Cl type water indicates water type with temporary hardness. Phreatic and fractured, both types of aquifer revealed similar types of ionic dominance and facies.

| Chadha's diagram.                                    |                                    |  |  |  |  |
|------------------------------------------------------|------------------------------------|--|--|--|--|
| Chemical facies                                      | Characteristics                    |  |  |  |  |
| Ca-Mg-HCO3 type of recharge waters                   | water type with temporary hardness |  |  |  |  |
| Ca-Mg-Cl Type of reverse ion-exchange                | water type with temporary hardness |  |  |  |  |
| waters                                               |                                    |  |  |  |  |
| Na-Cl type of end-member waters (seawater            | water type with permanent hardness |  |  |  |  |
| intrusion)                                           |                                    |  |  |  |  |
| Na-HCO <sub>3</sub> type of base ion-exchange waters | water type which causes foaming    |  |  |  |  |

Table-8.1: Characteristics of groundwater samples in different zones derived from Chadha's diagram.

#### 8.2 ROCK-WATER INTERACTION

Rock-water interaction has been assessed by using Gibbs Diagram (Gibbs, 1970), which is a widely used method to establish the relationship of water composition and source conditions/characteristics. Three distinct fields such as precipitation dominance, evaporation dominance and rock-water interaction dominance areas are shown in the Gibbs diagram (Figure 8.3 & 8.4). The distribution of samples in the rock dominance region of the plot in the Gibbs diagram suggests that the major ion chemistry of groundwater is controlled by chemical weathering of rock forming minerals in both phreatic and fractured aquifer (Figure-8.3)



Figure-8.3: Gibbs diagram for controlling factor of groundwater quality for Phreatic aquifer



Figure-8.4: Gibbs diagram for controlling factor of groundwater quality for fractured aquifer

#### 8.3 WATER QUALITY ASSESSMENT

Since groundwater is intensively used for irrigation and drinking purposes, an effort has been made to evaluate the suitability of groundwater for drinking and irrigation uses.

**Suitability for Drinking Uses:** The analytical results of physical and chemical parameters of groundwater were compared with the standard guideline values as recommended by Bureau of Indian Standard (BIS, 2012) for drinking and public health purposes (Table-8.2). The table shows the acceptable limits and Permissible limits of various chemical parameters. Except for few samples, the concentration of cations, such as Na<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>, are all within the permissible limits.

To ascertain the suitability of groundwater for any purposes, it is essential to classify the groundwater depending upon their hydro-chemical properties based on their TDS values. 40% of the sample from phreatic aquifer is found to have TDS concentration more than the BIS's (2012) acceptable limit of 500 mgL<sup>-1</sup>. However, all the samples were found well within the Permissible limit of 2000 mgL<sup>-1</sup> in both phreatic and fractured aquifers.

| Water Class | TH as CaCO3 in mg/L | % of Samples<br>(Phreatic aquifer) | % of Samples<br>(Fractured<br>aquifer) |
|-------------|---------------------|------------------------------------|----------------------------------------|
| Soft        | <75                 | 3.7                                | 0                                      |
| Moderately  | 75-150              | 18.3                               | 42.5                                   |
| Hard        |                     |                                    |                                        |
| Hard        | 150-300             | 38                                 | 48.9                                   |
| Very Hard   | >300                | 40                                 | 8.5                                    |

Table-8.2: Hardness Classification of groundwater of the study area

The total hardness (TH) varies from 55-880 mgL<sup>-1</sup> indicating soft to very hard water types. Alkaline earth elements i.e., Ca<sup>2+</sup> and Mg<sup>2+</sup> mostly contribute to more Hardness in drinking water. This justifies with the water type as attributed by Piper diagram. 6.67% of water sample in phreatic aquifer has TH beyond the BIS (2012) Permissible limit of 600 mgL<sup>-1</sup> for drinking purpose. Presence of higher concentration of Magnesium has also been noticed in the study area.

As per hardness classification, the fractured aquifer exhibits moderate to very hard water quality. However, all the samples were well within the maximum Permissible limit of 880 mg/L.

| Constituents      | Acceptable | Permissible   | Sample     | Sample       | Max    | Min    | Sample     | Sample         | Max    | Min    |
|-------------------|------------|---------------|------------|--------------|--------|--------|------------|----------------|--------|--------|
| (mg/L)            | Limit      | Limit         | Exceeding  | Exceeding    |        |        | Exceeding  | Exceeding      |        |        |
| ( 0, )            |            |               | Acceptable | Permissible  |        |        | Accentable | Permissible    |        |        |
|                   |            |               | Limit (%)  | Limit (%)    |        |        | Limit (%)  | Limit (%)      |        |        |
| Aquifer Type      |            | I             |            | Phreatic Ami | ier    |        | Linit (70) | Fractured Amil | er     |        |
| nH                | 6 5-8 5    | No Relaxation |            |              | 84     | 75     | -          |                | 83     | 6.6    |
| Ff (uS/em)        | -          | -             | _          | -            | 2548.0 | 153.0  | _          |                | 1318.0 | 181.0  |
| Tetal Discolard   | -          |               | -          |              | 2040.0 | 155.0  | 19.0       | -              | 1010.0 | 101.0  |
| Total Dissolved   | 200        | 2000          | 40         | -            | 1415.7 | 91.8   | 15.0       | -              | 008.4  | 110.5  |
| Solid (mg/L)      |            |               |            |              |        |        |            |                |        |        |
| Total Alkalinity  | 200        | 600           | 20         | -            | 470.0  | 55.0   | 4.3        | -              | 284.9  | 70.0   |
| (as CaCO3) (mg/L) |            |               |            |              |        |        |            |                |        |        |
| Chloride (mg/L)   | 250        | 1000          | 26.7       | -            | 556.6  | 10.6   | 2.2        | -              | 266.3  | 10.6   |
| Nitrate (mg/L)    | 45         | No Relaxation | 16.7       | -            | 279.1  | Traces | -          | -              | 42.0   | Traces |
| Sulfate (mg/L)    | 200        | 400           | 1.7        | -            | 204.8  | Traces | -          | -              | 109.7  | Traces |
| Fluoride (mg/L)   | 1          | 1.5           | 1.7        | 1.7          | 1.9    | Traces | 13.0       | 2.2            | 1.6    | Traces |
| Sodium (mg/L)     | -          | -             | -          | -            | 192.5  | 8.2    | -          | -              | 156.5  | 8.3    |
| Potassium         | -          | -             | -          | -            | 65.1   | 0.4    | -          | -              | 6.6    | 1.1    |
| (mg/L)            |            |               |            |              |        |        |            |                |        |        |
| Calcium           | 75         | 200           | -          | -            | 70.0   | 8.0    | 6.5        | -              | 102.0  | 4.0    |
| (as Ca) (mg/L)    |            |               |            |              |        |        |            |                |        |        |
| Magnesium         | 30         | 100           | 75         | 18           | 202.9  | 4.9    | 26.1       | -              | 48.5   | 3.6    |
| (as Mg) (mg/L)    |            |               |            |              |        |        |            |                |        |        |
| Total Hardness    | 200        | 600           | 70         | 6.67         | 880.0  | 55.0   | 34.8       | -              | 360.0  | 75.0   |
| (as CaCO3) (mg/L) |            |               |            |              |        |        |            |                |        |        |
| Iron (Fe) (mg/L)  | 1          | No Relaxation | 12         | -            | 23.5   | Traces | 15.2       | -              | 3.3    | Traces |

Table-8.3: Spatial Variation of Ionic Concentration in Study Area (Phreatic Aquifer and<br/>Fractured Aquifer)

**NOTE :** It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned under 'Acceptable' render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicated under 'Permissible limit' in the absence of alternate source' in column 4, above which the sources will have to be rejected.

- Sporadic occurrences of Nitrate in water have been detected from few wells in the study area in phreatic aquifer especially. The average NO<sub>3</sub><sup>-</sup> values range between Traces to 279 mg/L.
- Ca<sup>2+</sup>concentrations is also found within the highest permissible limits (BIS:2012), with the value range of 8 to70 mg/L in phreatic aquifer and 4 to 102 mg/L in fractured aquifers. 18% of the samples in phreatic aquifer exhibits Mg<sup>2+</sup> concentration exceeding the maximum permissible limits. The relative concentrations of major cations and anions in both the aquifers have been displayed as Box and Whisker Plot in Figure-8.5.



Figure-8.5: Box and Whisker Plot sowing Spatial Distribution of Major Cations and Anions in the study area in Phreatic and Fractured Aquifer

**Distribution of Iron and Fluoride in the study area**: Iron concentrations in the water samples of the study area ranged between Traces-23.5 & Traces-3.3 in phreatic and fractured aquifer respectively. As per BIS, 2012 the permissible limit of iron is 1.0 mgL<sup>-1</sup> beyond which water is not considered as suitable for drinking purposes without prior

treatment. In the study area 12% & 15.2% samples were detected with Iron concentration more than permissible limit in phreatic and fractured aquifer respectively. High iron content in drinking water can cause diabetes, hemochromatosis, stomach problems, and nausea. It can also damage the liver, pancreas, and heart.

Fluoride is one of the main trace elements in groundwater which generally occurs as a natural constituent. Bedrock containing fluoride minerals is the main source of Fluoride in groundwater. The concentration of fluoride in groundwater in the study area has been observed to be above the permissible limit of 1.5 mg/L. High fluoride concentration in phreatic aquifer have been reported at Jhapra, Para block (1.9 mgL<sup>-1</sup>) and in fractured aquifer from Jhujhka, Arsa block (1.63 mgL<sup>-1</sup>).

# Assessment for Co-occurrence of Uranium and other Trace Metals in Groundwater of Purulia District

- All the samples were found within the prescribed standards as per WHO, 2012 for Uranium.
- High concentration of Iron has been detected in few pockets with concentration more than 10 mg/L at some places.
- 43% of samples show manganese contamination well beyond the acceptable Limit and 30% of the samples exceeds the Permissible Limit as per BIS, 2012.
- Zinc, Chromium, Copper, Arsenic and Lead are within permissible limit.

**Suitability for Irrigation Uses :** In the present study the suitability of the groundwater for irrigation is assessed by considering the irrigation indexes like Conductivity (EC), Soluble Sodium Percentage (SSP), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Magnesium Hazard (MH) and Permeability Index (PI) along with the USSL salinity and Wilcox diagrams and the result has been summarized in Table-8.4.

USSL diagram has been used for studying the quality of groundwater suitability for irrigation purpose. The SAR and EC values of water samples of the study area were plotted in the form of a graphical representation (Figure-8.6B) and it has been found that all the samples fall in the low to medium category in salinity hazard group and low

in sodium hazard group in both the phreatic and fractured aquifers. The ground water from the study area is thus suitable for the irrigation purpose.

Similar results are found in Wilcox diagram plot, for classifying water for irrigation suitability. In this diagram, the EC was plotted against the percentage of Na. According to Wilcox classification, 93% of the water samples from the study area belong to the 'excellent to good' and 'good to permissible' category in phreatic aquifer. Remaining 7% groundwater samples falls in the 'doubtful to unsuitable' category {Figure-8.6 (A)}.

For fractured aquifer, the Irrigation suitability analysis revealed that the groundwater in Purulia is mostly found within the category of 'Excellent to Good' and 'Good to permissible' zone.



Figure-8.6: (A) Wilcox Diagram and (B) United States Salinity Laboratory (USSL) Diagram for assessing the Irrigation water quality of Phreatic Aquifer



Figure-8.7: (A) Wilcox Diagram and (B) United States Salinity Laboratory (USSL) Diagram for assessing the Irrigation water quality of Fractured Aquifer

| groundwater for irrigation |              |             |         |               |         |         |               |         |
|----------------------------|--------------|-------------|---------|---------------|---------|---------|---------------|---------|
| Indices                    | Range        | Water Class | Maximum | Minimum       | Average | Maximum | Minimum       | Average |
| Type of Aq                 | uifer        |             | Ph      | reatic Aquife | r       | Fra     | ctured Aquife | er      |
| SAR                        | < 10         | Excellent   | 3.5     | 0.4           | 1.7     | 7.2     | 0.4           | 1.8     |
|                            | 10 to 18     | Good        |         |               |         |         |               |         |
|                            | 18 to 26     | Moderate    |         |               |         |         |               |         |
|                            | > 26         | Unsuitable  |         |               |         |         |               |         |
| SSP                        | < 50         | Good        | 60.4    | 16.3          | 34.3    | 79.3    | 13.5          | 37.6    |
|                            | > 50         | Unsuitable  |         |               |         |         |               |         |
| RSC                        | < 1.25       | Good        | 1.0     | -15.6         | -3.0    | 2.0     | -5.1          | -0.9    |
|                            | 1.25 to 2.50 | Moderate    |         |               |         |         |               |         |
|                            | > 2.50       | Unsuitable  |         |               |         |         |               |         |
| MH                         | < 50         | Good        | 94.9    | 36.4          | 79.8    | 92.9    | 12.0          | 50.5    |
|                            | > 50         | Unsuitable  |         |               |         |         |               |         |
| PI                         | > 75         | Good        | 102.5   | 25.1          | 58.0    | 105.7   | 36.1          | 68.5    |
|                            | 25 to 75     | Moderate    |         |               |         |         |               |         |
|                            | < 25         | Unsuitable  |         |               |         |         |               |         |
| KI                         | <]           | Suitable    | 1.5     | 0.2           | 0.5     | 3.8     | 0.1           | 0.8     |
|                            | >]           | Unsuitable  | 1       |               |         |         |               |         |

| Table-8.4: Summarized result for various indices to assess the suitability of the |
|-----------------------------------------------------------------------------------|
| groundwater for irrigation                                                        |

## Chapter - 9

## **GROUNDWATER RELATED ISSUES AND PROBLEMS**

#### 9.1 DROUGHT & WATER SCARCITY

Purulia has a long history of water scarcity. The district as a whole is identified as drought and water scarce area. Because of the complex hydrogeological set up, the area experiences limited scope for large-scale ground water development. Moreover, most of the open wells go dry with the advent of summer season leading to an acute water crisis. There are several factors which are mainly responsible for the water scarcity of Purulia. The gap between demand and supply of water is widening day by day due to rapid growth of population. Both physical and economic water scarcity are observed in Purulia. Physical water scarcity is inadequate water resources to meet a country's or regional demand, including the water needed to fulfill the demand of ecosystems to function effectively (UNDP, 2006). Arid regions frequently suffer from physical water scarcity. Economic water scarcity is caused by a lack of investment in infrastructure or technology to draw water from rivers, aquifers or other water sources, or insufficient human capacity to satisfy the demand for water.

#### 9.2 GROUND WATER QUALITY PROBLEMS (GEOGENIC)

Fluoride is common in semi-arid climate with crystalline igneous rocks and alkaline soils. In Indian continent, the higher concentration of fluoride in groundwater is associated with igneous and metamorphic rocks. The chief sources of fluoride in groundwater are the fluoride-bearing minerals, such as fluorite (fluorspar), fluor-apatite, cryolite, biotite, muscovite, lepidolite, tourmaline and hornblende series minerals. In water, fluoride is strongly reactive or exists in free state, eventually precipitating as fluorite (main solid phase with the fluoroapatite, Ca<sub>5</sub> [PO<sub>4</sub>]<sub>3</sub>[F,Cl]) [2,3]. Fluoride content in groundwater usually depends on rock type, interaction period with host rock, as well as the dissolution kinetics for fluorite, apatite or silicate minerals.

Fluoride (F<sup>-</sup>) is an essential micronutrient for human beings, serving to strengthen the apatite matrix of skeletal tissues and teeth (*Maithani et al. 1998*). On the other hand, due to excessive fluoride intake, tooth enamel loses its luster. Besides skeletal and dental fluorosis, excessive consumption of fluoride may lead to muscle fiber degeneration, low hemoglobin levels, excessive thirst, headache, skin rashes, nervousness, depression, etc. (*Ayoob and Gupta 2006*).

Iron and Fluoride are the two most common quality issues in the district. PHED, Gov. of WB have analyzed 24,076 ground water sources (2018-19) from both dug well and bore

wells, out of which 478 sources have Fluoride concentration above 1.5 mg/L and 4809 sources have Iron concentration above the permissible limit of 1 mg/L.

The fluoride concentration in dug wells varies from 0.25 to 1.495 mg/l as per the rapid assessment report of Fluoride Task Force, Government of West Bengal. Drinking water sources tapped from bore wells in fractured granitic rocks within the depth of 50 m are also found to have fluoride contamination. The granitic rocks having fluor-apatite veins may enhance the level of fluoride in ground water as such. In Purulia district 17 blocks out of 20 (except Jhalda-II, Manbazar-II and Bundwan blocks), are having sporadic occurrence of fluoride in ground water above permissible limit (> 1.5 mg/l). The maximum fluoride concentration in ground water is recorded from Joypur block (1.47 to 7.70 mg/l). High fluoride concentration is also reported from the northern and central part of the study area where the weathered mantle and saprolitic zone are produced from the parent rock of granite and granite gneiss. Low concentration of fluoride is reported from the regions dominated by the parent **rock of mica-schist**.



Figure-9.1: Chemical quality map (Fluoride & Iron Spot values) for Purulia district.

| Block           | Maximum          | No. of affected | No. of Persons |
|-----------------|------------------|-----------------|----------------|
|                 | concentration of | Villages        | affected by    |
|                 | Fluoride(mg/l)   |                 | Fluorosis      |
| Arsha           | 2.92             | 2               | 198            |
| Baghmundi       | 2.38             | 1               | 14             |
| Balarampur      | 2.12             | 1               | 94             |
| Barabazar       | 2.08             | 2               | 76             |
| Hura            | 2.1              | 2               | 216            |
| Jhalda-i        | 4.93             | 3               | 242            |
| Joypur          | 7.7              | 2               | 277            |
| Kashipur        | 2.78             | 5               | 135            |
| Manbazar-I      | 2.73             | 13              | 415            |
| Neturia         | 1.77             | 3               | 345            |
| Para            | 2.34             | 3               | 205            |
| Puncha          | 2.41             | 7               | 358            |
| Purulia-I       | 3.53             | 6               | 428            |
| Purulia-II      | 2.54             | 16              | 466            |
| Raghunathpur-I  | 4.3              | 3               | 207            |
| Raghunathpur-II | 1.74             | 2               | 288            |
| Santuri         | 2.38             | 2               | 246            |
| DISTRICT TOTAL  |                  | 73              | 4210           |

Table 9.1: Status of Fluoride concentration, village and number of persons affected inPurulia district

(Source : Fluoride Task Force, Govt. of West Bengal, Rapid Assessment-2016)

#### 9.3 OTHER MAJOR ISSUES

The yield of wells constructed is generally low in the district and for water supply, PHED depends on tapping the alluvial zones (River valleys, channel bars and valley fills) for sustainable water supply. Because of uncertainty of encountering saturated fractures, bore wells are limited. Dug wells are mostly used for abstraction through manual means. Because of this, crop production is limited to mainly lentils that too are limited only in the rain fed areas. This results in Low Stage of ground Water Development.

## Chapter - 10

### **GROUNDWATER DEVELOPMENT AND MANAGEMENT**

Groundwater development in an area is regarded as an index of groundwater use in different sectors like domestic, agricultural, industrial and mining, etc. The level of development in hard rock areas is generally low owing to the limited availability and restricted occurrence of groundwater under favorable hydro-geological settings. Chronic water scarcity over an area often prevents expansion of agricultural and economic growth. In such a situation, strategic use of groundwater resource is essentially needed for its sustainability. And in this, the role of management occupies a primary role that would be an obvious practice in groundwater sectors.



#### 10.1 RURAL AND URBAN WATER SUPPLY SCHEMES

Figure-10.1: Status of Piped Water Supply Schemes in Purulia District

Groundwater availability as a source of drinking water supply is a perpetual crisis for hard rock areas. A large number of privately owned dug wells are available along with very limited Gov.dug wells in both rural and urban areas. A number of hand pumps (Mark-II) have been installed by the Panchayat and PHED for the benefit of the local public. But this does not suffice the need of the people in general and still proves inadequate. Moreover, many of the wells run dry or give insufficient discharge during lean periods due to depressed water level. At present there are 53 Commissioned Schemes, out of which 2 are groundwater based, 33 are surface water based and 18 mixed source type. Additional 4 Schemes are ongoing all of which are surface water based.

#### **10.2 FUTURE GROUND WATER DEVELOPMENT AND MANAGEMENT**

The net availability of ground water for future irrigation development in the district ranges from 1406.58 to 5013.36 ham (see Chapter-5). The level of groundwater development is at an average of 9.4%, categorized "Safe". Therefore, despite of the area's adverse hydro-geological constraint, there is still some scope for further utilization of groundwater through construction of new abstraction structures for irrigation.

Development of groundwater in the study area can be done by constructing large diameter dug wells of 15-20m depth tapping the weathered residuum for both domestic as well as agri-irrigation purposes. Bore wells of 50 - 60 m depth in hard rock terrain may sustain a yield 1- 2.5 lps. Bore wells tapping intermediate fracture zones encountered at 100-150 m depth, may yield around 15 lps (Ankhro, manbazar-II). At places, deeper fractures encountered within around 230 m may have cumulative yield upto 8 lps. Selection of site may be done in a scientifically, especially with the help of geophysical survey. Considering the limited potentialities, attempts are to be made to augment ground water resources. It has been observed that by constructing suitable rainwater harvesting structures at feasible locations across existing streams, the base flow could be arrested. This will prevent lowering of water level in the nearby dug wells/tube wells. In unconsolidated alluvial areas, dug wells and shallow tube-wells may yield up to 20 m<sup>3</sup> / hr with a reasonable drawdown.

The surface water which flows through streams/nallahs can be conserved with the help of check dams giving due consideration to farmers' land, local hydrogeological and terrain condition. In undulating terrain gully plugs can be feasible on cultivated lands to conserve water and there by soil moisture can be increased. Check-dams on sloppy streambed are to be supported by Gabion structures on upstream side to control the velocity of water. Dry dug wells after cleaning can be used for artificial recharge. However before recharging the water is to be sand filtered. Sub-surface dykes below the streams/nallahs, flowing over plain terrain and ephemeral in nature are feasible.

For exclusively drinking purposes, special care is to be taken for fluoride infested area, where F concentration is above permissible limit (>1.5 mg/l). Considering long term solution of fluoride contamination of drinking water, piped water supply tapping subsurface sources of water in the river beds of the Damodar, Barakar, Kumari, Dwarkeswar, Silabati, Kasai etc. may be thought of. In some cases where surface / subsurface water is not available in sufficient quantity, groundwater from unaffected mouzas may be considered as source. Wherever such water source is also inadequate to meet up the demand, Pond based water supply (rain water harvesting) or groundwater based water supply with fluoride removal plant may be taken up.

#### **10.3 ARTIFICIAL RECHARGE AND RAINWATER HARVESTING**

The district wise Master Plan has been prepared for the state of West Bengal. Accordingly, the feasible area for recharge in different parts of Purulia district has been identified. Considering the local hydrogeological conditions in the district the following recharge structures are being proposed mainly for hard rock terrain. The suitable structures are as follows:-

- i) Percolation Tank
- ii) Check dam
- iii) Gabion structures/contour bunds
- iv) Sub-surface dykes
- v) Dug well recharge/recharge shaft

It is recommended that farm ponds/percolation pond, nala bund, gully plug and contour bund may be constructed as rainwater harvesting structures in different hydrogeological set-up where water scarcity is felt. However, in the area where percolation tanks are not feasible for all practical implementation the provisions may be substituted by construction of new tanks or desiltation of existing tanks. In connection to this, it is to be mentioned that there are already 15 no.s existing irrigation reservoirs (constructed during 1999) situated at different blocks of the district which are already approved for re-excavation of silted materials for creation of additional surface storage and recharge to the ground water.

Augmentation of water through conservation structures in such water deficit terrains needs to be executed more in various mini water sheds in the district for mitigating the water problem. The increment in groundwater and additional surface water storage, the moisture content of the soil along the area of influence could help in thriving of plantations.

A pilot study was carried out by CGWB along with State Water Investigation Directorate (SWID), Government of West Bengal along the channel bars of Subarnarekha River near Tulin, Jhalda-I, Block, Purulia. Both Sounding (Schlumberger) and Profiling (Wenner) were carried out. This gave a bigger prospect for harnessing the Potential of Valley Fills & Channel Bars. The findings are-

*Valley fills prospect:* Geographical area around 13.93 Sq Km. The average thickness of valley fills is around 2- 3 m. Assumed Specific Yield to be around 0.12. Assumed annual average saturation volume is 70%. The Utilizable resource available is computed to be at 0.004 MCM. Expected average yield of large Diameter Dug wells is around 1.8  $m^3$ /hour with a drawdown of 0.5–1 m, with 5-6 hours of pumping.

**Channel Bars:** Geographical area around 10.65 Sq Km. The average thickness of Channel Bars & Active Flood Plains is around 5-7 m. Assumed Specific Yield to be around 0.16. Assumed annual average saturation volume is 85%. The Utilizable resource available is computed to be at 0.01 MCM. Expected average yield of Collector Wells is around 36 m<sup>3</sup>/hour with a drawdown of 2-3 m, with 8-10 hours of pumping. With construction of sub-surface dykes at appropriate downstream sides, the yield potential is expected to increase further.

Under Central Sector Scheme (CSS) of Artificial Recharge under VII & IX Plan, Artificial Recharge Structures constructed and completed in Purulia district and the details are given below (Table-10.1).

Apart from this scheme, a study conducted by CGWB at Purulia Ramkrishna Mission Vidyapith has established that conservation of rainwater from hostels and staff quarters' rooftops as well as from land surface can harvest a huge amount of rainwater. From 6 nos. hostels and from 14 nos. staff quarters' rooftops, about 5974 m<sup>3</sup> water and from part of land surface of the institute 30,624 m<sup>3</sup> of rain water is expected to be available. However, considering the storage capacity of ponds and also evaporation losses (30%) about 1,56,623 m<sup>3</sup> water (considering all types of losses) can be conserved to cater a huge amount of water requirement for the Vidyapith.

Overall, emphasize should be given on rain water harvesting with suitable structures. Conservation of rainwater can be done both from the rooftop and from the lands. The water that can be available from rooftops can be stored in cemented and PVC tanks. Before conserving, the water should be sand filtered. The rain water available from any land surface can be stored in any ponds and in this case, sites as well as design of ponds are to be finalized considering local hydrogeological and terrain condition.

| Title of Scheme                                                                                                                                | Type/No. Of<br>Structure                                                                                                                  | Approved<br>cost(Rs) | Implementing<br>Agency        | Amount<br>utilized | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Under VII Plan period                                                                                                                          |                                                                                                                                           | ()                   |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Study of Artificial<br>Recharge at Tulin,<br>Jhalda-I block                                                                                    | Sub Surface Dyke: 5                                                                                                                       | 0.38 Lakhs           | SWID, Govt. Of West<br>Bengal | 0.38 Lakhs         | The impact of sub-surface dykes across the nala<br>course in water scarce hard rock terrain has been<br>studied and an average increment of 0.15 m of<br>ground water level per year was found.<br>Within a catchment area of 2 sq.km with only 1.654<br>MCM water retention capacity and base flow of 0.50<br>MCM, it has been estimated that dynamic utilizable<br>ground water potential of 0.21 mcm in respect of<br>mini-watershed in Tulin area has been created after<br>the construction of these sub-surface dykes. |  |  |
| Under IX Plan period                                                                                                                           |                                                                                                                                           |                      |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Integrated approach of<br>Artificial Recharge of<br>Ground Water for<br>improvement in the<br>watershed management<br>in the water scarce area | Farm Pond:13<br>Sub Surface Dyke: 8<br>Re-excavation of pond:<br>15<br>Percolation Tank: 15<br>Contour bund: 1.2 km<br>Monitoring well: 5 | 50.44 Lakhs          | SWID, Govt of West<br>Bengal  | 50.44 Lakhs        | Out of 12 nos. Of blocks covered under different<br>types of artificial recharge schemes. 6 nos. blocks<br>have been taken into consideration for impact<br>assessment in the first phase for the period 2001-<br>2005 and the resulted impact of arresting surface<br>run off and sub-surface run off reflect the increment<br>of ground water level to the tune of 0.01-2.82 m<br>during post-monsoon period.                                                                                                              |  |  |

Table-10.1: Artificial Recharge Structures constructed and completed in Purulia district.

# 10.4 STRATEGIES FOR WATER CONSERVATION, RAINWATER HARVESTING & ARTIFICIAL RECHARGE – BASED ON NON-COMMITTED RUNOFF (CGWB)

Based on component wise distribution of non-committed surface runoff, a number of different structures were recommended under Master plan for Artificial Recharge during 2013 and 2019. The status for the same along with their cost of construction and area identified for recharge is given through the following table.

|                | q.km)                   | Number of Proposed Recharge<br>Structures |           |                      |                   | Cost of Recharge structures<br>(Rs. In lakhs) |                   |           |                       |                   | non<br>11 off     |                                                          |
|----------------|-------------------------|-------------------------------------------|-----------|----------------------|-------------------|-----------------------------------------------|-------------------|-----------|-----------------------|-------------------|-------------------|----------------------------------------------------------|
| Block          | Area feasible for AR (S | Percolation Tanks                         | Check Dam | Gabion/ Contour Bund | Sub surface dykes | Dug Well Recharge                             | Percolation Tanks | Check Dam | Gabion / Contour Bund | Sub surface dykes | Dug Well Recharge | Availability of surface<br>committed monsoon ry<br>(NCN) |
| Baghmundi      | 97.47                   | 11                                        | 35        | 88                   | - 44              | 9                                             | 132               | 52.5      | - 44                  | 44                | 9.9               | 8.772                                                    |
| Balarampur     | 167.25                  | 20                                        | 60        | 151                  | 75                | 15                                            | 240               | 90        | 75                    | 75                | 16.5              | 15.052                                                   |
| Barabazar      | 37.51                   | 4                                         | 14        | 34                   | 17                | 3                                             | 48                | 21        | 17                    | 17                | 3.3               | 3.376                                                    |
| Jhalda-I       | 6.04                    | 4                                         | 28        | 69                   | 35                | 7                                             | 108               | 42        | 34.5                  | 35                | 7.7               | 0.544                                                    |
| Jhalda-II      | 77.10                   | 9                                         | 3         | 9                    | 4                 | 1                                             | 12                | 4         | 4.5                   | 4                 | 1.1               | 6.939                                                    |
| Joypur         | 9.66                    | 1                                         | 2         | 5                    | 3                 | 1                                             | 12                | 3         | 2.5                   | 3                 | 1.1               | 0.870                                                    |
| Kashipur       | 25.41                   | 1                                         | 9         | 23                   | 11                | 2                                             | 36                | 13.5      | 11.5                  | 11                | 2.2               | 2.287                                                    |
| Raghunathpur-I | 50.77                   | 3                                         | 18        | 46                   | 23                | 5                                             | 72                | 27        | 23                    | 23                | 5.5               | 4.570                                                    |
| Santuri        | 22.25                   | 6                                         | 8         | 20                   | 10                | 2                                             | 36                | 12        | 10                    | 10                | 2.2               | 2.002                                                    |
| TOTAL          | 493.46                  | 59                                        | 177       | 445                  | 222               | 45                                            | 696               | 265       | 222                   | 222               | 49.5              | 44.412                                                   |

Table-10.2: Area suitable for recharge, Structures proposed and cost of construction in Purulia district



Figure-10.2: Artificial Recharge Map & Structures Implemented by Govt. of West Bengal for Purulia district of West Bengal

**Interventions worked out under NAQUIM Studies :** During the course of NAQUIM Studies, it was seen that the district is chronically drought affected and there is a perennial scarcity of drinking water in the district. A perusal of the drinking water supply schemes – both existing as well as proposed, gives an enormous thrust on surface water based piped water supply schemes. This is to ensure sustainable source, since ground water yield potential is highly uncertain and of moderate nature. With this in the backdrop, the first step was to identify the recharge and discharge areas in the district from the topographic and geomorphologic perspective. The resultant map for the district is shown in figure 10.3.



Figure 10.3 : Demarcated Run-off zones, recharge and discharge zones in Purulia District

#### Aquifer management Strategies :

- In unconsolidated alluvial areas, open wells/ dug wells and shallow tube-wells may yield upto 20 m<sup>3</sup> / hr with a reasonable drawdown.
- Construction of large diameter dug wells of 15-20m depth tapping the weathered residuum is feasible for domestic as well as agri-irrigation purposes.
- Bore wells of 50 60 m depth in hard rock terrain may sustain a yield 1 2.5 lps.
- Bore wells tapping intermediate fracture zones encountered at 100-150 m depth, may yield around 5 lps.
- At places, deeper fractures encountered within around 230 m may have cumulative yield upto 8 lps.

| Sl<br>No | Issues                                       | Demand Side                                                                                             | Supply Side                                                                                                                                  |
|----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Hard Rock Area<br>with Low Yield<br>Prospect | Scientific investigation for<br>sustainable source finding<br>Equitable and rational water<br>budgeting | Minimize Conveyance Loss<br>Dependence on Ground Water to be<br>reduced.<br>Tapping Channel Bars and Valley fills                            |
| 2        | Low Stage of<br>Ground Water<br>Development  | Scientific investigation for sustainable source finding                                                 | Efforts to identify sustainable source and efficient conveyance systems                                                                      |
| 3        | Fluoride & Iron<br>Infestation               | Identify pockets of<br>infestations<br>Alternate source findings                                        | Installation of Iron and Fluoride<br>removal units in water supply systems<br>Increase quality monitoring frequency<br>Seal affected sources |
| 4        | Chronic Drought<br>Prone Area                | Demarcate all unclassified<br>water bodies<br>Ensure adequate surface<br>storage                        | More emphasis on Water Conservation<br>Structures<br>Rejuvenation of traditional water<br>bodies<br>Artificial Recharge, if necessary        |

#### Table 10.3 : Demand and Supply Side Intervention Strategies

#### **Ground Water Development Strategies :**

- For exclusively drinking purposes, special care is to be taken for fluoride infested area, where Fluoride concentration is above permissible limit.
- Considering long term solution of fluoride contamination of drinking water, piped water supply tapping sub-surface sources of water in the river beds of the Damodar, Barakar, Kumari, Dwarkeswar, Silabati, Kasai etc. as well as tapping of smaller valley fills may be thought of, at least seasonally.
- In some cases where surface / sub-surface water is not available in sufficient quantity, groundwater from unaffected mouzas may be considered as source.

• Wherever such water source is also inadequate to meet up the demand, Pond based water supply (rain water harvesting) or groundwater based water supply with fluoride removal plant may be taken up

#### Status of Piped Water Supply Schemes(PWSS) :

- At present there are 53 Commissioned Schemes
- 2 are Ground water based
- 33 are Surface water based
- 18 are mixed source types
- Additional 4 Schemes are ongoing all are surface water based
- Thus the main thrust area for Aquifer management Plan in Purulia District will be to ensure sustainability of Drinking water sources

#### Water Quality Issue of Sources of PWSS :

- Iron and Fluoride are the burning quality issues in the district
- PHED, GoWB analyzed 24,076 Ground water sources(2018-19) both dug well and bore wells
- 478 sources have Fluoride concentration above 1.5 mg/L
- 4,809 sources have Iron concentration above the permissible limit of 1 mg/L

#### SUGGESTED WATER CONSERVATION STRUCTURES FOR INTERVENTION

#### Gabion Structures :

- Based on component wise distribution of non-committed surface runoff 626 Gabion Structures could be taken up in lower order streams / nallahs, in the hilly parts of the District
- Till date Gabions have not been attempted in the district.
- Entire balance of 626 Gabion Structures remains to be constructed, from the amply available local geomaterials



Figure : 10.4 :Suggested Gabion Structures in Purulia District, West Bengal

#### Check Dams :

- Based on component wise distribution of non-committed surface runoff 214 Check Dams could be taken up
- GoWB have already constructed 140 Check Dams in the District under Jaltirtha & WBADMIP Schemes
- Balance of 74 Check Dams remains to be constructed



Figure : 10.5 : Suggested Check Dams in Purulia District, West Bengal

#### Percolation Tanks:

- Based on component wise distribution of non-committed surface runoff 433 Percolation Tanks could be taken up.
- GoWB have already constructed 369 Percolation Tanks in the District under Jaltirtha & WBADMIP Schemes.
- Balance of 64 Percolation Tanks remains to be constructed.
- Around 29 MCM additional GW resource could be augmented.



Figure : 10.6 : Suggested Percolation Tanks in Purulia District, West Bengal

#### Channel Bars and Valley Fills :

- Valley Fills and Channel bars are the most understated and underutilized units for PWSS.
- In this district the average thickness of these units are around 5 metres.
- PHED, GoWB, utilize these units for PWSS
- Based on component wise distribution of non-committed surface runoff 111 shallow Sub-surface Dykes can be constructed in these units to restrict and retain the surface run-off as well as that of the infiltrated sub-surface runoff.



Figure : 10.7 : Suggested Locations for utilization of Channel bars & Valley Fills in Purulia District, West Bengal

#### Pinpointing Sites for Sub-Surface Dykes through Surface Geophysical Investigations :

- A pilot study was carried out in the channel bars of Subarnarekha River near Tulin, Jhalda-I, Block, Purulia.
- Both Sounding(Schlumberger) and Profiling(Wenner) was carried out.
- Results were interpreted, in sync with existing ground water exploration data.
- Effective site for construction of sub-surface dyke could be pinpointed in the extreme SSE corner of the area.



#### Figure : 10.8 : Details of Site of Pilot Study for Locating sites for Subsurface Dyke and River Lift Point in Purulia District, West Bengal

#### Yield Potential of the Valley Fills Deposits :

- Geographical area around 13.93 Sq Km
- The average thickness of valley fills is around 2-3 m
- Assumed Specific Yield to be around 0.12
- Assumed annual average saturation volume of 70%
- The Utilizable resource available is computed to be at 0.004 MCM
- Expected average yield of Large Diameter Dug wells is around 1.8 m<sup>3</sup>/hour with a drawdown of 0.5–1 m, with 5-6 hours of pumping.

#### Yield Potential of the Channel Bars

- Geographical area around 10.65 Sq Km
- The average thickness of Channel Bars & Active Flood Plains is around 5-7 m
- Assumed Specific Yield to be around 0.16
- Assumed annual average saturation volume of 85%
- The Utilizable resource available is computed to be at 0.01 MCM
- Expected average yield of Collector Wells is around 36 m<sup>3</sup>/hour with a drawdown of 2-3 m, with 8-10 hours of pumping.
### **Re-Excavation of the Existing Tanks(REET):**

- A lot of existing tanks and ponds as well as a huge number of unclassified water bodies exists in the District.
- Experience of RRR Schemes have shown very encouraging results in hard rock areas, Pan India
- Based on component wise distribution of non-committed surface runoff 157 Existing Tanks and Ponds can be desilted and fitted with shallow recharge shafts to facilitate additional infiltration



Figure : 10.9 : Suggested Locations REET in Purulia District, West Bengal

#### Urban Roof Top Rain Water Harvesting :

- A total of 9 urban classified areas exists in the District.
- 2 are Municipalities and remaining 7 are Census Towns
- As a pilot measure, only municipal areas have been proposed to be experimented with urban Roof Top rain Water harvesting Measures
- Based on component wise distribution of non-committed surface runoff about 20 such RTRWH is proposed -equally distributed in the Municipalites of Purulia & Raghunathpur



Figure : 10.10 : Suggested Locations urban RTRWH in Purulia District, West Bengal

In addition to the above, around 251 Surface Flow Minior Irrigation Structures(Equivalent Ponds) havbe been already constructed in the District, which is already augmenting the recharge phenomenon.

| Sl | Structures        | Recommended | Implemented | Balance | <b>Unit Cost</b> | Total        |
|----|-------------------|-------------|-------------|---------|------------------|--------------|
|    |                   | (Nos)       | (Nos)       | (Nos)   | (Rs.)            | (Rs.)        |
| 1  | Percolation Tank  | 433         | 369         | 64      | 800,000          | 51,200,000   |
| 2  | Check Dam         | 214         | 140         | 74      | 200,000          | 14,800,000   |
| 3  | Gabion Structures | 626         | 0           | 626     | 25,000           | 15,650,000   |
| 4  | Sub-Surface Dykes | 111         | 0           | 111     | 150,000          | 16,650,000   |
| 5  | REET with RS      | 157         | 0           | 157     | 150,000          | 23,550,000   |
| 6  | Urban RTRWH       | 20          | 0           | 20      | 110,000          | 2,200,000    |
|    | District Total    | 1561        | 509         | 1052    |                  | 12,40,50,000 |

Table - 10.4 : District wise summary of water conservation structures and their cost implications



Figure 10.11 : Composite layout of recommended water conservation structures

## PART – II

(**Blockwise Aquifer Management Plans**) [National Aquifer Mapping & Management Plan of Purulia District, West Bengal]



State:

West Bengal



#### Population (as on 2011):

| Table 11.1.1: Details of population in Arsha block. |
|-----------------------------------------------------|
|-----------------------------------------------------|

| Rural  | Urban | Total  |
|--------|-------|--------|
| 154736 |       | 154736 |

| Block | District Normal | District Actual (Annual) |        |        |        |        |  |
|-------|-----------------|--------------------------|--------|--------|--------|--------|--|
|       |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |  |
| Arsha | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |  |

#### Agriculture& Irrigation (area in ha):

#### Table 11.1.3: Salient Land use features of Arsha block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under |        |
|              |            |            |           | CCA           |        |
| Arsha        | 39300      | 25664      | 7620.31   | 18043.69      | 3999   |

**Ground Water Resource:** 

### Table 11.1.4: Details of Ground WaterResource Availability and Utilization in Arsha

Block.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                         |          |  |  |  |  |  |
|------------------------------------------------------------------------|----------|--|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 5668.87  |  |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 5385.43  |  |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 281.19   |  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 5013.36  |  |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 5.22     |  |  |  |  |  |
| Category                                                               | Safe     |  |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 326.47   |  |  |  |  |  |
| (HaM)                                                                  |          |  |  |  |  |  |
| In-storage Ground Water Resources                                      |          |  |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 20852.22 |  |  |  |  |  |
| of 300 mbgl (HaM)                                                      |          |  |  |  |  |  |

### **Disposition of Aquifers:**

Theprincipal aquifer systems encountered in this Block are**Banded Gniessic complex(BG01)** and **Gneiss(GN02)**.

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: **Aquifer-I (Shallow aquifer)** ranges between 15-50 mbgl.

#### Aquifer-II(Deeper aquifer) ranges between 50-250 mbgl. Both

aquifers are fresh in nature.

#### Table 11.1.5: Details of aquifer disposition (fractured Aquifer) in ArshaBlock

| Block | Geology Depth range  |           | nge (mbgl) | Fr                        | acture Zones                 |  |
|-------|----------------------|-----------|------------|---------------------------|------------------------------|--|
|       |                      | Aquifer-I | Aquifer-II | Aquifer-I                 | Aquifer-II                   |  |
| Arsha | Arsha Banded Gneiss, |           | 50-200     | 19.60-22.70               | 53.20 - 56.20, 83.70 -86.70, |  |
|       | Granite & Granite    |           |            | 16.60-25.70               | 156.4 - 159.4, 163 - 166.00, |  |
|       | Gneiss               |           |            | 187.4-196.5,227.2 - 229.8 |                              |  |

 Table 11.1.6: Aquifer-wise depth range and parameters (fractured Aquifer)in ArshaBlock

| Block | Aquifer Type Depth Range |        | Discharge  | Drawdown  | Т        | S |
|-------|--------------------------|--------|------------|-----------|----------|---|
|       |                          | (mbgl) | (m³/hr)    | (m)       | (m²/day) |   |
| Arsha | Aquifer I                | 15-50  | 0.36       | 6.4- 8.12 |          |   |
|       | Aquifer II               | 50-200 | 4.36-17.17 | 9.5-19.4  |          |   |

## Table 11.1.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.

| Block | Aquifer  | Pre-               | monsoon Tre | nd       | Pos        | t-monsoon Ti | rend     |
|-------|----------|--------------------|-------------|----------|------------|--------------|----------|
|       |          | WL Range Rise Fall |             |          | WL Range   | Rise         | Fall     |
|       |          | (mbgl) (m/year)    |             | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Arsha | Phreatic | 7.82-9.59 0.193    |             |          | 3.43- 6.29 |              | 0.103    |



Figure11.1.2: 3-DimensionalAquifer disposition model in ArshaBlock



Figure11.1.3: 2-Dimensional Section in Arsha Block

Based onfour NHS, four exploratory wells and three observation wells, the range of chemical parameter for the block is given below.

| Block | Aquifer Type | рН        | EC       | Na     | Cl     | F         | NO <sub>3</sub> | Fe        | Measured |
|-------|--------------|-----------|----------|--------|--------|-----------|-----------------|-----------|----------|
|       |              |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|       |              |           |          |        |        |           |                 |           | (mg/l)   |
| Arsha | Phreatic     | 7.89-8.07 | 260-1984 | 12-94  | 10-60  | 0.10-0.94 | 2-9             | 0.03-0.07 | 105-865  |
|       | Fractured    | 7.81-8.29 | 416-884  | 19-76  | 22-196 | 0.43-1.62 | 1-12            | Traces    | 155-335  |

 Table 11.1.8 Range of chemical parameters in Arsha Block



Figure11.1.4: Spot map of fluoride concentration in groundwater for Arsha Block

**Fluoride concentration** of 1.62 mg/l which is above the permissible limit is reported in two samples collected from exploratory drilling in this block. More intensive sampling from this block is recommended.

#### Aquifer Management Plan:



Figure11.1.5: AQM-Recommended Water Conservation Structures in Arsha Block

----XXX-----



**LOCATION MAP OF BAGMUNDI BLOCK, PURULIA, WEST BENGAL** 

Figure 11.2.1: Location Map of Bagmundi Block

#### Population (as on 2011):

#### Table 11.2.1: Details of population in Bagmundi block.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 135579 |       | 135579 |

| Block    | District Normal | District Actual (Annual) |        |        |        |        |
|----------|-----------------|--------------------------|--------|--------|--------|--------|
|          |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Bagmundi | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Table 11.2.2: Details of Annual Rainfall for the last five years in Bagmundi block.

#### Agriculture& Irrigation (area in ha):

#### Table 11.2.3: Salient Land use features of Bagmundi block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Bagmundi     | 45000      | 21501      | 5248.31   | 16252.69      | 15900  |

#### **Ground Water Resource:**

## Table 11.2.4: Details of Ground Water Resource Availability and Utilization in Bagmundi

Block.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                         |         |  |  |
|------------------------------------------------------------------------|---------|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 3099.23 |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 2781.31 |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 451.53  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 2258.66 |  |  |
| Stage of Ground Water Development (%)                                  | 16.19   |  |  |
| Category                                                               | Safe    |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 284.25  |  |  |
| (HaM)                                                                  |         |  |  |
| In-storage Ground Water Resources                                      |         |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 8755.86 |  |  |
| of 300 mbgl (HaM)                                                      |         |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer systems encountered in this block are **Granite (GR01)** and **Gneiss** (GN02).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

**Aquifer-II(Deeper aquifer)** ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

Table 11.2.5: Details of aquifer disposition in Bagmundi (fractured aquifer) Block

| Block    | Geology         | Depth range (mbgl) |            | Fracture Zones |                            |  |
|----------|-----------------|--------------------|------------|----------------|----------------------------|--|
|          |                 | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II                 |  |
| Bagmundi | Granite Gneiss, | 15-50              | 50-200     | 22.30-25.70    | 80.10 - 82.60 119 - 121.30 |  |
|          | Metabasic rocks |                    |            | 30.10-32.30    | 152 - 155.60               |  |
|          |                 |                    |            | 30.10-32.30    |                            |  |

## Table 11.2.6: Aquifer-wise depth range and parameters in Bagmundi(fractured aquifer)Block

| Block    | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|----------|--------------|-------------|-----------|----------|----------|---|
|          |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Bagmundi | Aquifer I    | 15-50       | 5-12.6    | 5.5-9    |          |   |
|          | Aquifer II   | 50-200      | 4.2-25.9  | 8.2-13   |          |   |

## Table 11.2.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.

| Block    | Aquifer  | Pre-monsoon Trend |          |          | Pos        | t-monsoon Tr | end      |
|----------|----------|-------------------|----------|----------|------------|--------------|----------|
|          |          | WL Range Rise     |          | Fall     | WL Range   | Rise         | Fall     |
|          |          | (mbgl)            | (m/year) | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Bagmundi | Phreatic | 5.1-11.77         | 0.136    |          | 2.96- 6.43 |              | 0.142    |



Figure11.2.2: 3-DimensionalAquifer disposition model in Bagmundi Block



Figure11.2.3: 2-Dimensional Section in Bagmundi Block

Based on two NHS, the range of chemical parameter for the block is given below.

| Table 11.2.8 Range of chemical | parameters in Bagmundi Block |
|--------------------------------|------------------------------|
|--------------------------------|------------------------------|

| Block    | Aquifer  | рН        | EC       | Na     | Cl     | F         | NO <sub>3</sub> | Fe     | Measured |
|----------|----------|-----------|----------|--------|--------|-----------|-----------------|--------|----------|
|          | Туре     |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l) | Hardness |
|          |          |           |          |        |        |           |                 |        | (mg/l)   |
| Bagmundi | Phreatic | 7.81-7.85 | 250-1386 | 11-89  | 18-266 | 1.17-0.28 | 5-43            | BDL    | 105-465  |

#### **Aquifer Management Plan:**



Figure 11.2.4: AQM-Recommended Water Conservation Structures in Bagmundi Block

| Block Name:                 | Balarampur |
|-----------------------------|------------|
| Geographical area (sq. km): | 316        |
| Mappable area (sq. km):     | 303        |
| District:                   | Purulia    |

State:

West Bengal



Figure 11.3.1: Location Map of Balarampur Block

Population (as on 2011):

#### Table 11.3.1: Details of population in Balarampur block.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 113519 | 24431 | 137950 |

| Table 11.3.2: | <b>Details of Annual</b> | <b>Rainfall for</b> | the last five | years in 1 | Balarampur block. |
|---------------|--------------------------|---------------------|---------------|------------|-------------------|
|---------------|--------------------------|---------------------|---------------|------------|-------------------|

| Block      | District Normal | District Actual (Annual) |        |        |        |        |
|------------|-----------------|--------------------------|--------|--------|--------|--------|
|            |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Balarampur | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.3.3: Salient Land use features of Balarampur block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Balarampur   | 31600      | 23827      | 2960.45   | 20866.55      | 3053   |

**Ground Water Resource:** 

### Table 11.3.4: Details of Ground Water Resource Availability and Utilization in

#### Balarampur Block.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                         |         |  |  |  |  |
|------------------------------------------------------------------------|---------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 3612.65 |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 3251.38 |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 259.84  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 2908.43 |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 7.99    |  |  |  |  |
| Category                                                               | Safe    |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 298.55  |  |  |  |  |
| (HaM)                                                                  |         |  |  |  |  |
| In-storage Ground Water Resources                                      |         |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 9194.89 |  |  |  |  |
| of 300 mbgl (HaM)                                                      |         |  |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer systems encountered in this Block are **Banded Gniessic complex** (BG01) and Schist (SC01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

Table 11.3.5: Details of aquifer disposition (fractured aquifer) in BalarampurBlock

| Block      | Geology       | Depth range (mbgl) |            | Fracture Zones |                      |  |
|------------|---------------|--------------------|------------|----------------|----------------------|--|
|            |               | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II           |  |
| Balarampur | Banded        | 15-50              | 50-200     | 18-23          | 110-113, 111-112,    |  |
|            | Gneiss&Schist |                    |            |                | 147-149, 80.11-82.31 |  |

# Table 11.3.6: Aquifer-wise depth range and parameters (fractured aquifer) inBalarampurBlock

| Block      | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|------------|--------------|-------------|-----------|----------|----------|---|
|            |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Balarampur | Aquifer I    | 15-50       | 11.56     | 19.1     |          |   |
|            | Aquifer II   | 50-200      |           |          |          |   |

# Table 11.3.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block      | Aquifer  | Pre-monsoon Trend |          |          | Pos       | t-monsoon Ti | end      |
|------------|----------|-------------------|----------|----------|-----------|--------------|----------|
|            |          | WL Range Rise     |          | Fall     | WL Range  | Rise         | Fall     |
|            |          | (mbgl)            | (m/year) | (m/year) | (mbgl)    | (m/year)     | (m/year) |
| Balarampur | Phreatic | 3.16-7.08         | 0.487    |          | 2.85-2.92 |              | 0.137    |



Figure 11.3.2: 3-Dimensional Aquifer disposition in Balarampur Block



Figure 11.3.3: 2-Dimensional Section in Balarampur Block

Based on two NHS (dugwells), the range of chemical parameter for the block is given below

 Table 11.3.8 Range of chemical parameters in Balarampur Block

| Block      | Aquifer Type | pН        | EC      | Na     | Cl     | F         | NO <sub>3</sub> | Fe    | Measured |
|------------|--------------|-----------|---------|--------|--------|-----------|-----------------|-------|----------|
|            |              |           | (µS/cm) | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l | Hardness |
|            |              |           |         |        |        |           |                 | )     | (mg/l)   |
| Balarampur | Phreatic     | 7.64-7.94 | 286-535 | 15-54  | 28-96  | 0.37-0.66 | BDL-41          | BDL   | 115-150  |

#### **Aquifer Management Plan:**



Figure 11.3.4 : AQM-Recommended Water Conservation Structures in Balarampur Block

----XXX-----



State:

West Bengal





#### Population (as on 2011):

#### Table 11.4.1: Details of population in Barabazar block.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 162508 | 8056  | 170564 |

| Block     | District Normal | District Actual (Annual) |        |        |        |        |
|-----------|-----------------|--------------------------|--------|--------|--------|--------|
|           |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Barabazar | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.4.3: Salient Land use features of Barabazar block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Barabazar    | 45600      | 30435      | 11277.91  | 19157.09      | 1902   |

**Ground Water Resource:** 

## Table 11.4.4: Details of Ground Water Resource Availability and Utilization in

#### BarabazarBlock.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                         |          |  |  |  |  |
|------------------------------------------------------------------------|----------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 6015.56  |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 5414     |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 369.62   |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 4940.99  |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 6.83     |  |  |  |  |
| Category                                                               | Safe     |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 371.41   |  |  |  |  |
| (HaM)                                                                  |          |  |  |  |  |
| In-storage Ground Water Resources                                      |          |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 11822.74 |  |  |  |  |
| of 300 mbgl (HaM)                                                      |          |  |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Banded Gniessic complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-280 mbgl. Both

aquifers are fresh in nature.

Table 11.4.5: Details of aquifer disposition (fractured aquifer) in BarabazarBlock

| Block     | Geology       | Depth range (mbgl) |            | Fracture Zones                  |                              |  |
|-----------|---------------|--------------------|------------|---------------------------------|------------------------------|--|
|           |               | Aquifer-I          | Aquifer-II | Aquifer-I                       | Aquifer-II                   |  |
| Barabazar | Banded Gneiss | 15-50              | 50-255     | 16.6-19.6                       | 16.60 - 19.60, 77.60 - 80.6, |  |
|           |               |                    |            | 28.7-31.8                       | 114.2 - 117.2, 120.3- 123.3, |  |
|           |               |                    |            | 34.9-37.9 126.4-129.4,242.3-246 |                              |  |
|           |               |                    |            |                                 | 249.4-252.4                  |  |

## Table 11.4.6: Aquifer-wise depth range and parameters (fractured aquifer) inBarabazarBlock

| Block     | Aquifer Type | Depth Range | Discharge | Drawdown  | Т        | S |
|-----------|--------------|-------------|-----------|-----------|----------|---|
|           |              | (mbgl)      | (m³/hr)   | (m)       | (m²/day) |   |
| Barabazar | Aquifer I    | 15-50       | 7.63-19.8 | 5.5-8.7   |          |   |
|           | Aquifer II   | 50-200      | 3.6-45    | 5.75-19.4 |          |   |

# Table 11.4.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block     | Aquifer  | Pre-          | monsoon Tre | nd       | Post-monsoon Trend |          |          |  |
|-----------|----------|---------------|-------------|----------|--------------------|----------|----------|--|
|           |          | WL Range Rise |             | Fall     | WL Range           | Rise     | Fall     |  |
|           |          | (mbgl)        | (m/year)    | (m/year) | (mbgl)             | (m/year) | (m/year) |  |
| Barabazar | Phreatic | 6.00- 9.11    | 0.211       |          | 2.27-4.29          |          | 0.078    |  |



Figure 11.4.2: 3-Dimensional Aquifer disposition in Barabazar Block



Figure 11.4.3: 2-Dimensional Section in Barabazar Block

Based onfour NHS (Dug-wells), the range of chemical parameter for the block is given below.

| Block     | Aquifer  | pН        | EC      | Na     | Cl     | F      | NO <sub>3</sub> | Fe     | Measured |
|-----------|----------|-----------|---------|--------|--------|--------|-----------------|--------|----------|
|           | Туре     |           | (µS/cm) | (mg/l) | (mg/l) | (mg/l) | (mg/l)          | (mg/l) | Hardness |
|           |          |           |         |        |        |        |                 |        | (mg/l)   |
| Barabazar | Phreatic | 7.74-8.08 | 311-    | 29-106 | 50-    | 0.08-  | 3-40            | 0.01-  | 105-540  |
|           |          |           | 1728    |        | 312    | 0.64   |                 | 0.39   |          |

### Aquifer Management Plan:





State:

West Bengal



Figure 11.5.1: Location Map of Bundwan Block

#### Population (as on 2011):

#### Table 11.5.1: Details of population in Bundwan block.

| Rural | Urban | Total |
|-------|-------|-------|
| 88936 | 5993  | 94929 |

| Block   | District Normal |        | District Actual (Annual) |        |        |        |  |  |
|---------|-----------------|--------|--------------------------|--------|--------|--------|--|--|
|         |                 | 2015   | 2016                     | 2017   | 2018   | 2019   |  |  |
| Bundwan | 1321.9          | 1208.7 | 1367.9                   | 1565.9 | 1140.2 | 1219.1 |  |  |

#### Agriculture& Irrigation (area in ha):

#### Table 11.5.3: Salient Land use features of Bundwan block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Bundwan      | 37900      | 15871      | 4294.88   | 11576.12      | 13619  |

**Ground Water Resource:** 

## Table 11.5.4: Details of Ground Water Resource Availability and Utilization in

#### BundwanBlock.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                         |          |  |  |  |  |  |
|------------------------------------------------------------------------|----------|--|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 3279.97  |  |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 2951.97  |  |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 178.67   |  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 2714.41  |  |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 6.05     |  |  |  |  |  |
| Category                                                               | Safe     |  |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 211.56   |  |  |  |  |  |
| (HaM)                                                                  |          |  |  |  |  |  |
| In-storage Ground Water Resources                                      |          |  |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 13530.15 |  |  |  |  |  |
| of 300 mbgl (HaM)                                                      |          |  |  |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Schist** and the major aquifer is Phyllite **(SC02)**.

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

Table 11.5.5: Details of aquifer disposition in Bundwan (fractured aquifer) Block

| Block   | Geology   | Depth range (mbgl) |            | Fracture Zones |                           |  |
|---------|-----------|--------------------|------------|----------------|---------------------------|--|
|         |           | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II                |  |
| Bundwan | Phyllites | 15-50              | 50-200     | 18.2-21.7      | 123.7-125.9, 179.2-182.1, |  |
|         |           |                    |            | 31.9-33.7      | 187.68-189                |  |

# Table 11.5.6: Aquifer-wise depth range and parameters (fractured aquifer) inBundwanBlock

| Block   | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|---------|--------------|-------------|-----------|----------|----------|---|
|         |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Bundwan | Aquifer I    | 15-50       | 7.5-7.2   | 4.2-8.7  |          |   |
|         | Aquifer II   | 50-200      | 10.8-12   |          |          |   |

# Table 11.5.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.

| Block   | Aquifer  | Pre-monsoon Trend |          |          | Pos        | t-monsoon Ti | rend     |
|---------|----------|-------------------|----------|----------|------------|--------------|----------|
|         |          | WL Range          | Rise     | Fall     | WL Range   | Rise         | Fall     |
|         |          | (mbgl)            | (m/year) | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Bundwan | Phreatic | 9.41- 11.68       | 0.511    |          | 2.68- 6.61 |              | 0.167    |



Figure 11.5.2: 3-Dimensional Aquifer disposition in Bundwan Block



Figure 11.5.3: 2-Dimensional Section in Bundwan Block

Based on four NHS, two exploratory wells, the range of chemical parameter for the block is given below.

| Table 11.5.8 Range of chemical para | ameters in Bundwan Block |
|-------------------------------------|--------------------------|
|-------------------------------------|--------------------------|

| Block   | Aquifer  | pH        | EC       | Na     | Cl     | F         | NO <sub>3</sub> | Fe        | Measured |
|---------|----------|-----------|----------|--------|--------|-----------|-----------------|-----------|----------|
|         | Туре     |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|         |          |           |          |        |        |           |                 |           | (mg/l)   |
| Bundwan | Phreatic | 7.74-8.08 | 311-1728 | 29-106 | 50-312 | 0.08-0.64 | 3-40            | 0.01-0.39 | 105-540  |

#### Aquifer Management Plan:



**Figure 11.5.4 : AQM-Recommended Water Conservation Structures in Bundwan Block** 

----XXX-----



West Bengal



#### Figure 11.6.1: Location Map of Hura Block

#### Population (as on 2011):

#### Table 11.6.1: Details of population in Hura block.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 143575 |       | 143575 |

| Block | District Normal |        | Disti  | rict Actual (Anr | nual)  |        |
|-------|-----------------|--------|--------|------------------|--------|--------|
|       |                 | 2015   | 2016   | 2017             | 2018   | 2019   |
| Hura  | 1321.9          | 1208.7 | 1367.9 | 1565.9           | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.6.3: Salient Land use features of Hura block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Hura         | 39400      | 28659      | 6471.02   | 22187.98      | 4265   |

**Ground Water Resource:** 

#### Table 11.6.4: Details of Ground Water Resource Availability and Utilization in HuraBlock.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                         |         |  |  |  |  |
|------------------------------------------------------------------------|---------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 4615.18 |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 3748.66 |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 453.28  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 3205.70 |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 12.09   |  |  |  |  |
| Category                                                               | Safe    |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 322.16  |  |  |  |  |
| (HaM)                                                                  |         |  |  |  |  |
| In-storage Ground Water Resources                                      |         |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 7785.62 |  |  |  |  |
| of 300 mbgl (HaM)                                                      |         |  |  |  |  |

### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01)

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

#### Table 11.6.5: Details of aquifer disposition (fractured aquifer) in HuraBlock

| Block | Geology       | Depth range (mbgl) |            | Fracture Zones |                           |  |
|-------|---------------|--------------------|------------|----------------|---------------------------|--|
|       |               | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II                |  |
| Hura  | Banded Gneiss | 15-50              | 50-200     | 36.4-39.1      | 132.6-135.1, 167.3-169.8, |  |
|       |               |                    |            |                | 154.2-159.1, 121.5-123.6  |  |

Table 11.6.6: Aquifer-wise depth range and parameters (fractured aquifer) in Hura Block

| Block | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|-------|--------------|-------------|-----------|----------|----------|---|
|       |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Hura  | Aquifer I    | 15-50       | 3.96-5.4  | 3.5-4.4  |          |   |
|       | Aquifer II   | 50-200      | 2.88-5.76 | 6.1-7.7  |          |   |

## Table 11.6.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block | Aquifer  | Pre-      | monsoon Tre | nd       | Pos        | t-monsoon Tr | end      |
|-------|----------|-----------|-------------|----------|------------|--------------|----------|
|       |          | WL Range  | Rise        | Fall     | WL Range   | Rise         | Fall     |
|       |          | (mbgl)    | (m/year)    | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Hura  | Phreatic | 2.3-11.60 |             | 0.217    | 1.50- 5.73 |              | 0.065    |



Figure 11.6.2: 3-Dimensional Aquifer disposition in Hura Block



Figure 11.6.3: 2-Dimensional Section in Hura Block

Based on seven NHS (dugwells), the range of chemical parameter for the block is given below.

| Table 11.6.8 Range of chemical parameters in Hura Block |
|---------------------------------------------------------|
|---------------------------------------------------------|

| Block | Aquifer Type | pН        | EC       | Na     | Cl     | F         | $NO_3$ | Fe        | Measured |
|-------|--------------|-----------|----------|--------|--------|-----------|--------|-----------|----------|
|       |              |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l) | (mg/l)    | Hardness |
|       |              |           |          |        |        |           |        |           | (mg/l)   |
| Hura  | Phreatic     | 7.77-8.24 | 153-1430 | 8-88   | 14-266 | 0.12-0.28 | BDL-86 | 0.01-0.04 | 65-530   |

#### Aquifer Management Plan:





State:

West Bengal





#### Population (as on 2011):

#### Table 11.7.1: Details of population in Jaipur block.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 123090 | 10259 | 133349 |
| Block  | District Normal | District Actual (Annual) |        |        |        |        |
|--------|-----------------|--------------------------|--------|--------|--------|--------|
|        |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Jaipur | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.7.3: Salient Land use features of Jaipur block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Jaipur       | 21900      | 17881      | 2585.11   | 15295.89      | 958    |

**Ground Water Resource:** 

# Table 11.7.4: Details of Ground Water Resource Availability and Utilization inJaipurBlock.

### (As on 31.03.2013)

| Dynamic Ground Water Resources                                         |         |
|------------------------------------------------------------------------|---------|
| Annual Replenishable Ground Water Resource (HaM)                       | 2144.80 |
| Annual Extractable Ground Water Resource (HaM)                         | 1930.32 |
| Gross Ground Water Abstraction for all uses (HaM)                      | 445.09  |
| Net Ground Water Availability for future use (HaM)                     | 1406.58 |
| Stage of Ground Water Development (%)                                  | 23.06   |
| Category                                                               | Safe    |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 282.54  |
| (HaM)                                                                  |         |
| In-storage Ground Water Resources                                      |         |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 6596.05 |
| of 300 mbgl (HaM)                                                      |         |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

 Table 11.7.5: Details of aquifer disposition (fractured aquifer) in JaipurBlock

| Block  | Geology         | Depth range (mbgl) |            | Fracture Zones |                          |
|--------|-----------------|--------------------|------------|----------------|--------------------------|
|        |                 | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II               |
| Jaipur | Banded Gneiss & | 15-50              | 50-200     | 21.6-24.2      | 50.50-53.20, 111.2-114.1 |
|        | Granite Gneiss  |                    |            |                |                          |

# Table 11.7.6: Aquifer-wise depth range and parameters (fractured aquifer) in JaipurBlock

| Block  | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|--------|--------------|-------------|-----------|----------|----------|---|
|        |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Jaipur | Aquifer I    | 15-50       | 4.4       |          |          |   |
|        | Aquifer II   | 50-200      | 2         |          |          |   |

# Table 11.7.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block  | Aquifer  | Pre-          | monsoon Tre | nd       | Pos        | t-monsoon Ti | end      |
|--------|----------|---------------|-------------|----------|------------|--------------|----------|
|        |          | WL Range Rise |             | Fall     | WL Range   | Rise         | Fall     |
|        |          | (mbgl)        | (m/year)    | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Jaipur | Phreatic | 2.82 - 7.46   | 0.363       |          | 1.66 -4.39 | 0.096        |          |



Figure 11.7.2: 3-Dimensional Aquifer disposition in Jaipur Block



Figure 11.7.3: 2-Dimensional Section in Jaipur Block

Based on twoNHS (dugwells), the range of chemical parameter for the block is given below.

| Table 11.7.8 Range of chemical | parameters in Jaipur Block |
|--------------------------------|----------------------------|
|--------------------------------|----------------------------|

| Block  | Aquifer Type | pН        | EC       | Na     | Cl     | F         | $NO_3$  | Fe     | Measured |
|--------|--------------|-----------|----------|--------|--------|-----------|---------|--------|----------|
|        |              |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l)  | (mg/l) | Hardness |
|        |              |           |          |        |        |           |         |        | (mg/l)   |
| Jaipur | Phreatic     | 7.78-7.97 | 441-2208 | 45-193 | 35-436 | 0.37-0.62 | BDL-225 | BDL    | 140-575  |

#### Aquifer Management Plan:



----XXX-----





Figure 11.8.1: Location Map of Jhalda-IBlock

#### Population (as on 2011):

#### Table 11.8.1: Details of population in Jhalda-Iblock.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 127759 | 9384  | 137143 |

| Block    | District Normal | District Actual (Annual) |        |        |        |        |
|----------|-----------------|--------------------------|--------|--------|--------|--------|
|          |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Jhalda-I | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.8.3: Salient Land use features of Jhalda-I block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Jhalda-I     | 30900      | 21090      | 6576.10   | 14513.9       | 3026   |

**Ground Water Resource:** 

### Table 11.8.4: Details of Ground Water Resource Availability and Utilization in Jhalda-

IBlock.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                         |         |  |  |  |
|------------------------------------------------------------------------|---------|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 3016.48 |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 2714.83 |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 681.75  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 1939.06 |  |  |  |
| Stage of Ground Water Development (%)                                  | 337.77  |  |  |  |
| Category                                                               | 25.11   |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | Safe    |  |  |  |
| (HaM)                                                                  |         |  |  |  |
| In-storage Ground Water Resources                                      |         |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 6195.99 |  |  |  |
| of 300 mbgl (HaM)                                                      |         |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-230 mbgl. Both

aquifers are fresh in nature.

| Block    | Geology       | Depth range (mbgl) |            | Fracture Zones |                          |  |
|----------|---------------|--------------------|------------|----------------|--------------------------|--|
|          |               | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II               |  |
| Jhalda-I | Banded Gneiss | 15-50              | 50-230     | 17.10–25.70,   | 50-68.4, 92.80-98.90,    |  |
|          | Complex       |                    |            | 25.70-28.80,   | 98.90-138.60, 220.90-227 |  |
|          |               |                    |            | 28.80-31.80,   |                          |  |
|          |               |                    |            | 44.00-47.10    |                          |  |

# Table 11.8.6: Aquifer-wise depth range and parameters (fractured aquifer) in Jhalda-Iblock

| Block    | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|----------|--------------|-------------|-----------|----------|----------|---|
|          |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Jhalda-I | Aquifer I    | 15-50       | 7.63-19.8 | 5.5-8.7  |          |   |
|          | Aquifer II   | 50-200      | 3.24-28.8 | 9.5-12.5 |          |   |

# Table 11.8.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block    | Aquifer  | Pre-monsoon Trend |          |          | Post-monsoon Trend |          |          |
|----------|----------|-------------------|----------|----------|--------------------|----------|----------|
|          |          | WL Range          | Rise     | Fall     | WL Range           | Rise     | Fall     |
|          |          | (mbgl)            | (m/year) | (m/year) | (mbgl)             | (m/year) | (m/year) |
| Jhalda-I | Phreatic | 3.50- 8.09        | 0.361    |          | 2.49- 5.37         | 0.055    |          |



Figure 11.8.2: 3-Dimensional Aquifer disposition in Jhalda-I Block



Figure 11.8.3: 2-Dimensional Section in Jhalda-I Block

Based on four NHS (dugwells), the range of chemical parameter for the block is given below.

| Block    | Aquifer  | рН        | EC       | Na     | Cl     | F         | NO <sub>3</sub> | Fe        | Measured |
|----------|----------|-----------|----------|--------|--------|-----------|-----------------|-----------|----------|
|          | Туре     |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|          |          |           |          |        |        |           |                 |           | (mg/l)   |
| Jhalda-I | Phreatic | 7.88-8.36 | 543-1221 | 25-122 | 67-305 | 0.21-0.84 | 5-26            | 0.01-0.04 | 210-345  |

#### **Aquifer Management Plan:**



----XXX-----





West Bengal



#### Population (as on 2011):

| Rural  | Urban | Total  |
|--------|-------|--------|
| 135814 | 12342 | 148156 |

| Table 11.9.2: | <b>Details of Annual Rainfall</b> | for the last five ye | ears in Jhalda-II block. |
|---------------|-----------------------------------|----------------------|--------------------------|
|---------------|-----------------------------------|----------------------|--------------------------|

| Block     | District Normal | District Actual (Annual) |        |        |        |        |  |
|-----------|-----------------|--------------------------|--------|--------|--------|--------|--|
|           |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |  |
| Jhalda-II | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |  |

#### Agriculture& Irrigation (area in ha):

#### Table 11.9.3: Salient Land use features of Jhalda-II block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Jhalda-II    | 27300      | 20218      | 5474.24   | 14743.76      | 2635   |

**Ground Water Resource:** 

### Table 11.9.4: Details of Ground Water Resource Availability and Utilization in Jhalda-

#### IIBlock.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                         |          |  |  |  |  |
|------------------------------------------------------------------------|----------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 2851.26  |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 2566.13  |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 402.48   |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 2076.60  |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 15.68    |  |  |  |  |
| Category                                                               | Safe     |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 312.73   |  |  |  |  |
| (HaM)                                                                  |          |  |  |  |  |
| In-storage Ground Water Resources                                      |          |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 10323.42 |  |  |  |  |
| of 300 mbgl (HaM)                                                      |          |  |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

Table 11.9.5: Details of aquifer disposition in Jhalda-II (fractured aquifer) block

| Block     | Geology         | Depth range (mbgl)   |        | Fracture Zones |                            |
|-----------|-----------------|----------------------|--------|----------------|----------------------------|
|           |                 | Aquifer-I Aquifer-II |        | Aquifer-I      | Aquifer-II                 |
| Jhalda-II | Banded Gneiss & | 15-50                | 50-200 | 31.80-37.90    | 62.30-68.40, 95.90-105.00, |
|           | Granites        |                      |        |                | 164.7-193.5                |

# Table 11.9.6: Aquifer-wise depth range and parameters in Jhalda-II (fractured aquifer)block

| Block     | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|-----------|--------------|-------------|-----------|----------|----------|---|
|           |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Jhalda-II | Aquifer I    | 15-50       | 4.68      |          |          |   |
|           | Aquifer II   | 50-200      | 1.8       |          |          |   |

# Table 11.9.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block     | Aquifer  | Pre-          | monsoon Tre | nd       | Post-monsoon Trend |          |          |
|-----------|----------|---------------|-------------|----------|--------------------|----------|----------|
|           |          | WL Range Rise |             | Fall     | WL Range           | Rise     | Fall     |
|           |          | (mbgl)        | (m/year)    | (m/year) | (mbgl)             | (m/year) | (m/year) |
| Jhalda-II | Phreatic | 8.49 - 8.99   | 0.361       |          | 3.54 -4.62         | 0.025    |          |



Figure 11.9.2: 3-Dimensional Aquifer disposition in Jhalda-IIBlock



Figure 11.9.3: 2-Dimensional Section in Jhalda-II Block

Based on four NHS (dugwells), the range of chemical parameter for the block is given below.

| Table 11.9.8 Range of chemical | parameters in Jhalda-II Block |
|--------------------------------|-------------------------------|
|--------------------------------|-------------------------------|

| Block     | Aquifer  | pН        | EC       | Na     | Cl     | F         | NO <sub>3</sub> | Fe        | Measured |
|-----------|----------|-----------|----------|--------|--------|-----------|-----------------|-----------|----------|
|           | Туре     |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|           |          |           |          |        |        |           |                 |           | (mg/l)   |
| Jhalda-II | Phreatic | 7.88-8.36 | 543-1221 | 25-122 | 67-305 | 0.21-0.84 | BDL-57          | 0.01-0.04 | 210-345  |

#### Aquifer Management Plan:



Figure - 11.9.4 : AQM-Recommended Water Conservation Structures in Jhalda-I Block





#### Figure 11.10.1: Location Map of KashipurBlock

Population (as on 2011):

| Table 11.10.1: Details of population in Kashipurblock. |
|--------------------------------------------------------|
|--------------------------------------------------------|

| Rural  | Urban | Total  |
|--------|-------|--------|
| 174325 | 25758 | 200083 |

| Table 11.10.2: | <b>Details of Annual</b> | Rainfall for the | e last five years i | n Kashipur block. |
|----------------|--------------------------|------------------|---------------------|-------------------|
|                |                          |                  | 6                   | 1                 |

| Block   | District Normal | District Actual (Annual) |        |        |        |        |
|---------|-----------------|--------------------------|--------|--------|--------|--------|
|         |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Kasipur | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.9.3: Salient Land use features of Kashipur block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Kashipur     | 42800      | 32424      | 10374.78  | 22049.22      | 4108   |

**Ground Water Resource:** 

#### Table 11.10.4: Details of Ground Water Resource Availability and Utilization in

#### KashipurBlock.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                         |          |  |  |  |  |  |
|------------------------------------------------------------------------|----------|--|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 9067.37  |  |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 8160.63  |  |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 597.99   |  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 7431.02  |  |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 7.33     |  |  |  |  |  |
| Category                                                               | Safe     |  |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 472.81   |  |  |  |  |  |
| (HaM)                                                                  |          |  |  |  |  |  |
| In-storage Ground Water Resources                                      |          |  |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 24424.90 |  |  |  |  |  |
| of 300 mbgl (HaM)                                                      |          |  |  |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Schist (SC01)**.

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is found within the weathered or saprolite zone.

Fractured aquifer: **Aquifer-I (Shallow aquifer)** ranges between 15-50 mbgl. Aquifer is fresh in nature.

Aquifer-II(Deeper aquifer) were reported dry during exploratory

drilling

#### Table 11.10.5: Details of aquifer disposition in Kashipur (fractured aquifer) block

| Block    | Geology       | Depth range (mbgl) |            | Fracture Zones |            |
|----------|---------------|--------------------|------------|----------------|------------|
|          |               | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II |
| Kashipur | Garnetiferous | 15-50              | 50-200     | 17.67-19.0,    |            |
|          | Schist        |                    |            | 22.13- 24.61,  |            |
|          |               |                    |            | 41.62-42.83    |            |

### Table 11.10.6: Aquifer-wise depth range and parameters in Kashipur(fractured aquifer)block

| Block    | Aquifer Type | Depth Range | Discharge            | Drawdown | Т        | S |
|----------|--------------|-------------|----------------------|----------|----------|---|
|          |              | (mbgl)      | (m <sup>3</sup> /hr) | (m)      | (m²/day) |   |
| Kashipur | Aquifer I    | 15-50       | 0.18-1.19            | 6.4-10   |          |   |

# Table 11.10.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block    | Aquifer   | Pre-          | monsoon Tre | nd       | Pos        | t-monsoon Tr | rend     |
|----------|-----------|---------------|-------------|----------|------------|--------------|----------|
|          |           | WL Range Rise |             | Fall     | WL Range   | Rise         | Fall     |
|          |           | (mbgl)        | (m/year)    | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Kashipur | Aquifer I | 5.17 - 8.56   | 0.324       |          | 2.02 -5.09 | 0.094        |          |



Figure 11.10.2: 3-Dimensional Aquifer disposition in Kashipur Block



Figure 11.10.3: 2-Dimensional Section in Kashipur Block

Based on fiveNHS (dugwells), the range of chemical parameter for the block is given below.

| Table 11.10.8 Range of chemica | l parameters in Kashipur Block |
|--------------------------------|--------------------------------|
|--------------------------------|--------------------------------|

| Block   | Aquifer  | pН        | EC       | Na     | Cl      | F         | NO <sub>3</sub> | Fe        | Measured |
|---------|----------|-----------|----------|--------|---------|-----------|-----------------|-----------|----------|
|         | Туре     |           | (µS/cm)  | (mg/l) | (mg/l)  | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|         |          |           |          |        |         |           |                 |           | (mg/l)   |
| Kashipu | Phreatic | 7.74-8.23 | 863-2548 | 49-168 | 145-542 | 0.12-0.76 | 3-279           | 0.01-0.51 | 295-880  |
| r       |          |           |          |        |         |           |                 |           |          |

#### **Aquifer Management Plan:**



**Figure - 11.10.4 : AQM-Recommended Water Conservation Structures in Kashipur Block** 

----XXX-----







Population (as on 2011):

| Table 11.11.1: Details of | populati | on in Manbaz | ar-Iblock. |
|---------------------------|----------|--------------|------------|
|---------------------------|----------|--------------|------------|

| Rural  | Urban | Total  |
|--------|-------|--------|
| 144550 | 9521  | 154071 |

| Table 11.11.2: Details of Annual Rainfall for the last five years in Manbazar-I blo | ock. |
|-------------------------------------------------------------------------------------|------|
|-------------------------------------------------------------------------------------|------|

| Block      | District Normal | District Actual (Annual) |        |        |        |        |
|------------|-----------------|--------------------------|--------|--------|--------|--------|
|            |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Manbazar-I | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.11.3: Salient Land use features of Manbazar-I block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Manbazar-I   | 35300      | 26607      | 7419.29   | 19187.71      | 37330  |

**Ground Water Resource:** 

#### Table 11.11.4: Details of Ground Water Resource Availability and Utilization in

#### Manbazar-I Block.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                         |          |  |  |  |
|------------------------------------------------------------------------|----------|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 5472.68  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 4925.41  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 278.77   |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 4556.85  |  |  |  |
| Stage of Ground Water Development (%)                                  | 322.56   |  |  |  |
| Category                                                               | Safe     |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 5.66     |  |  |  |
| (HaM)                                                                  |          |  |  |  |
| In-storage Ground Water Resources                                      |          |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 20804.82 |  |  |  |
| of 300 mbgl (HaM)                                                      |          |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

#### Table 11.11.5: Details of aquifer disposition in Manbazar-I block

| Block      | Geology       | Depth ra  | nge (mbgl) | Fracture Zones |            |
|------------|---------------|-----------|------------|----------------|------------|
|            |               | Aquifer-I | Aquifer-II | Aquifer-I      | Aquifer-II |
| Manbazar-I | Banded Gneiss | 15-50     | 50-200     | 19.6-25.7      |            |

#### Table 11.11.6: Aquifer-wise depth range and parameters in Manbazar-I block

| Block      | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|------------|--------------|-------------|-----------|----------|----------|---|
|            |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Manbazar-I | Aquifer I    | 15-50       | 4.2-8.6   | 4.2-8.7  |          |   |

### Table 11.11.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.

| Block     | Aquifer   | Pre-monsoon Trend  |          |          | Post-monsoon Trend |          |          |
|-----------|-----------|--------------------|----------|----------|--------------------|----------|----------|
|           |           | WL Range Rise Fall |          |          | WL Range           | Rise     | Fall     |
|           |           | (mbgl)             | (m/year) | (m/year) | (mbgl)             | (m/year) | (m/year) |
| Manbazar- | Aquifer I | 6.03 - 7.99        | 0.324    |          | 1.52 –2.97         | 0.141    |          |
| Ι         |           |                    |          |          |                    |          |          |



Figure 11.11.2: 3-Dimensional Aquifer disposition in Manbazar-I Block



Figure 11.11.3: Fence diagram in Manbazar-I Block



Figure 11.11.4: 2-Dimensional Section in Manbazar-I Block

Based on twoNHS (dugwells) one exploratory well and one observation well, the range of chemical parameters for the block is given below.

Table 11.11.8 Range of chemical parameters in Manbazar-I Block

| Block      | Aquifer Type | рН        | EC      | Na     | Cl      | F         | NO <sub>3</sub> | Fe        | Measured |
|------------|--------------|-----------|---------|--------|---------|-----------|-----------------|-----------|----------|
|            |              |           | (µS/cm) | (mg/l) | (mg/l)  | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|            |              |           |         |        |         |           |                 |           | (mg/l)   |
| Manbazar-I | Phreatic     | 8.05-8.35 | 694-958 | 63-91  | 103-113 | 0.24-0.52 | BDL-41          | 0.01-0.04 | 130-290  |
|            | Fractured    | 7.98-8.01 | 432-434 | 26-38  | 57-106  | 0.50-0.61 | 3-9             | Traces    | 95-180   |



#### Aquifer Management Plan:



----XXX-----

| Block Name:                 | Manbazar-II |
|-----------------------------|-------------|
| Geographical area (sq. km): | 282         |
| Mappable area (sq. km):     | 271         |
| District:                   | Purulia     |

State:

West Bengal



Figure 11.12.1: Location Map of Manbazar-IIBlock

#### Population (as on 2011):

#### Table 11.12.1: Details of population in Manbazar-IIblock.

| Rural | Urban | Total |
|-------|-------|-------|
| 97164 |       | 97164 |

| Table 11.12.2: Details of Annual Rainfall for the last five years in Manbazar-II block. |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

| Block       | District Normal | District Actual (Annual) |        |        |        |        |
|-------------|-----------------|--------------------------|--------|--------|--------|--------|
|             |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Manbazar-II | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.12.3: Salient Land use features of Manbazar-II block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Manbazar-II  | 28200      | 21506      | 3783.04   | 17722.96      | 1524   |

**Ground Water Resource:** 

#### Table 11.12.4: Details of Ground Water Resource Availability and Utilization in

#### Manbazar-IIBlock.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                         |         |  |  |  |
|------------------------------------------------------------------------|---------|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 2660.33 |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 2527.31 |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 161.52  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 2305.80 |  |  |  |
| Stage of Ground Water Development (%)                                  | 6.39    |  |  |  |
| Category                                                               | Safe    |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 215.51  |  |  |  |
| (HaM)                                                                  |         |  |  |  |
| In-storage Ground Water Resources                                      |         |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 6985.20 |  |  |  |
| of 300 mbgl (HaM)                                                      |         |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer systems encountered in this block is **Banded Gneissic Complex** 

#### (BG01) and Schist (SC01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

#### Table 11.12.5: Details of aquifer disposition (fractured aquifer) in Manbazar-II block

| Block       | Geology       | Depth range (mbgl) |            | Fracture Zones |               |
|-------------|---------------|--------------------|------------|----------------|---------------|
|             |               | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II    |
| Manbazar-II | Banded Gneiss | 15-50              | 50-200     | 19.60-22.70    | 187.4 - 190.4 |
|             | &Schists/     |                    |            | 28.80-31.80    |               |
|             | Phyllites     |                    |            |                |               |

# Table 11.12.6: Aquifer-wise depth range and parameters (fractured aquifer) inManbazar-II block

| Block       | Aquifer Type | Depth Range | Discharge | Drawdown | Т        | S |
|-------------|--------------|-------------|-----------|----------|----------|---|
|             |              | (mbgl)      | (m³/hr)   | (m)      | (m²/day) |   |
| Manbazar-II | Aquifer I    | 15-50       | 7.2       |          |          |   |
|             | Aquifer II   | 50-200      | 10.8      |          |          |   |

# Table 11.12.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block       | Aquifer  | Pre-               | monsoon Tre | nd       | Post-monsoon Trend |          |          |  |
|-------------|----------|--------------------|-------------|----------|--------------------|----------|----------|--|
|             |          | WL Range Rise Fall |             |          | WL Range           | Rise     | Fall     |  |
|             |          | (mbgl)             | (m/year)    | (m/year) | (mbgl)             | (m/year) | (m/year) |  |
| Manbazar-II | Phreatic | 7.17 - 7.18        | 0.015       |          | 3.97 -4.23         | 0.041    |          |  |



Figure 11.12.2: 3-Dimensional Aquifer disposition in Manbazar-II Block



Figure 11.1.3: 2-Dimensional Section in Manbazar-II Block

Based on two NHS (dugwells), the range of chemical parameter for the block is given below.

| Block       | Aquifer Type | рН        | EC      | Na     | a      | F         | NO <sub>3</sub> | Fe        | Measured |
|-------------|--------------|-----------|---------|--------|--------|-----------|-----------------|-----------|----------|
|             |              |           | (µS/cm) | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|             |              |           |         |        |        |           |                 |           | (mg/l)   |
| Manbazar-II | Phreatic     | 8.05-8.20 | 561-758 | 48-72  | 60-124 | 0.36-0.45 | BDL-4           | 0.36-0.45 | 175-245  |
|             | Fractured    | 7.58-8.36 | 361-584 | 25-38  | 35-57  | 0.51-0.84 | 1-9             | Traces    | 120-215  |

 Table 11.12.8 Range of chemical parameters in Manbazar-II Block

#### **Aquifer Management Plan:**



Figure - 11.12.4 : AQM-Recommended Water Conservation Structures in Manbazar-II Block

----XXX-----



State:

West Bengal



Figure 11.13.1: Location Map of Neturia Block

#### Population (as on 2011):

#### Table 11.13.1: Details of population in Neturiablock.

| Rural | Urban | Total  |
|-------|-------|--------|
| 83137 | 18290 | 101427 |

| Block   | District Normal | District Actual (Annual) |        |        |        |        |
|---------|-----------------|--------------------------|--------|--------|--------|--------|
|         |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Neturia | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.13.3: Salient Land use features of Neturia block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Neturia      | 18500      | 11818      | 3350.18   | 8467.82       | 1457   |

**Ground Water Resource:** 

### Table 11.13.4: Details of Ground Water Resource Availability and Utilization in

#### NeturiaBlock.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                         |          |  |  |  |  |
|------------------------------------------------------------------------|----------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 3443.53  |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 3099.18  |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 213.36   |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 2822.03  |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 6.88     |  |  |  |  |
| Category                                                               | Safe     |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 229.15   |  |  |  |  |
| (HaM)                                                                  |          |  |  |  |  |
| In-storage Ground Water Resources                                      |          |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 17004.78 |  |  |  |  |
| of 300 mbgl (HaM)                                                      |          |  |  |  |  |

#### **Disposition of Aquifers:**

Theprincipal aquifer system encountered in this block is **Sandstone (ST06)**.

Phreatic aquifer: Ranges between 2-10 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: **Aquifer-I (Shallow aquifer)** ranges between 10-50 mbgl. Aquifer is fresh in nature.

Deeper exploratory drilling has not been carried out in this block.

| Block   | Geology   | Depth range (mbgl) |            | Fracture Zones |            |  |
|---------|-----------|--------------------|------------|----------------|------------|--|
|         |           | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II |  |
| Neturia | Sandstone | 10-50              | 50-200     | 24.44-36.44    |            |  |

# Table 11.13.6: Aquifer-wise depth range and parameters in Neturia (fractured aquifer)block

| Block   | Aquifer Type | Depth Range | Discharge   | Drawdown | Т        | S |
|---------|--------------|-------------|-------------|----------|----------|---|
|         |              | (mbgl)      | (m³/hr)     | (m)      | (m²/day) |   |
| Neturia | Aquifer I    | 10-50       | 11.95-19.94 | 15-20    |          |   |
|         | Aquifer II   | 50-200      |             |          |          |   |

# Table 11.13.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.

| Block   | Aquifer  | Pre-               | monsoon Tre | nd       | Post-monsoon Trend |          |          |  |
|---------|----------|--------------------|-------------|----------|--------------------|----------|----------|--|
|         |          | WL Range Rise Fall |             | WL Range | Rise               | Fall     |          |  |
|         |          | (mbgl)             | (m/year)    | (m/year) | (mbgl)             | (m/year) | (m/year) |  |
| Neturia | Phreatic | 4.26 - 5.96        | 0.015       |          | 1.92 -3.64         |          | 0.038    |  |



Figure 11.13.2: 3-Dimensional Aquifer disposition in Neturia Block



Figure 11.13.3: 2-Dimensional Section in Neturia Block

Based on two NHS (dugwells), the range of chemical parameters for the block is given below.

| Block   | Aquifer  | pН    | EC      | Na     | Cl     | F      | $NO_3$ | Fe     | Measured |
|---------|----------|-------|---------|--------|--------|--------|--------|--------|----------|
|         | Туре     |       | (µS/cm) | (mg/l) | (mg/l) | (mg/l) | (mg/l) | (mg/l) | Hardness |
|         |          |       |         |        |        |        |        |        | (mg/l)   |
| Neturia | Phreatic | 7.81- | 623-645 | 41-50  | 53-85  | 0.17-  | 29-36  | 0.01-  | 145-225  |
|         |          | 7.98  |         |        |        | 0.37   |        | 0.08   |          |

#### Table 11.13.8 Range of chemical parameters in Neturia Block

#### **Aquifer Management Plan:**



----XXX-----



State:

West Bengal



Figure 11.14.1: Location Map of ParaBlock

#### Population (as on 2011):

Table 11.14.1: Details of population in Parablock.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 167997 | 32624 | 200621 |
| Block | District Normal | District Actual (Annual) |        |        |        |        |  |
|-------|-----------------|--------------------------|--------|--------|--------|--------|--|
|       |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |  |
| Para  | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |  |

#### Agriculture& Irrigation (area in ha):

#### Table 11.14.3: Salient Land use features of Parablock

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Para         | 31300      | 24728      | 4680.87   | 20047.13      | 913    |

**Ground Water Resource:** 

## Table 11.14.4: Details of Ground Water Resource Availability and Utilization in

#### ParaBlock.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                         |         |  |  |  |  |
|------------------------------------------------------------------------|---------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                       | 3609.05 |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                         | 3248.14 |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                      | 385.34  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)                     | 2739.92 |  |  |  |  |
| Stage of Ground Water Development (%)                                  | 11.86   |  |  |  |  |
| Category                                                               | Safe    |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025        | 441.42  |  |  |  |  |
| (HaM)                                                                  |         |  |  |  |  |
| In-storage Ground Water Resources                                      |         |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a depth | 4332.50 |  |  |  |  |
| of 300 mbgl (HaM)                                                      |         |  |  |  |  |

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: **Aquifer-I (Shallow aquifer)** ranges between 15-50 mbgl. This aquifer is fresh in nature.

Deeper exploratory drilling has not been carried out in this block.

 Table 11.14.5: Details of aquifer disposition in Para (fractured aquifer) block

| Block | Geology        | Depth ra             | nge (mbgl) | Fracture Zones |            |  |
|-------|----------------|----------------------|------------|----------------|------------|--|
|       |                | Aquifer-I Aquifer-II |            | Aquifer-I      | Aquifer-II |  |
| Para  | Granite Gneiss | 15-50                | 50-200     | 26.0-28.0      |            |  |

 Table 11.14.6: Aquifer-wise depth range and parameters in Para (fractured) block

| Block | Aquifer Type | Depth Range | Discharge            | Drawdown | Т        | S |
|-------|--------------|-------------|----------------------|----------|----------|---|
|       |              | (mbgl)      | (m <sup>3</sup> /hr) | (m)      | (m²/day) |   |
| Para  | Aquifer I    | 15-50       | 4.1                  | 15       |          |   |
|       | Aquifer II   | 50-200      |                      |          |          |   |

## Table 11.14.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block | Aquifer  | Pre-          | monsoon Tre | nd       | Pos        | t-monsoon Ti | end      |
|-------|----------|---------------|-------------|----------|------------|--------------|----------|
|       |          | WL Range Rise |             | Fall     | WL Range   | Rise         | Fall     |
|       |          | (mbgl)        | (m/year)    | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Para  | Phreatic | 3.16 - 8.66   | 0.118       |          | 2.34 -5.53 |              | 0.075    |



Figure 11.14.2: 3-Dimensional Aquifer disposition in Para Block



Figure 11.14.3: LithologicalFence Diagram in Para Block



Figure 11.14.4: 2-Dimensional Section in Para Block

Based on fourNHS (dugwells), the range of chemical parameters for the block is given below.

 Table 11.14.8 Range of chemical parameters in Para Block

| Block | Aquifer Type | pН        | EC       | Na     | Cl      | F         | NO <sub>3</sub> | Fe        | Measured |
|-------|--------------|-----------|----------|--------|---------|-----------|-----------------|-----------|----------|
|       |              |           | (µS/cm)  | (mg/l) | (mg/l)  | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|       |              |           |          |        |         |           |                 |           | (mg/l)   |
| Para  | Phreatic     | 7.83-8.32 | 800-1410 | 42-114 | 110-174 | 0.08-0.41 | BDL-179         | 0.02-0.04 | 230-445  |

## **Aquifer Management Plan:**



Figure - 11.14.5 : AQM-Recommended Water Conservation Structures in Para Block

----XXX-----



State: West Bengal





#### Population (as on 2011):

|  | Fable 11 | 1.15.1: | Details | of pop | ulation | in I | Puncha | block. |
|--|----------|---------|---------|--------|---------|------|--------|--------|
|--|----------|---------|---------|--------|---------|------|--------|--------|

| Rural  | Urban | Total  |
|--------|-------|--------|
| 123855 |       | 123855 |

| Block  | District Normal | District Actual (Annual) |        |        |        |        |  |
|--------|-----------------|--------------------------|--------|--------|--------|--------|--|
|        |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |  |
| Puncha | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |  |

#### Agriculture& Irrigation (area in ha):

#### Table 11.15.3: Salient Land use features of Punchablock

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Puncha       | 32300      | 23509      | 2948.19   | 20560.81      | 4585   |

**Ground Water Resource:** 

## Table 11.15.4: Details of Ground Water Resource Availability and Utilization in

## PunchaBlock.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                   |          |  |  |  |  |  |
|------------------------------------------------------------------|----------|--|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                 | 4608.93  |  |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                   | 4378.48  |  |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                | 258.05   |  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)               | 4044.35  |  |  |  |  |  |
| Stage of Ground Water Development (%)                            | 5.89     |  |  |  |  |  |
| Category                                                         | Safe     |  |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025  | 273.33   |  |  |  |  |  |
| (HaM)                                                            |          |  |  |  |  |  |
| In-storage Ground Water Resources                                |          |  |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a | 19700.96 |  |  |  |  |  |
| depth of 300 mbgl (HaM)                                          |          |  |  |  |  |  |

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl.

Aquifer-II(Deeper aquifer) ranges between 50-200 mbgl. Both

aquifers are fresh in nature.

Table 11.15.5: Details of aquifer disposition in Puncha (fractured aquifer) block

| Block  | Geology       | Depth range (mbgl) |            | Fracture Zones |             |
|--------|---------------|--------------------|------------|----------------|-------------|
|        |               | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II  |
| Puncha | Banded Gneiss | 15-50              | 50-200     | 16.60 - 19.60  | 80.11-82.63 |
|        |               |                    |            | 35.00 - 36.00  |             |

## Table 11.15.6: Aquifer-wise depth range and parameters in Puncha (fractured aquifer)block

| Block  | Aquifer Type | Depth Range | Discharge  | Drawdown | Т        | S |
|--------|--------------|-------------|------------|----------|----------|---|
|        |              | (mbgl)      | (m³/hr)    | (m)      | (m²/day) |   |
| Puncha | Aquifer I    | 15-50       | 7.92-15.70 |          |          |   |
|        | Aquifer II   | 50-200      |            |          |          |   |

| Table 11.15.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water |
|--------------------------------------------------------------------------------------|
| level trends.                                                                        |

| Block  | Aquifer  | Pre-monsoon Trend |          |          | Pos       | t-monsoon Ti | rend     |
|--------|----------|-------------------|----------|----------|-----------|--------------|----------|
|        |          | WL Range          | Rise     | Fall     | WL Range  | Rise         | Fall     |
|        |          | (mbgl)            | (m/year) | (m/year) | (mbgl)    | (m/year)     | (m/year) |
| Puncha | Phreatic | 5.25- 9.98        | 0.235    |          | 2.57-6.52 | 0.156        |          |



Figure 11.15.2: 3-Dimensional Aquifer disposition in Puncha Block



Figure 11.15.3: Lithological Fence Diagram in Puncha Block



Figure 11.15.4: 2-Dimensional Section in Puncha Block

Based on fiveNHS (dugwells), three exploratory well and one observation well, the range of chemical parameters for the block is given below.

| Block  | Aquifer Type | рН        | EC       | Na     | Cl     | F         | NO <sub>3</sub> | Fe        | Measured |
|--------|--------------|-----------|----------|--------|--------|-----------|-----------------|-----------|----------|
|        |              |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l)          | (mg/l)    | Hardness |
|        |              |           |          |        |        |           |                 |           | (mg/l)   |
| Puncha | Phreatic     | 7.87-8.03 | 155-1985 | 13-192 | 11-379 | 0.14-0.31 | BDL-176         | 0.01-0.06 | 55-735   |
|        | Fractured    | 6.76-8.29 | 246-1057 | 24-70  | 14-213 | 0.34-0.69 | BDL-42          | 0.48-0.98 | 75-335   |

Table 11.15.8 Range of chemical parameters in Puncha Block

## Aquifer Management Plan:



Figure - 11.15.5 : AQM-Recommended Water Conservation Structures in Puncha Block

----XXX-----

| Block Name:                 | Purulia-I |
|-----------------------------|-----------|
| Geographical area (sq. km): | 302       |
| Mappable area (sq. km):     | 290       |
| District:                   | Purulia   |

State:

West Bengal



Figure 11.16.1: Location Map of Purulia-IBlock

#### Population (as on 2011):

#### Table 11.16.1: Details of population in Purulia-Iblock.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 145494 | 5694  | 151188 |

| Table 11.16.2: Details of Annual Rainfall for the last five years in Purulia-I block. | Table 11.16.2: | Details of Annual | Rainfall for the | last five years | in Purulia-I block. |
|---------------------------------------------------------------------------------------|----------------|-------------------|------------------|-----------------|---------------------|
|---------------------------------------------------------------------------------------|----------------|-------------------|------------------|-----------------|---------------------|

| Block     | District Normal | District Actual (Annual) |        |        |        |        |
|-----------|-----------------|--------------------------|--------|--------|--------|--------|
|           |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Purulia-I | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.16.3: Salient Land use features of Purulia-Iblock

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Purulia-I    | 30200      | 20350      | 5004.24   | 15345.76      | 659    |

**Ground Water Resource:** 

## Table 11.16.4: Details of Ground Water Resource Availability and Utilization in Purulia-

### IBlock.

#### (As on 31.03.2013)

| Dynamic Ground Water Resources                                   |         |  |  |  |
|------------------------------------------------------------------|---------|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                 | 4538.02 |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                   | 4084.22 |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                | 485.81  |  |  |  |
| Net Ground Water Availability for future use (HaM)               | 3430.15 |  |  |  |
| Stage of Ground Water Development (%)                            | 11.89   |  |  |  |
| Category                                                         | Safe    |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025  | 604.47  |  |  |  |
| (HaM)                                                            |         |  |  |  |
| In-storage Ground Water Resources                                |         |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a | 8271.20 |  |  |  |
| depth of 300 mbgl (HaM)                                          |         |  |  |  |

Theprincipal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weatheredor saprolite zone.
Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 15-50 mbgl. Aquifer-II (Deeper aquifer) ranges between 50-200 mbgl. Both Aquifersare freshin nature.

Table 11.16.5: Details of aquifer disposition (fractured aquifer) in Purulia-I block

| Block     | Geology         | Depth range (mbgl) |            | Fracture Zones |               |
|-----------|-----------------|--------------------|------------|----------------|---------------|
|           |                 | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II    |
| Purulia-I | Banded Gneiss & | 15-50              | 50-200     | 16.60 - 19.60  | 50.10 - 53.20 |
|           | Granites        |                    |            |                |               |

## Table 11.16.6: Aquifer-wise depth range and parameters (fractured aquifer) in Purulia-Iblock

| Block     | Aquifer Type | Depth Range | Discharge     | Drawdown  | Т        | S |
|-----------|--------------|-------------|---------------|-----------|----------|---|
|           |              | (mbgl)      | (m³/hr)       | (m)       | (m²/day) |   |
| Purulia-I | Aquifer I    | 15-50       | 0.72-25.2     | 0.72-25.2 |          |   |
|           | Aquifer II   | 50-200      | 50.10 - 53.20 | 7.56      |          |   |

## Table 11.16.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block     | Aquifer  | Pre-     | monsoon Tre | nd       | Pos       | t-monsoon Ti | rend     |
|-----------|----------|----------|-------------|----------|-----------|--------------|----------|
|           |          | WL Range | Rise        | Fall     | WL Range  | Rise         | Fall     |
|           |          | (mbgl)   | (m/year)    | (m/year) | (mbgl)    | (m/year)     | (m/year) |
| Purulia-I | Phreatic | 4.47-9.9 |             | 0.432    | 1.65-3.53 |              | 0.048    |



Figure 11.16.2: 3-Dimensional Aquifer disposition in Purulia-IBlock



Figure 11.16.3: Fence diagram in Purulia-I Block



Figure 11.16.4: 2D section in Purulia-I Block

Based on five NHS (dugwells), six exploratory well and three observation well, the range of chemical parameters for the block is given below.

| Block     | Aquifer Type | рН        | EC       | Na     | a      | F         | N03    | Fe        | Measured |
|-----------|--------------|-----------|----------|--------|--------|-----------|--------|-----------|----------|
|           |              |           | (µS/cm)  | (mg/l) | (mg/l) | (mg/l)    | (mg/l) | (mg/l)    | Hardness |
|           |              |           |          |        |        |           |        |           | (mg/l)   |
| Purulia-I | Phreatic     | 7.54-8.15 | 364-1560 | 29-133 | 32-347 | 0.13-0.68 | 1-73   | BDL-0.03  | 125-440  |
|           | Fractured    | 7.17-8.27 | 386-774  | 26-93  | 18-140 | 0.36-0.81 | BDL-27 | 0.06-0.43 | 90-245   |

 Table 11.16.8 Range of chemical parameters in Purulia-IBlock





Figure - 11.16.5 : AQM-Recommended Water Conservation Structures in Purulia-I Block

----XXX-----

| Block Name:                 | Purulia-II |
|-----------------------------|------------|
| Geographical area (sq. km): | 312        |
| Mappable area (sq. km):     | 299        |
| District:                   | Purulia    |

State:

West Bengal



Figure 11.17.1: Location Map of Purulia-II Block

#### Population (as on 2011):

#### Table 11.17.1: Details of population in Purulia-II block.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 157862 | 11626 | 169488 |

| Table 11.17.2: Details of Annual Rainfall for the last five years in Purulia-II block |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

| Block      | District Normal | District Actual (Annual) |        |        |        |        |
|------------|-----------------|--------------------------|--------|--------|--------|--------|
|            |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Purulia-II | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

### Agriculture& Irrigation (area in ha):

#### Table 11.17.3: Salient Land use features of Purulia-II block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Purulia-II   | 31200      | 25628      | 6495.59   | 19132.41      | 266    |

**Ground Water Resource:** 

## Table 11.17.4: Details of Ground Water Resource Availability and Utilization in Purulia-IIBlock.

(As on 31.03.2013)

| Dynamic Ground Water Resources                                   |         |  |  |  |
|------------------------------------------------------------------|---------|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                 | 4274.14 |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                   | 3846.73 |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                | 347.52  |  |  |  |
| Net Ground Water Availability for future use (HaM)               | 3398.78 |  |  |  |
| Stage of Ground Water Development (%)                            | 9.03    |  |  |  |
| Category                                                         | Safe    |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025  | 360.75  |  |  |  |
| (HaM)                                                            |         |  |  |  |
| In-storage Ground Water Resources                                |         |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a | 8564.96 |  |  |  |
| depth of 300 mbgl (HaM)                                          |         |  |  |  |

The principal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 10-50 mbgl. Aquifer-II

(Deeper aquifer) ranges between 50-200 mbgl. Both Aquifers are

fresh in nature.

Table 11.17.5: Details of aquifer disposition (fractured aquifer) in Purulia-II block

| Block      | Geology         | Depth range (mbgl) |            | Fracture Zones |               |
|------------|-----------------|--------------------|------------|----------------|---------------|
|            |                 | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II    |
| Purulia-II | Banded Gneiss & | 10-50              | 50-200     | 10.4 - 16.50   | 86.70 - 92.80 |
|            | Granites        |                    |            | 16.5 - 28.70   | 147.7 - 159.9 |
|            |                 |                    |            | 28.70 - 40.90  | 159.9 - 200.5 |

## Table 11.17.6: Aquifer-wise depth range and parameters (fractured aquifer) in Purulia-IIblock

| Block      | Aquifer Type | Depth Range | Discharge   | Drawdown    | Т        | S |
|------------|--------------|-------------|-------------|-------------|----------|---|
|            |              | (mbgl)      | (m³/hr)     | (m)         | (m²/day) |   |
| Purulia-II | Aquifer I    | 10-50       | 0.72 - 9    | ≈ 5         |          |   |
|            | Aquifer II   | 50-200      | 1.08 - 10.8 | 5.75 - 8.13 |          |   |

## Table 11.17.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block      | Aquifer  | Pre-monsoon Trend |          |          | Post-monsoon Trend |          |          |
|------------|----------|-------------------|----------|----------|--------------------|----------|----------|
|            |          | WL Range          | Rise     | Fall     | WL Range           | Rise     | Fall     |
|            |          | (mbgl)            | (m/year) | (m/year) | (mbgl)             | (m/year) | (m/year) |
| Purulia-II | Phreatic | 5.77- 6.67        | 0.583    |          | 2.49-4.02          |          | 0.035    |



Figure 11.17.2: 3-Dimensional Aquifer disposition in Purulia-II Block



Figure 11.17.3: Fence diagram in Purulia-II Block



Figure 11.17.4: 2-Dimensional Section in Purulia-II Block

Based on five NHS (dugwells), two exploratory well and one observation well, the range of chemical parameters for the block is given below.

| Block      | Aquifer   | рН    | EC       | Na     | Cl     | F      | NO <sub>3</sub> | Fe     | Measured |
|------------|-----------|-------|----------|--------|--------|--------|-----------------|--------|----------|
|            | Туре      |       | (µS/cm)  | (mg/l) | (mg/l) | (mg/l) | (mg/l)          | (mg/l) | Hardness |
|            |           |       |          |        |        |        |                 |        | (mg/l)   |
| Purulia-II | Phreatic  | 7.81- | 685-2108 | 53-    | 64-415 | 0.08-  | 18-259          | 0.01-  | 250-730  |
|            |           | 8.30  |          | 121    |        | 0.73   |                 | 0.30   |          |
|            | Fractured | 7.52- | 397-1318 | 36-    | 50-230 | 0.27-  | BDL             | 0.01-  | 140-360  |
|            |           | 8.03  |          | 109    |        | 0.29   |                 | 0.58   |          |

 Table 11.17.8 Range of chemical parameters in Purulia-II Block

## Aquifer Management Plan:



Figure - 11.17.5 : AQM-Recommended Water Conservation Structures in Purulia-II Block

----XXX-----





Figure 11.18.1: Location Map of Raghunathpur-I Block

Population (as on 2011):

#### Table 11.18.1: Details of population in Raghunathpur-I block.

| Rural | Urban | Total  |
|-------|-------|--------|
| 96488 | 21272 | 117760 |

| Block          | District Normal | District Actual (Annual) |        |        |        |        |
|----------------|-----------------|--------------------------|--------|--------|--------|--------|
|                |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Raghunathpur-I | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

### Agriculture& Irrigation (area in ha):

### Table 11.18.3: Salient Land use features of Raghunathpur-I block

| Name           | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|----------------|------------|------------|-----------|---------------|--------|
| of the Block   | Area       | area       |           | brought under | Land   |
|                |            |            |           | CCA           |        |
| Raghunathpur-I | 19300      | 14300      | 5249.97   | 9050.03       | 443    |

**Ground Water Resource:** 

# Table 11.18.4: Details of Ground Water Resource Availability and Utilization inRaghunathpur-I

**Block.**(As on 31.03.2013).

| Dynamic Ground Water Resources                                   |         |  |  |  |  |
|------------------------------------------------------------------|---------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                 | 2577.73 |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                   | 2319.96 |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                | 230.13  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)               | 2001.37 |  |  |  |  |
| Stage of Ground Water Development (%)                            | 9.92    |  |  |  |  |
| Category                                                         | Safe    |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025  | 317.79  |  |  |  |  |
| (HaM)                                                            |         |  |  |  |  |
| In-storage Ground Water Resources                                |         |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a | 6202.56 |  |  |  |  |
| depth of 300 mbgl (HaM)                                          |         |  |  |  |  |

The principal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 10-40 mbgl. Aquifer-II

(Deeper aquifer) ranges between 40-200 mbgl. Both Aquifers are

fresh in nature.

Table 11.18.5: Details of aquifer disposition (fractured aquifer) in Raghunathpur-I block

| Block          | Geology            | Depth range (mbgl) |            | Fracture Zones |              |  |
|----------------|--------------------|--------------------|------------|----------------|--------------|--|
|                |                    | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II   |  |
| Raghunathpur-I | Granite/Granite    | 10-40              | 40-200     | 13.0 - 37.0    | 48.0 - 62.24 |  |
|                | gneiss/Porphyritic |                    |            | 31.92 - 34.41  |              |  |
|                | granite            |                    |            | 34.46 - 37.45  |              |  |

## Table 11.18.6: Aquifer-wise depth range and parameters (fractured aquifer) inRaghunathpur-I block

| Block         | Aquifer Type | Depth Range | Discharge   | Drawdown | Т        | S |
|---------------|--------------|-------------|-------------|----------|----------|---|
|               |              | (mbgl)      | (m³/hr)     | (m)      | (m²/day) |   |
| Raghunathpur- | Aquifer I    | 10-40       | 1.19 - 9.97 | 15 - 24  |          |   |
| I             | Aquifer II   | 40-200      | 1.76 - 9.97 | 15 - 18  |          |   |

## Table 11.18.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.

| Block         | Aquifer  | Pre-monsoon Trend |          |          | Pos        | t-monsoon Ti | rend     |
|---------------|----------|-------------------|----------|----------|------------|--------------|----------|
|               |          | WL Range          | Rise     | Fall     | WL Range   | Rise         | Fall     |
|               |          | (mbgl)            | (m/year) | (m/year) | (mbgl)     | (m/year)     | (m/year) |
| Raghunathpur- | Phreatic | 4.67-5.91         | 0.303    |          | 2.58- 4.41 |              | 0.067    |
| Ι             |          |                   |          |          |            |              |          |



Figure 11.18.2: 3-Dimensional Aquifer disposition in Raghunathpur-I Block



Figure 11.18.3: 2-Dimensional Section in Raghunathpur-I Block

Based on NHS (dugwells), the range of chemical parameters for the block is given below.

| able 11.18.8 Range of chemical | parameters in Raghunathpur-I Block |
|--------------------------------|------------------------------------|
|--------------------------------|------------------------------------|

| Block         | Aquifer  | pН   | EC      | Na     | Cl     | F      | NO <sub>3</sub> | Fe     | Measured |
|---------------|----------|------|---------|--------|--------|--------|-----------------|--------|----------|
|               | Туре     |      | (µS/cm) | (mg/l) | (mg/l) | (mg/l) | (mg/l)          | (mg/l) | Hardness |
|               |          |      |         |        |        |        |                 |        | (mg/l)   |
| Raghunathpur- | Phreatic | 7.98 | 435     | 54     | 46     | 0.06   | BDL             | 0.07   | 115      |
| I             |          |      |         |        |        |        |                 |        |          |

## Aquifer Management Plan:



Figure - 11.18.4 : AQM-Recommended Water Conservation Structures in Raghunathpur-I Block

----XXX-----

| Block Name:                 | Raghunathpur-II |
|-----------------------------|-----------------|
| Geographical area (sq. km): | 194             |
| Mappable area (sq. km):     | 186             |
| District:                   | Purulia         |



West Bengal



#### Population (as on 2011):

State:

#### Table 11.19.1: Details of population in Raghunathpur-II block.

| Rural  | Urban | Total  |
|--------|-------|--------|
| 107827 | 5963  | 113790 |

| Block           | District Normal | District Actual (Annual) |        |        |        |        |
|-----------------|-----------------|--------------------------|--------|--------|--------|--------|
|                 |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Raghunathpur-II | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

### Agriculture& Irrigation (area in ha):

### Table 11.19.3: Salient Land use features of Raghunathpur-II block

| Name            | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|-----------------|------------|------------|-----------|---------------|--------|
| of the Block    | Area       | area       |           | brought under | Land   |
|                 |            |            |           | LLA           |        |
| Raghunathpur-II | 19400      | 15887      | 2739.87   | 13147.13      | 237    |

**Ground Water Resource:** 

# Table 11.19.4: Details of Ground Water Resource Availability and Utilization inRaghunathpur-II

#### Block. (As on 31.03.2013).

| Dynamic Ground Water Resources                                   |         |  |  |  |  |
|------------------------------------------------------------------|---------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                 | 2978.64 |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                   | 2680.78 |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                | 203.41  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)               | 2407.55 |  |  |  |  |
| Stage of Ground Water Development (%)                            | 7.59    |  |  |  |  |
| Category                                                         | Safe    |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025  | 250.83  |  |  |  |  |
| (HaM)                                                            |         |  |  |  |  |
| In-storage Ground Water Resources                                |         |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a | 8794.34 |  |  |  |  |
| depth of 300 mbgl (HaM)                                          |         |  |  |  |  |

The principal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 10-40 mbgl. Aquifer-II

(Deeper aquifer) ranges between 40-200 mbgl. Both Aquifers are

fresh in nature.

Table 11.19.5: Details of aquifer disposition (fractured aquifer) in Raghunathpur-II block

| Block         | Geology        | Depth range (mbgl) |            | Fracture Zones |             |  |
|---------------|----------------|--------------------|------------|----------------|-------------|--|
|               |                | Aquifer-I          | Aquifer-II | Aquifer-I      | Aquifer-II  |  |
| Raghunathpur- | Hornblende     | 10-40              | 40-200     | 15.00 -17.10   | 40.45-59.51 |  |
| II            | gneiss/Granite |                    |            | 16.00 - 18 .00 |             |  |
|               | gneiss         |                    |            | 22.5 - 31.00   |             |  |

## Table 11.19.6: Aquifer-wise depth range and parameters (fractured aquifer) inRaghunathpur-II block

| Block         | Aquifer Type | Depth Range | Discharge            | Drawdown     | Т        | S |
|---------------|--------------|-------------|----------------------|--------------|----------|---|
|               |              | (mbgl)      | (m <sup>3</sup> /hr) | (m)          | (m²/day) |   |
| Raghunathpur- | Aquifer I    | 10-40       | 3.49 - 9.97          | 9.1 - 13     |          |   |
| II            | Aquifer II   | 40-200      | 0.29 - 7.96          | 8.12 - 10.12 |          |   |

## Table 11.19.7: Details of Aquifer Wise Water Level Ranges & seasonal long term water level trends.

| Block         | Aquifer  | Pre-monsoon Trend |          |          | Post-monsoon Trend |          |          |
|---------------|----------|-------------------|----------|----------|--------------------|----------|----------|
|               |          | WL Range          | Rise     | Fall     | WL Range           | Rise     | Fall     |
|               |          | (mbgl)            | (m/year) | (m/year) | (mbgl)             | (m/year) | (m/year) |
| Raghunathpur- | Phreatic | 4.66-10.49        |          |          | 2.80- 6.61         |          | 0.046    |
| II            |          |                   |          |          |                    |          |          |



Figure 11.19.2: 3-Dimensional Aquifer disposition in Raghunathpur-II Block



Figure 11.19.3: 2-Dimensional Section in Raghunathpur-II Block

Based on NHS (dugwells), the range of chemical parameters for the block is given below.

Table 11.19.8 Range of chemical parameters in Raghunathpur-II Block

| Block           | Aquifer Type | рН   | EC      | Na     | a      | F      | NO <sub>3</sub> | Fe     | Measured |
|-----------------|--------------|------|---------|--------|--------|--------|-----------------|--------|----------|
|                 |              |      | (µS/cm) | (mg/l) | (mg/l) | (mg/l) | (mg/l)          | (mg/l) | Hardness |
|                 |              |      |         |        |        |        |                 |        | (mg/l)   |
| Raghunathpur-II | Phreatic     | 7.97 | 1016    | 97     | 163    | 0.56   | 7               | BDL    | 285      |

## **Aquifer Management Plan:**





----XXX-----



State:

West Bengal



Figure 11.20.1: Location Map of Santuri Block

#### Population (as on 2011):

#### Table 11.20.1: Details of population in Santuri block.

| Rural | Urban | Total |
|-------|-------|-------|
| 72586 | 5929  | 78515 |

| Table 11.20.2: | Details of Annual Rainfall for the last five years in Santuri block. |
|----------------|----------------------------------------------------------------------|
|----------------|----------------------------------------------------------------------|

| Block   | District Normal | District Actual (Annual) |        |        |        |        |
|---------|-----------------|--------------------------|--------|--------|--------|--------|
|         |                 | 2015                     | 2016   | 2017   | 2018   | 2019   |
| Santuri | 1321.9          | 1208.7                   | 1367.9 | 1565.9 | 1140.2 | 1219.1 |

#### Agriculture& Irrigation (area in ha):

#### Table 11.20.3: Salient Land use features of Santuri block

| Name         | Geographic | Cultivable | Total CCA | Area to be    | Forest |
|--------------|------------|------------|-----------|---------------|--------|
| of the Block | Area       | area       |           | brought under | Land   |
|              |            |            |           | CCA           |        |
| Santuri      | 17000      | 14310      | 5487.51   |               |        |

Ground Water Resource:

# Table 11.20.4: Details of Ground Water Resource Availability and Utilization in SanturiBlock. (As on 31.03.2013).

| Dynamic Ground Water Resources                                   |         |  |  |  |  |
|------------------------------------------------------------------|---------|--|--|--|--|
| Annual Replenishable Ground Water Resource (HaM)                 | 3001.34 |  |  |  |  |
| Annual Extractable Ground Water Resource (HaM)                   | 2701.21 |  |  |  |  |
| Gross Ground Water Abstraction for all uses (HaM)                | 174.54  |  |  |  |  |
| Net Ground Water Availability for future use (HaM)               | 2477.70 |  |  |  |  |
| Stage of Ground Water Development (%)                            | 6.46    |  |  |  |  |
| Category                                                         | Safe    |  |  |  |  |
| Annual GW Allocation for Domestic and Industrial use as on 2025  | 175.91  |  |  |  |  |
| (HaM)                                                            |         |  |  |  |  |
| In-storage Ground Water Resources                                |         |  |  |  |  |
| In-storage Resource beneath Ground Water Fluctuation Zone upto a | 6477.82 |  |  |  |  |
| depth of 300 mbgl (HaM)                                          |         |  |  |  |  |

#### **Disposition of Aquifers:**

The principal aquifer system encountered in this block is **Banded Gneissic Complex** (BG01).

Phreatic aquifer: Ranges between 2-15 mbgl and tapped by dugwells. This aquifer is usually found within the weathered or saprolite zone.

Fractured aquifer: Aquifer-I (Shallow aquifer) ranges between 10-50 mbgl. Aquifer-II

(Deeper aquifer) ranges between 50-200 mbgl. Both Aquifers are

fresh in nature.

#### Table 11.20.5: Details of aquifer disposition (fractured aquifer) in Santuri block

| Block   | Geology        | Depth range (mbgl)   |        | Fracture Zones |            |  |
|---------|----------------|----------------------|--------|----------------|------------|--|
|         |                | Aquifer-I Aquifer-II |        | Aquifer-I      | Aquifer-II |  |
| Santuri | Granite gneiss | 10-40                | 50-200 | 11.0-12.87     |            |  |

## Table 11.20.6: Aquifer-wise depth range and parameters (fractured aquifer) in Santuriblock

| Block   | Aquifer Type | Depth Range | epth Range Discharge |     | Т        | S |
|---------|--------------|-------------|----------------------|-----|----------|---|
|         |              | (mbgl)      | (m³/hr)              | (m) | (m²/day) |   |
| Santuri | Aquifer I    | 10-40       | 3.49                 | 6   |          |   |
|         | Aquifer II   | 40-200      |                      |     |          |   |

## Table 11.20.7: Details of Aquifer Wise Water Level Ranges & seasonal long term waterlevel trends.

| Block   | Aquifer  | Pre-monsoon Trend  |          |          | Post-monsoon Trend |          |          |
|---------|----------|--------------------|----------|----------|--------------------|----------|----------|
|         |          | WL Range Rise Fall |          | WL Range | Rise               | Fall     |          |
|         |          | (mbgl)             | (m/year) | (m/year) | (mbgl)             | (m/year) | (m/year) |
| Santuri | Phreatic | 3.76- 5.58         | 0.481    |          | 3.03- 6.61         |          | 0.065    |



Figure 11.20.2: 3-Dimensional Aquifer disposition in Santuri Block



Figure 11.20.3: 2-Dimensional Section in Santuri Block
#### Ground water quality and issues:

Based on two NHS (dugwells), the range of chemical parameters for the block is given below.

| Block   | Aquifer  | рH    | EC      | Na     | Cl     | F      | NO <sub>3</sub> | Fe     | Measured |
|---------|----------|-------|---------|--------|--------|--------|-----------------|--------|----------|
|         | Туре     | r     | (µS/cm) | (mg/l) | (mg/l) | (mg/l) | (mg/l)          | (mg/l) | Hardness |
|         |          |       |         |        |        |        |                 |        | (mg/l)   |
| Santuri | Phreatic | 7.60- | 375-937 | 15-79  | 57-142 | 0.24-  | BDL-3           | 0.02   | 165-300  |
|         |          | 7.90  |         |        |        | 0.86   |                 |        |          |

 Table 11.20.8 Range of chemical parameters in Santuri Block

#### Aquifer Management Plan:



Figure - 11.20.4 : AQM-Recommended Water Conservation Structures in Raghunathpur-II Block

----xxx-----

### **PART – III** (Data Gap Analysis)

### Chapter – 12 Data Gap Analysis(2020-21)

**Location :** The study area comprises of 20 blocks of Purulia district of West Bengal covering a total geographical area of 6259 sq. km. It is bounded by the North latitudes of 22°43' and 23°42' and East longitudes of 85°49'& 86°49'. The study areafall in part of Survey of India toposheet no.s73E/15, 73E/16, 73I/2, 73I/3, 73I/4, 73I/6, 73I/7, 73I/8, 73I/10, 73I/11, 73I/12, 73I/14, 73I/15, 73J/5, 73J/6, 73J/9and73J/10.

**Data Availability :** The available CGWB in-house Exploration data and existing NHS wells for monitoring water level in different blocks along with the toposheet no.s within the study area have been compiled, tabulated and plotted. The data insufficiency within the study area is thereby identified and given for recommendations.

**Data gap analysis for Exploratory Wells :** In hard rock areas 5 Exploratory Wells and 5 Observation Wells should be constructed at suitable locations, preferably one in central quadrant and one each in the four corner quadrants for establishing aquifer geometry and determining aquifer parameters. The locations of EW/OW in corner quadrants have been changed in the adjacent Toposheets in order to insure uniform distribution in the study area.

In this chapter, the existing exploratory well data in Purulia have been plotted in the respective toposheets and block map. In order to reduce the gap rationally in exploration data, 56 additional wells (includes all EW along with their subsequent OW) of 200 meters depth have been recommended. The map of existing exploratory wells and their details is furnished in Figure 1.1 and Table 1.1. The map of the proposed wells and the list including the location and coordinate details is furnished in Figure 1.2 and Table 1.2 respectively.



Figure-12.1: Map of existing Exploratory wells in Purulia district of West Bengal

| Block / Taluka | Lecation                | Latitado  | Longilado | Formation          | Type of Well | Depth<br>drilled<br>(m bg1) | Depth of<br>Well<br>Constructed<br>(m bgD | Casing<br>Depth<br>for<br>Hard<br>Rock<br>(m bgl) | Zone tapped/<br>Fractares encountered<br>(mbgi)                            | S.W.L<br>(m<br>hgD | Discharge<br>(lps) | T   | 8   |
|----------------|-------------------------|-----------|-----------|--------------------|--------------|-----------------------------|-------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|--------------------|--------------------|-----|-----|
| Arsha          | Sirkabad                | 23.267807 | 86.19342  | Granite gneiss     | EW           | 233.1                       | 18                                        | 18.5                                              | 19.60-22.70, 53.2-56.2,<br>144.70-147.70, 153.80-<br>156.90, 227.00-230.00 | N/A                | 9.62               | N/A | N/A |
| Arsha          | Sirkabad                | 23.267807 | 86.19342  | Granite gneiss     | 0W - I       | 129.4                       | 18                                        | 18.5                                              | 12.60-18.00, 83.7-86.7                                                     | N/A                | 0.75               | N/A | N/A |
| Arsha          | Sirkabad                | 23.267807 | 86.19342  | Granite gneiss     | 0W - 11      | 233.1                       | 18                                        | 18.5                                              | 12.60-18.00, 141.00-<br>147.00, 153.00-159.00                              | N/A                | 7.17               | NA  | N/A |
| Arsha          | Arsha                   | 23.322209 | 86.178135 | Granite gneiss     | EM-I         | 300.2                       | 18                                        | 18.5                                              | 19.60-22.70, 187.4-196.5                                                   | N/A                | 1.27               | N/A | N/A |
| Arsha          | Arsha                   | 23.322209 | 86.178135 | Granite gneiss     | EM-II        | 300.2                       | 18                                        | 18.5                                              | 16.60-25.70                                                                | N/A                | 0.10               | N/A | N/A |
| Arsha          | Jhunjka                 | 23.275133 | 86.192385 | Granite gneiss     | EW           | 300.2                       | 12                                        | 12.5                                              | 156.9-159.9, 190.4-192.0                                                   | 10.7               | 4.77               | NA  | N/A |
| Arsha          | Jhunjka                 | 23.275133 | 86.192385 | Granite gneiss     | OW           | 300.2                       | 12.5                                      | 12.5                                              | 47.1-50.1, 102.0-105.0,<br>156.8-159.9, 163.0-166.0                        | N/A                | 5.60               | NA  | N/A |
| Balarampur     | Salboni<br>(Borewell)   | 23.0837   | 86.2689   | Meta-<br>sediments | EW           |                             | 183.42                                    | N/A                                               | 18.0-23.0                                                                  | N/A                | 3.21               | NA  | N/A |
| Barabazar      | Bodaldih (OW -<br>D     | 23.1508   | 86.4175   | BG01               | EW           | 147.7                       | 11.7                                      | 9.75                                              | 10.5-13.50, 13.50-16.50,<br>92.80-98.50, 98.90-102                         | N/A                | 12.00              | NA  | N/A |
| Barabazar      | Bodaldih (OW -<br>D     | 23.1508   | 86.4175   | BG01               | 0W - I       | 200.5                       | 12                                        | 12                                                | 16.6-19.6, 120.3-123.3                                                     | 6.96               | 0.48               | NA  | N/A |
| Barabazar      | Bodaldih (OW -<br>11)   | 23.1508   | 86.4175   | BGOI               | 0W - 11      | 118.7                       | 15                                        | 15                                                | 114.2-117.2                                                                | 8.89               | 12.50              | NA  | N/A |
| Barabazar      | Shankhari-<br>Bansberia | 23.051    | 86.3571   | SCOL               | EW-I         | 166                         | 32                                        | 32                                                | 77.6-80.6, 159.9-163                                                       | 9.56               | 1.27               | NA  | N/A |
| Barabazar      | Shankhari-              | 23.0516   | 86.357    | SCOL               | EM-II        | 139.6                       | 28                                        | 28                                                | 28.7-31.8, 34.9-37.9,                                                      | 5.83               | 7.10               | N/A | N/A |

| Table-12.1: Details of existing ex | xploratory wells | (In-house | ) in the stud | y area |
|------------------------------------|------------------|-----------|---------------|--------|
|------------------------------------|------------------|-----------|---------------|--------|

| Block / Talnka           | Location                             | Latitude             | Longitudo             | Formation               | Type of Well       | Depth<br>drilled<br>(m bgl) | Depth of<br>Well<br>Constructed<br>(m bgD | (asing<br>Depth<br>for<br>Hard<br>Rock<br>(m bgl) | Zone tapped/<br>Practares encountered<br>(mbgi)                               | S.W.L<br>(m<br>hgD | Discharge<br>(lps) | Т          | 8          |
|--------------------------|--------------------------------------|----------------------|-----------------------|-------------------------|--------------------|-----------------------------|-------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------|--------------------|------------|------------|
| Barabazar                | Bansberia<br>Shankhari-<br>Bansberia | 23.0516              | 86.357                | SCOI                    | OW                 | 178.2                       | 25.2                                      | 25.2                                              | 132.5-138.6<br>34.9-37.9, 126.4-129.4,<br>135.5-138.6                         | 5.25               | 2.20               | N/A        | N/A        |
| Barabazar                | Bamundiha                            | 23.1159              | 86.3654               | BGOI                    | EW-I               | 303.1                       | 22                                        | 22                                                | 193-194                                                                       | 23.54              | 1.00               | N/A        | N/A        |
| Barabazar                | Bamundiha                            | 23.1156              | 86.364                | BGOI                    | EM-II              | 264.6                       | 17.5                                      | 17.5                                              | 242.3-246.3, 249.4-<br>252.4, 258.5-261.6                                     | 21.12              | 10.17              | N/A        | N/A        |
| Barabazar                | Bamundiha                            | 23.1156              | 86.364                | BGOI                    | OW                 | 248.4                       | 19.6                                      | 19.6                                              | 233.1-236.2, 242.3-<br>245.3                                                  | 24.46              | 11.50              | MA         | N/A        |
| Barabazar                | Bodaldih                             | 23.1908              | 86.4179<br>96 5 49559 | BGUI<br>Dhallithan A    | EW                 | 147.7                       |                                           | 12                                                | 92.8-93.8, 98.9-102,<br>132.5-135.5                                           | 7.9                | 12.00              | N/A<br>N/A | N/A        |
| Bundwan                  | ANKro                                | 22.912912            | 86.949999             | Phyllites &<br>schists  | EW                 | 136                         | 6                                         | 6.9                                               | 132.9-139.9                                                                   | 3.17               | 10.12              | N/A        | N/A        |
| Bundwan                  | ANKTO                                | 22.912912            | 86.949999             | Phyllites &<br>schists  | UN                 | 130                         | 6                                         | 6.0                                               | 41.00-44.00, 59.30-<br>62.30 114.20-117.20<br>132.50-135.50                   | 2.8                | 12.02              | N/A        | N/A        |
| Hura                     | Lakhanpur                            | 23.3409              | 86.5732               | BG01                    | EW                 | 220.9                       | 12.6                                      | 12.6                                              | N/A                                                                           | N/A                | 0.20               | N/A        | N/A        |
| Hura                     | Rakhera                              | 23.2661              | 86.7483               | BGOI                    | EW                 | 153.8                       | 12.5                                      | 12.5                                              | 22-70-25.70 86.70-<br>89.80                                                   | N/A                | 1.00               | N/A        | N/A        |
| Jhalda-I                 | Goria                                | 23.3284              | 86.2336               | SCOL                    | EW                 | 190.04                      | 16                                        | 16.5                                              | N/A                                                                           | N/A                | 5.50               | N/A        | N/A        |
| Jhalda-I                 | Goria                                | 23.3284              | 86.2336               | SCOL                    | OW                 | 65.3                        | 17.63                                     | 18.13                                             | N/A                                                                           | M                  | 2.12               | MA         | N/A        |
| Jhalda-l                 | lchag                                | 23.3326              | 85.9251               | BGOI                    | EW                 | 129.4                       | 19                                        | 19.5                                              | 92.80-95.90                                                                   | N/A                | 1.80               | N/A<br>N/A | N/A<br>N/A |
| Jhalda-I                 | Jhaldah-I, BDO,<br>Office            | 23.3699              | 83.9616<br>97.000e    | BGOI                    | EW                 | 200                         | 29                                        | 20.0                                              | 16.60-18.60 28.80-31.80<br>123.3-126.4                                        | N/A                | 0.70               | N/A<br>R/A | N/A        |
| Jhalda-I<br>D-11-1       | TUIN                                 | 23.3776              | 89.9006<br>97.0006    | BGUI                    | SEW                | 60                          | 17.88                                     | 18.38                                             | N/A<br>22 50 25 50 44 00 45 10                                                | N/A<br>7.99        | 0.90               | N/A<br>N/A | N/A<br>W/A |
| JHAMA-I                  |                                      | 29.9770              | 89 <b>.</b> 9006      | <b>BU</b> U             | EM-I               | 141.0                       | 1978                                      | 10.4                                              | 22.70-29.70 44.00-47.10<br>50.20-53.20 74.50-77.60<br>80.60-83.70 105.0-108.1 | 3.38               | 9.00               | NA         | N/A        |
| Jhalda-I                 | Tulin                                | 23.3776              | 85.9007               | BGOI                    | EM-II              | 233.1                       | 18.5                                      | 19                                                | 13.50-16.60 62.30-65.40<br>95.90-98.90                                        | 5.85               | 8.00               | N/A        | N/A        |
| Jhalda-I                 | Mahatomara                           | 23.4236              | 85.9124               | BSOI                    | EW                 | 300.3                       | 48                                        | 485                                               | Dry Well                                                                      | M                  | 0.00               | N/A        | N/A        |
| Jhalda-I                 | Mahatomara                           | 23.4236              | 85.9124               | BSOI                    | SEW                | 47.1                        | 44.5                                      | 45.5                                              | 37.90-41.00                                                                   | MA                 | 1.50               | MA         | N/A        |
| Jhalda-II                | Kotshila<br><u>EW_IID</u>            | 23.4055              | 86.0717               | BGOI                    | EM <sup>T</sup> II | III.I                       | 5.4                                       | 8.74                                              | NA                                                                            | N/A                | 0.50               | N/A        | N/A        |
| Jhalda-II                | Kotshila                             | 23.4055              | 86.0717               | BGOI                    | EW-I               | 172.1                       | 4.9                                       | 5.4                                               | 50.10-53.20 62.30-65.40                                                       | 2.02               | 0.50               | N/A<br>T/A | N/A<br>N/A |
| JNäldä-11<br>Ibalda 11   | Kolsiilia<br>Colzilne.con            | 23.4099<br>aa asay   | 86.0717<br>95.071     | BGUI<br>DCOI            | EW-II<br>FW        | 220.9<br>200.2              | 11.9                                      | 12<br>61                                          | Dry Well                                                                      | 2.09<br>W/A        | N/A<br>N/A         | N/A<br>W/A | N/A<br>W/A |
| Juanua-11<br>Kashipur    | Kashipur<br>(Borewell)               | 23.4245              | 86.6687               | Garnetiferous<br>schist | EW                 | 300.2<br>N/A                | 93.39                                     | 0.1<br>N/A                                        | 22.13-24.61                                                                   | N/A<br>N/A         | 0.05               | N/A<br>N/A | N/A<br>N/A |
| Kashipur                 | Talajuri<br>(Borewell)               | 23.3959              | 86.7954               | Garnetiferous<br>schist | EW                 | N/A                         | 41.1                                      | N/A                                               | 17.67-19.0                                                                    | N/A                | 0.33               | N/A        | N/A        |
| Nanbazar-I               | Gopalnagar                           | 23.1325              | 86.5879               | BGOI                    | EW                 | 200.5                       | 6.8                                       | 7.3                                               | 22.70-25.70                                                                   | N/A                | 0.64               | N/A        | N/A        |
| Manbazar-I               | Mogalda<br>(Borewell)                | 23.0757              | 86.6474               | Granite gneiss          | EW                 | N/A                         | 183.42                                    | N/A                                               | N/A                                                                           | N/A                | NA                 | N/A        | N/A        |
| Manbazar-I               | Manbazar<br>(Borewell)               | 23.0781              | 86.6865               | Granite gneiss          | EW                 | N/A                         | 150                                       | N/A                                               | 110-112.00                                                                    | N/A                | 6.64               | N/A        | N/A        |
| Manbazar-I               | Golkidih                             | 23.060852            | 86.659518             | Granite gneiss          | EW                 | 184.3                       | 21                                        | 21.5                                              | 37.90-39.0, 65.40-67.10                                                       | M                  | 1.20               | MA         | N/A        |
| Nanbazar-I               | Golkidih                             | 23.060852            | 86.659518             | Granite gneiss          | OW                 | 220.9                       | 24                                        | 24.5                                              | 193.5-196.5                                                                   | MA<br>105          | 1.22               | N/A<br>W/A | N/A<br>X/A |
| Manbazar-H<br>Manbazar H | Basantapur                           | 22.974015            | 86.60436<br>se coupe  | Schists<br>Schiste      | EW                 | 300.2                       | N/A                                       | N/A<br>W/A                                        | 19.60-22.70, 28.80-<br>31.80, 187.4-190.4                                     | 4.05               | 3.40               | N/A<br>N/A | N/A        |
| Mandazar-II              | Basantapur                           | 22.974019            | 80.00430              | SCHISUS                 | UN                 | 300.2                       | N/A                                       | N/A<br>10.1                                       | 19.60-22.70, 28.80-<br>34.90, 126.4-129.4                                     | 4.30<br>#/4        | 4.45               | N/A<br>N/A | N/A        |
| Manoazar-II<br>Votunio   | bari nospital                        | 23.013970<br>aa.e.ca | 80.038016<br>og of of | SCHISTS<br>Sendatore    | EW                 | 249.3<br>#//                | 11.6                                      | 12.1                                              | 31.30-34.90<br>av ot at ot                                                    | N/A<br>5.75        | 0.80               | N/A<br>N/A | N/A<br>W/A |
| Neturia                  | Innanpur<br>(Borewell)               | 23.682               | 80.8181               | Sandstone               | EW                 | N/A<br>N/A                  | ¥7.74                                     | N/A                                               | 28.91-51.91                                                                   | 9.79               | 3.94               | N/A        | N/A        |
| Neturna                  | Sarborimore<br>(Borewell)            | 23.6456              | 86.7844               | Sandstone               | EW                 | N/A                         | 103.25                                    | N/A                                               | 24.44-36.44                                                                   | 14.32              | 3.32               | N/A<br>R/: | N/A<br>R// |
| Para                     | Anara<br>(Borewell)                  | 23.4916              | 86.5621               | Granite gneiss          | EW                 | N/A                         | 81.27                                     | N/A<br>10.5                                       | 26.0-28.0                                                                     | N/A                | 1.11               | N/A        | N/A        |
| Puncha<br>Dumol: c       | Lolara                               | 23.1742              | 86.6618               | BGOI                    | EW                 | 147.7                       | 18.5                                      | 18,5                                              | 98.90-102.0<br>as to as so as as                                              | N/A                | 2.20               | N/A<br>B/A | N/A<br>B// |
| Puncha                   | Napara                               | 23.2262              | 86.6462               | BGOI                    | EM                 | 184.3                       | 20.5                                      | 21                                                | 25.70-28.80 92.80-95.90<br>169.1-172.1                                        | N/A                | 3.34               | N/A        | N/A        |
| Puncha<br>Dumol :        | Balakdih<br>Varralata                | 23.2209              | 86.5098               | BGOL                    | EW                 | 200.5                       | 5.5                                       | 6                                                 | <b>Dry Well</b>                                                               | N/A<br>w//         | NA<br>0.75         | N/A<br>R/A | N/A<br>E/A |
| Puncha                   | Kuruktupa,<br>PHC                    | 29.1478              | ð <b>0.</b> 9249      | BGUI                    | ΡM                 | 200.9                       | <b>4</b> 9                                | 8.8                                               | 10.00-19.00 34.90-37.90<br>41.00-44.00                                        | N/A                | 0.79               | N/A        | N/A        |

| Block / Tainka      | Location                   | Latitude  | Longitude | Formation              | Type of Well | Dopth<br>drillod<br>(m bgl) | Depth of<br>Well<br>Constructed | Casing<br>Depth<br>for  | Zone tapped/<br>Fractures encountered<br>(mbgl)               | S.W.L.<br>(m<br>hgD | Discharge<br>(lps) | T   | 8   |
|---------------------|----------------------------|-----------|-----------|------------------------|--------------|-----------------------------|---------------------------------|-------------------------|---------------------------------------------------------------|---------------------|--------------------|-----|-----|
|                     |                            |           |           |                        |              |                             | (m hyl)                         | Hard<br>Rock<br>(m bgl) |                                                               |                     |                    |     |     |
| Puncha              | Napara                     | 23.221    | 86.6454   | BG01                   | OW           | 181.3                       | 21                              | 21                      | 117.2-120.3 144.7-147.7<br>147.4-150.8 166-169 169-<br>172.10 | 10.05               | 4.36               | N/A | N/A |
| Purulia             | Chakoltore                 | 23.2425   | 86.3534   | BG01                   | EW           | 200.5                       | 11.7                            | 12.2                    | 13.50-16.60 80.60-83.70                                       | N/A                 | 0.50               | N/A | N/A |
| Purulia-I           | Charrah                    | 23.3707   | 86.4193   | 6R02                   | EM-II        | 200                         | 12.5                            | 12.5                    | 71.50-74.50                                                   | N/A                 | 0.20               | N/A | N/A |
| Purulia-1           | Ladurkha                   | 23.3521   | 86.5309   | BGOI                   | EW           | 200.5                       | 17.9                            | 18.4                    | 22.70-25.70 53.20-56.20<br>74.50-77.60 135.5-<br>138.60       | N/A                 | 1.80               | N/A | N/A |
| Purulia-I           | Ladurkha                   | 23.3521   | 86.5309   | BG01                   | OW           | 150.5                       | 18                              | 18.5                    | 37.90-41.00 53.10 -56.20<br>132.5-135.5                       | N/A                 | 1.80               | NA  | N/A |
| Purulia-I           | Ladurkha                   | 23.3521   | 86.5309   | BGOI                   | SEW          | 60.3                        | 18                              | 18.5                    | 53.20-56.20                                                   | N/A                 | 1.80               | N/A | N/A |
| Purulia-I           | Lalpur                     | 23.3066   | 86.6248   | BG01                   | EW           | 200.5                       | 18.5                            | 19.5                    | 41 .00-44.00 56.20-<br>59.30 59.30-62.30<br>120.3-123.3       | N/A                 | 0.90               | N/A | N/A |
| Purulia-I           | Belguma                    | 23.3271   | 86.3457   | BGOI                   | EW           | 300.4                       | 32.5                            | 32.5                    | 50.30-56.40                                                   | 12.9                | 3.40               | N/A | N/A |
| Purulia-I           | Belguma                    | 23.3271   | 86.3457   | BGOI                   | OW           | 220.9                       | 20.2                            | 20.2                    | 50.30-53.40 80.80-83.90                                       | 13                  | 2.60               | N/A | N/A |
| Purulia-I           | Ambagan, PHED              | 23.3255   | 86.3437   | BGOI                   | EW           | 151.5                       | 12.5                            | 12.5                    | 77.60-80.60                                                   | 12.8                | 4.40               | N/A | N/A |
| Purulia-I           | Ambagan, PHED              | 23.3255   | 86.3437   | BGOI                   | OW           | 166                         | 8                               | 8                       | 154.90-156.90                                                 | 13                  | 7.00               | N/A | N/A |
| Purulia-I           | Pandrama                   | 23.265263 | 86.321211 | Granite gneiss         | EW           | 300.2                       | 13.5                            | - 14                    | 16.60-19.60, 50.1-53.2                                        | 4.02                | 2.10               | N/A | N/A |
| Purulia-I           | Pandrama                   | 23.265263 | 86.321211 | Granite gneiss         | OW           | 263.6                       | 18.5                            | 14                      | 16.60-19.60, 62.30-<br>65.40, 199.60-202.60,<br>248.40-251.40 | 4.17                | 2.15               | N/A | N/A |
| Purulia-II          | Denagar                    | 23.3439   | 86.4241   | BG01                   | EW           | 200.5                       | 11.8                            | 12.6                    | 31.80-34.90 141.6-144.7<br>150.8-153.8                        | N/A                 | 3.00               | NA  | N/A |
| Purulia-II          | Denagar                    | 23.3439   | 86.4241   | BGOI                   | OW           | 160                         | 11.8                            | 12.3                    | 25.70-28.80                                                   | N/A                 | 2.50               | NA  | N/A |
| Purulia-11          | Hutmura                    | 23.3524   | 86.4737   | 6R02                   | EW           | 202.5                       | 7.6                             | 8.1                     | 95.90-98.90                                                   | N/A                 | 0.30               | N/A | N/A |
| Purulia-II          | Charrah                    | 23.3707   | 86.4193   | 6R02                   | EW           | 200.5                       | 9.27                            | 9.75                    | N/A                                                           | N/A                 | 0.20               | N/A | N/A |
| Raghunathpur-I      | Madhutali<br>(Borewell)    | 23.5037   | 86.7232   | GR02                   | EW           | NA                          | 54.18                           | N/A                     | 31.92-34.41                                                   | 3.93                | 0.33               | NA  | N/A |
| Raghunathpur-I      | Raghunathpur<br>(Borewell) | 23.5572   | 86.6805   | Granite                | EW           | NA                          | 70.35                           | N/A                     | 13.0-37.0,48.0-62.24                                          | N/A                 | 0.49               | N/A | N/A |
| Raghunathpur-I      | Raghunathpur<br>(Borewell) | 23.5572   | 86.6805   | Porphyritic<br>granite | EW           | N/A                         | 71                              | N/A                     | N/A                                                           | N/A                 | 0.69               | N/A | N/A |
| Raghunathpur-I      | Babugram<br>(Borewell)     | 23.583    | 86.7206   | Porphyritic<br>granite | EW           | N/A                         | 70.56                           | N/A                     | 34.46-37.45                                                   | 4.43                | 2.77               | N/A | N/A |
| Raghunathpur-<br>11 | Barasoni<br>(Borewell)     | 23.5584   | 86.662    | Hornblende<br>gneiss   | EW           | N/A                         | 48.75                           | N/A                     | N/A                                                           | 6.29                | 2.77               | NA  | N/A |
| Raghunathpur-<br>11 | Montore<br>(Borewell)      | 23.6075   | 86.5517   | Granite gneiss         | EW           | N/A                         | 55.18                           | N/A                     | 15.0-17.10,22.5-31.0                                          | 3.78                | 2.21               | NA  | N/A |
| Raghunathpur-<br>11 | Kanke<br>(Borewell)        | 23.5909   | 86.6016   | Granite gneiss         | EW           | N/A                         | 60.33                           | N/A                     | 16.0-18.0                                                     | 4.97                | 0.97               | N/A | N/A |
| Raghunathpur<br>11  | Chelyama<br>(Borewell)     | 23.6567   | 86.593    | Granite gneiss         | EW           | N/A                         | 72.5                            | N/A                     | 40.45-59.51                                                   | N/A                 | 0.08               | N/A | N/A |
| Santuri             | Santuri<br>(Borewell)      | 23.5505   | 86.8543   | Granite gneiss         | EW           | N/A                         | 30.3                            | N/A                     | 11.0-12.87                                                    | 2.79                | 0.97               | NA  | N/A |

.



Figure - 12.2: Map of proposed exploratory wells in the study area.

| Ta  | Table-12.2 : Details of proposed exploratory wells in Purulia district of West Bengal. |                  |          |           |           |          |           |          |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|------------------|----------|-----------|-----------|----------|-----------|----------|--|--|--|--|--|
| SL  | Block                                                                                  | Village          | Latitude | Longitude | Toposheet | Quadrant | Rock      | Proposed |  |  |  |  |  |
| No. |                                                                                        |                  |          |           | No.       |          | Туре      | Drill    |  |  |  |  |  |
|     |                                                                                        |                  |          |           |           |          |           | Depth    |  |  |  |  |  |
|     |                                                                                        |                  |          |           |           |          |           | (mbgl)   |  |  |  |  |  |
| 1   | Arsha                                                                                  | Palpal           | 23.3127  | 86.125418 | 73 I/3    | 3B       | Hard Rock | 200      |  |  |  |  |  |
| 2   | Arsha                                                                                  | Jhujhka          | 23.28028 | 86.27926  | 73 I/7    | 3A       | Hard Rock | 200      |  |  |  |  |  |
| 3   | Arsha                                                                                  | Mankiari         | 23.34672 | 86.126812 | 73 I/3    | 2B       | Hard Rock | 200      |  |  |  |  |  |
| 4   | Arsha                                                                                  | Gurahata         | 23.28209 | 86.203036 | 73 I/3    | 30       | Hard Rock | 200      |  |  |  |  |  |
| 5   | Bagmundi                                                                               | Gagi             | 23.19745 | 85.880944 | 73 E/16   | 1B       | Hard Rock | 200      |  |  |  |  |  |
| 6   | Bagmundi                                                                               | Dugdha           | 23.15732 | 85.954379 | 73 E/16   | 20       | Hard Rock | 200      |  |  |  |  |  |
| 7   | Bagmundi                                                                               | Chorda           | 23.22989 | 86.038969 | 73 I/4    | 1A       | Hard Rock | 200      |  |  |  |  |  |
| 8   | Bagmundi                                                                               | Banshidi         | 23.12317 | 86.115193 | 73 I/4    | 2B       | Hard Rock | 200      |  |  |  |  |  |
| 9   | Bagmundi                                                                               | Sarmali          | 23.20532 | 85.959491 | 73 E/16   | 10       | Hard Rock | 200      |  |  |  |  |  |
| 10  | Bagmundi                                                                               | Gobaria          | 23.18999 | 86.121235 | 73 I/4    | 1B       | Hard Rock | 200      |  |  |  |  |  |
| 11  | Bagmundi                                                                               | Sankupi          | 23.14885 | 86.058024 | 73 I/4    | 2A       | Hard Rock | 200      |  |  |  |  |  |
| 12  | Balarampur                                                                             | Parbad Kashitanr | 23.21964 | 86.212797 | 73 I/4    | 10       | Hard Rock | 200      |  |  |  |  |  |
| 13  | Balarampur                                                                             | Biramdih         | 23.06512 | 86.210008 | 73 I/4    | 30       | Hard Rock | 300      |  |  |  |  |  |
| 14  | Balarampur                                                                             | Kana             | 23.12355 | 86.210472 | 73 I/4    | 20       | Hard Rock | 200      |  |  |  |  |  |
| 15  | Barabazar                                                                              | Kudlung          | 23.03609 | 86.463778 | 73 I/8    | 30       | Hard Rock | 200      |  |  |  |  |  |
| 16  | Barabazar                                                                              | Raygara          | 23.1796  | 86.307147 | 73 I/8    | 1A       | Hard Rock | 200      |  |  |  |  |  |
| 17  | Bundwan                                                                                | Beko             | 22.87302 | 86.616226 | 73 J/9    | 2B       | Hard Rock | 200      |  |  |  |  |  |
| 18  | Bundwan                                                                                | Kuriapara        | 22.85168 | 86.474004 | 73 J/5    | 20       | Hard Rock | 200      |  |  |  |  |  |
| 19  | Bundwan                                                                                | Madhuban         | 22.76972 | 86.540002 | 73 J/9    | 3A       | Hard Rock | 200      |  |  |  |  |  |
| 20  | Bundwan                                                                                | Senkebasa        | 22.80497 | 86.463313 | 73 J/5    | 30       | Hard Rock | 200      |  |  |  |  |  |
| 21  | Bundwan                                                                                | Chilla           | 22.88407 | 86.517228 | 73 J/9    | 2A       | Hard Rock | 200      |  |  |  |  |  |
| 22  | Hura                                                                                   | Keshargarh       | 23.2888  | 86.539538 | 73 I/11   | 3A       | Hard Rock | 200      |  |  |  |  |  |

| able-12.2 : Details of | pro | posed ex | plorator | y wells in | Purulia | district o | f West B | enga |
|------------------------|-----|----------|----------|------------|---------|------------|----------|------|
|------------------------|-----|----------|----------|------------|---------|------------|----------|------|

| SL<br>No. | Block          | Village                 | Latitude | Longitude | Toposheet<br>No. | Quadrant   | Rock<br>Type | Proposed<br>Drill |
|-----------|----------------|-------------------------|----------|-----------|------------------|------------|--------------|-------------------|
|           |                |                         |          |           |                  |            |              | Depth<br>(mbgl)   |
| 23        | Hura           | Shamukgarya             | 23.2838  | 86.706858 | 73 I/11          | 30         | Hard Rock    | 200               |
| 24        | Joypur         | Dambera                 | 23.55773 | 86.059419 | 73 I/2           | 3A         | Hard Rock    | 200               |
| 25        | Joypur         | Ritudi                  | 23,44445 | 86.137502 | 73 I/3           | 1B         | Hard Rock    | 200               |
| 26        | Joypur         | Koshangi                | 23.51617 | 86.117982 | 73 I/2           | 3B         | Hard Rock    | 200               |
| 27        | Joypur         | Agharpur                | 23.43847 | 86.207219 | 73 I/3           | 10         | Hard Rock    | 200               |
| 28        | Joypur         | Upar Kahan              | 23.39655 | 86.190022 | 73 I/3           | 20         | Hard Rock    | 200               |
| 29        | Jhalda-I       | Pareshya                | 23.27697 | 85.873971 | 73 E/15          | 3B         | Hard Rock    | 200               |
| 30        | Jhalda-II      | Bararola                | 23.4319  | 86.033856 | 73 I/3           | lA         | Hard Rock    | 200               |
| 31        | Jhalda-II      | Gobindapur              | 23.31094 | 86.045011 | 73 I/3           | 3A         | Hard Rock    | 200               |
| 32        | Jhalda-II      | Haratan                 | 23.43413 | 85.970646 | 73 E/15          | 10         | Hard Rock    | 200               |
| 33        | Kashipur       | Kusumgora/ Ranjandi     | 23.39272 | 86.708718 | 73 I/11          | 20         | Hard Rock    | 200               |
| 34        | Kashipur       | Mahulkoka               | 23.44382 | 86.781224 | 73 I/15          | lA         | Hard Rock    | 200               |
| 35        | Kashipur       | Jorapukur /Sitarampur   | 23.47342 | 86.630634 | 73 I/11          | 1B         | Hard Rock    | 200               |
| 36        | Kashipur       | Aguibad                 | 23.44779 | 86.712436 | 73 I/11          | 10         | Hard Rock    | 200               |
| 37        | Manbazar-I     | Dhadika                 | 23.11298 | 86.693844 | 73 I/12          | 20         | Hard Rock    | 200               |
| 38        | Manbazar-II    | Chandanpur              | 22.96864 | 86.559523 | 73 J/9           | lA         | Hard Rock    | 200               |
| 39        | Manbazar-II    | Shusina                 | 22.94645 | 86.682225 | 73 J/9           | 10         | Hard Rock    | 200               |
| 40        | Manbazar-II    | Olgara                  | 22.97533 | 86.621338 | 73 J/9           | 1B         | Hard Rock    | 200               |
| 41        | Manbazar-II    | Kararbaid               | 23.03155 | 86.546974 | 73 I/12          | 3A         | Hard Rock    | 200               |
| 42        | Manbazar-II    | Sankura                 | 22.89261 | 86.686408 | 73 J/9           | 20         | Hard Rock    | 200               |
| 43        | Neturia        | Bhurkunrabari           | 23.68238 | 86.706393 | 73 I/10          | 10         | Hard Rock    | 200               |
| - 44      | Neturia        | Mahuda                  | 23.64826 | 86.705    | 73 I/10          | 20         | Hard Rock    | 200               |
| 45        | Neturia        | Bonra                   | 23.64937 | 86.812828 | 73 I/14          | 2A         | Hard Rock    | 200               |
| 46        | Para           | Pirma                   | 23.54407 | 86.450764 | 73 I/6           | 3C         | Hard Rock    | 200               |
| 47        | Para           | Charpatya               | 23.5256  | 86.390807 | 73 I/6           | 3B         | Hard Rock    | 200               |
| 48        | Para           | Sanar                   | 23.5273  | 86.53396  | 73 I/10          | 3A         | Hard Rock    | 200               |
| 49        | Puncha         | Chakia                  | 23.19169 | 86.712436 | 73 I/12          | 10         | Hard Rock    | 200               |
| 50        | Purulia-I      | Belkundi                | 23.38186 | 86.289021 | 73 I/7           | 2A         | Hard Rock    | 200               |
| 51        | Purulia-II     | Chitarpoka              | 23.43564 | 86.37547  | 73 I/7           | 18         | Hard Rock    | 200               |
| 52        | Purulia-II     | Raghudi                 | 23.44382 | 86.465172 | 73 I/7           | 10         | Hard Rock    | 200               |
| 53        | Ragunathpur-II | Santaldih               | 23.61248 | 86.474468 | 73 I/6           | 20         | Hard Rock    | 200               |
| 54        | Santuri        | Gorsika                 | 23.48174 | 86.846757 | 73 I/15          | 1B         | Hard Rock    | 200               |
| 55        | Santuri        | Madhukunda Alias Mokura | 23.60923 | 86.85187  | 73 I/14          | 2 <b>B</b> | Hard Rock    | 200               |
| 56        | Santuri        | Malibana                | 23.5639  | 86.801673 | 73 I/14          | 3A         | Hard Rock    | 200               |

**Ground Water Monitoring Data :** For 1st aquifer (un-confined/Phreatic), one open/dug wellsis recommended for each quadrant of a toposheet. For 2<sup>nd</sup>aquifer (fractured zone) the OW constructed may be used as piezometers for GW monitoring.Topo-sheetsatspatial scale of 5' x 5' grids have been considered for plotting and analysis of the gap in the study area.

Presently in Purulia there are 102 existing NHS wells (101 Dug wells & 1 bore well) which are monitored four times a year. Figure 12.3 and Table 12.3 shows the distribution of NHS wells in the study area. A total of 42 wells tapping Aquifer-I are thereby recommended for bridging the data gap.For 2<sup>nd</sup> Aquifer, the Observation wells (OW) recommended along with the Exploratory wells may be used aspiezometers for

GW monitoring. Figure 12.4 and Table 12.4 presents the recommended NHS wells in different parts of the study area.



Figure-12.3: Map showing existing NHS wells in Purulia district of West Bengal

| SI<br>Na | Block      | Village     | Well no. | Well<br>Type | MP   | Latitude  | Longitude | RL             | Location                                                                           |
|----------|------------|-------------|----------|--------------|------|-----------|-----------|----------------|------------------------------------------------------------------------------------|
| 1        | Arsha      | Arsha       | WBPLOS   | Dug          | 0.32 | 23.322406 | 86.158107 | 33 <u>2</u> .3 | Within the Forest Beat office & opp. to Arsha P.S.                                 |
| 2        | Arsha      | Kantadihi   | WBPL29   | Dug          | 0.51 | 23.217356 | 86.298971 | 206.65         | Inside sub-health centre appraochable from Arsha.                                  |
| 3        | Arsha      | Aharrah     | WBP143   | Dug          | 0.84 | 23.29433  | 86.200712 | 226.33         | Located at Aharaha more at Hari Nandir opp. to U.B.L                               |
| 4        | Arsha      | Sirkabad    | WBPL44B  | Dug          | 0.5  | 23.274027 | 86.1956   | 227.99         | About 50 m North West of PHC main building within open field. Located backside of  |
|          |            |             |          |              |      |           |           |                | OPD buiding &water supply for domestic use.                                        |
| 5        | Arsha      | Hansla More | WBPL096  | Dug          | 0.64 | 23.279444 | 86.259949 | 206.96         | RHS of Tawna More - Arsha road, adjacent the house of Baridas Kaibarta. About 6 km |
|          |            |             |          |              |      |           |           |                | from Pandrama                                                                      |
| 6        | Baghmundi  | Nathbura    | WBPL37   | Dug          | 0.87 | 23.119536 | 86.075843 | 193.21         | Inside Forest Range Office, Rd approaching Balarampur.                             |
| - 7      | Baghmundi  | Korenge     | WBPL41   | Dug          | 0.68 | 23.236565 | 85.985109 | 198.29         | Backside of the Hospital.                                                          |
| 8        | Bagmundi   | Baghmundi   | WBPL09   | Dug          | 0.86 | 23.195178 | 86.048332 | 197.77         | In Baghmundi P.S. adjacent to Shiva Temple.                                        |
| 9        | Balarampur | Baraurma    | WBPL26   | Dug          | 0.72 | 23.164166 | 86.262704 | 205.17         | Inside school compound.                                                            |
| 10       | Balarampur | Namsole     | WBPL097  | Dug          | 0.62 | 23.130699 | 86.245471 | 199.98         | LHS of Tawna - Balarampur Rd., infront of of Sub - health centre . About 3 km from |
|          |            |             |          |              |      |           |           |                | Baraumra towards Balarampur                                                        |
| 11       | Balarampur | Dava        | WBPL098A | Dug          | 0.55 | 23.104287 | 86.139284 | 154.92         | LHS of Balarampur - Baghmundi Rd., adjacent to the house of Surya Kanta            |
|          |            |             |          |              |      |           |           |                | Kumar,about 7 km before Matha.                                                     |
| 12       | Balarampur | Balarampur  | WBPL114  | Dug          | 0.45 | 23.103991 | 86.228201 | 215.62         | Location not listed                                                                |
| 13       | Banduan    | Likimore    | WBPL082  | Dug          | 0.6  | 22.898297 | 86.475194 | 137.51         | Govt. well. LHS of Rd. 2.5 km before Banduan. Near Bus stand. Near house of Satish |
|          |            |             |          |              |      |           |           |                | Singh Sardar.                                                                      |
| 14       | Banduan    | Banduan     | WBPL101A | Dug          | 0.8  | 22.88642  | 86.509242 | 152.29         | RHS of Banduan - Manbazar Rd., compound of Hotel Samarat                           |
| 15       | Barabazar  | Takariya    | WBPL17A  | Dug          | 0.6  | 23.159837 | 86.348147 | 204.03         | On Rd.to Barabazar near the house of Sri Kandru Mahato.                            |
| 16       | Barabazar  | Sindri      | WBPL18   | Dug          | 0.64 | 23.043614 | 86.494011 | 131.77         | Near Primary Health Centre on Manbazar-Purulia Raod.                               |
| - 17     | Barabazar  | Barabazar   | WBPL48D  | Dug          | 0.7  | 23.028913 | 86.362432 | 145.31         | Inside hospital compound, located in front of " Indoor Patient" near pump house.   |

Table-12.3: List of details of Existing NHS wells in Purulia district of West Bengal.

| SI<br>Na | Block       | Village            | Well 10. | Well<br>Type | MP   | Latitude         | Longitude              | RL     | Location                                                                                                                                                       |
|----------|-------------|--------------------|----------|--------------|------|------------------|------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1104     |             |                    |          | 190          |      |                  |                        |        | Sardardih more Old KSP Well.                                                                                                                                   |
| 18       | Barabazar   | Bamundiha          | WBPL67   | Dug          | 0.7  | 23,11644         | 86.36552               | 170.5  | Within P.H.C. on Purulia - Nanbazar road.                                                                                                                      |
| 19       | Barabazar   | Bamundiha          | WBPL68   | DUĞ          | 0.5  | 23.113518        | 86.365424              | 191.17 | Within P.H.C. on Purulia - Manbazar road.                                                                                                                      |
| 20       | Barabazar   | Purihasa           | WBPL086  | Dug          | 0.5  | 23.067356        | 86.363933              | 162.03 | RIIS of Purulia - Barabazar road, before reaching Barabazar 1.50 m north from Hari<br>mandir, infront of house of Guru Mahato, 750 m from Kumari river Bridoe. |
| 21       | Barabazar   | Aga Jhore          | WBPL099  | Dug          | 0.65 | 23.044452        | 86.442333              | 134.12 | RIIS of Purulia - Manbazar Rd. , near the house of Sahadeb Mahato, about 5 km before<br>Sindri                                                                 |
| 22       | Bundwan     | Dhabani            | WBPL61   | Dug          | 0.55 | 22.926845        | 86.446175              | 162.18 | Summer<br>Near house of Sufi singh at Sardar Para, EHS of road from Bandwan to Barabazar, 8.5<br>Im form Bendwan, at the and of sillace                        |
| 93       | Hura        | Hura               | WRDLAS   | Duc          | 1.06 | 93 301199        | 86 669737              | 145.97 | NILIFOIL DAUGWAU, ACTUE CHO OF VILLAGE                                                                                                                         |
| 29       | Hura        | Keshar oarh        | WBP1.25  | Dug          | 0.6  | 23.269088        | 86.556936              | 159.17 | Annraoch from Kuloura on Purulia-Hura road, about Akm South of Kuloura and 10m                                                                                 |
|          | Huru        | Ladarda            | WDDI 071 | Dug          | 0.0  | 29.200000        | 00.990990              | 156.11 | SW of Janata Clothes Store.                                                                                                                                    |
| 29       | hura        | LUUUITKA           | WBPLZ7A  | Dug          | 0.03 | 25.591291        | 80.323223              | 174.0  | nisue ranaeya nue notei, atter crossing rrinnary meanin centre and nemance retroi<br>Pump, way to Purulia.                                                     |
| 26       | Hura        | Bishpuria          | WBPL39   | Dug          | 0.65 | 23.282697        | 86.741533              | 103    | Inside Bispuria Library-Sahitya Sadan, on Purulia-Bankura Road.                                                                                                |
| 27       | Hura        | Katagora           | WBPL64   | Dug          | 0.5  | 23.294402        | 86.630873              | 177.1  | Within P.H.C. campus. On Lalgon - Manbazar road.                                                                                                               |
| 28       | Hura        | Katagora           | WBPL65   | BW           | 0.5  | 23.294402        | 86.630873              | 177.1  | Within P.H.C. campus. On Lalgon - Manbazar road.                                                                                                               |
| 29       | Hura        | Lalpur             | WBPL074  | Dug          | 0.73 | 23.301914        | 86.631246              | 189.32 | Behind Dayal Onkareswar Shivalay Mandir. KHS of road from Lalpur to Bagda.<br>Tekchongora village.                                                             |
| 30       | Hura        | Katagora           | WBPL075  | Dug          | 0.45 | 23.294404        | 86.630853              | 175.75 | Owner - Sristi Dhar Mahato. LHS of road from Lalpur to Bagda.                                                                                                  |
| 31       | Hura        | Raheradhi          | WBPL076  | Dug          | 0.83 | 23.228441        | 86.645938              | 168.19 | RHS of road towards Bagda 1km. Beffore Napara. Near the residence of Ashok Dutta                                                                               |
|          | П           | K-l                | WDDLAGA  | Dece         | 0.67 | aa aaanar        |                        | 100.07 | (Uwner of dugwell), Satyajit Mess.                                                                                                                             |
| 32       | Hura        | Kulgara            | WBPLOS   | Dug          | 0.60 | 23.322030        | 86.989376<br>09.409710 | 180.97 |                                                                                                                                                                |
| 33       | Hura        | Duriakata          | WBPL084  | Dug          | 0.9  | 23.297736        | 86.688712              | 143.61 | KHS of Bispuria - Hura road, about 3 - to 4 km from Bispuria, " Dise" Shop, Hura G.P.<br>country Liquor shop of Mihir Mandi.                                   |
| 34       | Hura        | Kulabahal          | WBPL091  | Dug          | 0.65 | 23.303131        | 86.541829              | 164.73 | RHS of Keshargarh - Ludhurka road via Ground More. Back side of the house of Bairav,<br>Judhistir and Arun Mahato                                              |
| 35       | Hura        | Kumardihi          | WBPL108  | Dug          | 0.8  | 23.286871        | 86.720188              | 121.87 | in the house of Nirhakar Mondal.LHS of the road towards Puruliya after crosing<br>Birpuria near teliphone tower                                                |
| 36       | Hura        | Mongalpur          | WBPLIII  | Dug          | 1    | 23.314907        | 86.610959              | 150.33 | hside compound of new line hotel of Ripon Ghosh.LHS of road towards Puruliya & 2<br>km from Lalpur more                                                        |
| 37       | Hura        | Asanboni           | WBPL112  | Dug          | 0.7  | 23.308029        | 86.581673              | 170.69 | opposite H/O Swapan Mahato near Primary school RHS of the road to Keshargarh                                                                                   |
| 38       | Hura        | Gurda More         | WBPL113  | Dug          | 0.3  | 23.343019        | 86.557895              | 163.05 | Puruliya-Hura road LHS of road towards Puruliya and by the side of Yadav hotel                                                                                 |
| 39       | Hura        | Khairapihira       | WBPL116  | Dug          | 0.72 | 23.37112         | 86.591574              | 211    | Location not listed                                                                                                                                            |
| 40       | Jaypur      | Narayanpur         | WBPL21   | Dug          | 0.64 | 23.411132        | 86.211051              | 211.12 | At the entrance of P.W.D. I.B. at Narayanpur, left side on the paddy field.                                                                                    |
| 41       | Jhalda - 11 | Durgu              | WBPLOSS  | Dug          | 0.5  | 23.385372        | 86.012713              | 252.85 | 4 to 5 km towards Jhalda from Kotsila, LHS of road, adj. To Photo Binding of Sunil<br>Kumar.                                                                   |
| 42       | Jhalda-I    | Tulin              | WBPL12B  | Dug          | 0.58 | 23.379209        | 85.898152              | 196.78 | On the way to JOYSINSRAM IIIGH SCHOOL before crossing the railway level crossing in<br>the house of Shaktipada Mahato at Uppur para.                           |
| 43       | Jhalda-I    | Jhalda             | WBPL22A  | Dug          | 0.75 | 23.364384        | 85.960959              | 270.35 | Located in Satyabala Vidyapith (High School) on Tulin road. Depth - 9.00 m bmp; Dia -<br>3.73 m. M.P. 0.75 m agl. Changed on 4/02 by A.K.Chatterjee.           |
| - 44     | Jhalda-I    | Jhargo             | WBPL23   | Dug          | 0.65 | 23.308233        | 85.89469               | 208.23 | On Jhalda-Bagmundi Rd,inside village, 50m N of Ananda Marg School.                                                                                             |
| 45       | Jhalda-I    | Jhalda             | WBPL73   | Dug          | 0.5  | 23.363472        | 86.961469              | 224.6  | Adjacent to the hostel building of Satya Yama Vidyapith.                                                                                                       |
| 46       | Jhalda-11   | Kotshila           | WBPL07A  | Dug          | 0.75 | 23.404287        | 86.071455              | 248.17 | Inside BDO Office compound. On Purulia-Ranchi road.                                                                                                            |
| 47       | Joypur      | Joypur             | WBPL38A  | Dug          | 0.62 | 23.417232        | 86.143009              | 214.21 | Located in the Police Station Compound near bus stand opposite to U.B.L Just left side<br>after entrance. Depth - 13.00 m bmpdia - 1.23 m N.P. 0.62 m agl      |
| 48       | Joypur      | Joypur Forest More | WBPL092  | Dug          | 0.65 | 23.411831        | 86.189568              | 222.98 | LHS of Purulia - Jhalda road, back side of Shrinibas Dhaba and Karmokar Cement<br>Centre. Jovpur about 5 km                                                    |
| 49       | Kashipur    | Gaurandih          | WBPL14B  | Dug          | 0.6  | 23.434316        | 86.767264              | 119.12 | In the residence of Shri Sushil Patra, which is opposite to Gaurandih Junior High<br>School.                                                                   |
| 50       | Kashipur    | Indrabil           | WBPL24   | Dug          | 1    | 23.452539        | 86.774899              | 109.45 | Approach from Kashipur & inside the house of Gurupada just entering in the village. In the residence of Gurupada Bauri.                                        |
| 51       | Kashipur    | Simla              | WBPL40   | Dug          | 0.64 | 23.380268        | 86.646979              | 142.22 | On Kashipur-Hura Rd., within Majura-Amdiha High School.                                                                                                        |
| 52       | Kashipur    | Kapasitha          | WBPL53B  | Dug          | 0.77 | 23.434846        | 86.72364               | 97.63  | In the compound of Ma. Manikeswari-light house(r) Owner-Pyt Shri Jadhubir Mahato.                                                                              |
| 53       | Kashipur    | Napara             | WBPL54   | Dug          | 0.75 | 23.430372        | 86.662776              | 120.8  | Inside Forest guard's Quarter at Nawapara on Kashipur-Hura Road.                                                                                               |
| 54       | Kashipur    | Rangani            | WBPL70   | Dug          | 0.8  | 23.483566        | 86.671395              | 111.34 | Opposite to vetanary hospital on Adra - Kashipur road.                                                                                                         |
| 55       | Kashipur    | Palash Kola        | WBPL104  | Dug          | 0.62 | 23.490689        | 86.670035              | 131.88 | LHS of Adra - Kashipur Rd. near the house of Shibram Dubey, Just entrance of<br>Kashipur Rd. from Adra                                                         |
| 56       | Kotshila    | Nowahatu           | WBPL093  | Dug          | 0.66 | 23.427401        | 86.054567              | 269.41 | RUS of Kotshila - Barurula road, at the farm of Lalbahadur Rajwar. Barurala about 5<br>km                                                                      |
| 57       | Kotshila    | Ukma               | WBPL094  | Dug          | 0.64 | 23.423116        | 86.037756              | 267.74 | RHS of Bararula - Durgu road, back side of Shiva Mandir. Durgu about 5 km                                                                                      |
| 58       | Manbazar    | Gopalnagar         | WBPL087  | Dug          | 0.4  | 23.137127        | 86.585397              | 109.89 | On Manbazar - Purulia road, after crossing Goplanagar village, besides Gopalnagar                                                                              |
|          |             |                    |          |              |      |                  |                        |        | Siva mandir & Kali Mandir.                                                                                                                                     |
| 59       | Manbazar-I  | Sindurpur          | WBPL102  | Dug          | 0.64 | 23.121968        | 86.609792              | 126.24 | RHS of Jitujuri - Kunda - Purulia Rd., near the house of Budheswar Mahato. After 1 km<br>from Jitjuri                                                          |
| 60       | Manbazar-I  | Manbazar           | WBPL01   | Dug          | 0.7  | <u>23.059361</u> | 86.659135              | 114.22 | Inside Manbazar Police Station.                                                                                                                                |
| 61       | Nanbazar-I  | Budpur             | WBPL115  | Dug          | 0.7  | 23.108825        | 86.66023               | 83.52  | Location not listed                                                                                                                                            |

| SI<br>Na | Block                      | Village                  | Well no.          | Well<br>Type | MP          | Latitude                | Longitado                | RL     | Location                                                                                                                                                                                                          |
|----------|----------------------------|--------------------------|-------------------|--------------|-------------|-------------------------|--------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 62       | Manbazar-II                | Ankro                    | WBPL62            | Dug          | 0.58        | 22.912271               | 86.550649                | 121    | In the premises of PHC, near pump house behind main hospital building.Ankro village is<br>6 km from Randwan on Manhazar road                                                                                      |
| 63       | Manhazar-II                | Khariduvara              | WBPL69            | Duø          | 0.7         | 22.988664               | 86.629541                | 103.69 | Vithin P.H.C. campus. On Barahazar - Manhazar road.                                                                                                                                                               |
| 64       | Neturia                    | Sarbori                  | WBPL56            | Dug          | 0.8         | 23.649641               | <b>86.814248</b>         | 81.16  | Inside commercial check post on Raghunathpur-Barakar Rd.                                                                                                                                                          |
| 65       | Neturia                    | Gobag                    | WBPL58            | Dug          | 0.73        | 23.591949               | 86.762734                | 102.58 | Located at the entrance of the village adj. to Purulia-Bankura Rd. in front of Haradhan<br>Garai's (vele reparing Shop.                                                                                           |
| 66       | Nituria                    | Nituria                  | WBPL63            | Dug          | 1.08        | 23.662027               | 86.824667                | 56.29  | In the campus of Shiva Temple. Opposite to Nituria Police Station. (new well from Nov<br>2010)                                                                                                                    |
| 67       | Para                       | Anara                    | WBPL05            | Dug          | 0.84        | 23.491296               | 86.56469                 | 153.21 | Inside the compd of 33 KV sub-station, just after the Chapuri gate on Raghunathpur-<br>Purulia road.                                                                                                              |
| 68       | Para                       | Para                     | WBPL33A           | Dug          | 3.74        | 23.510533               | 86.515082                | 159.05 | LHS of road from Para to Dubra, near bus stand, adjacent to the house of Subhash<br>Modak, in front of the shon Gamri Sankar Sweets.                                                                              |
| 69       | Para                       | Dubra                    | WBPL34            | Dug          | 1           | 23.543654               | 86.520021                | 128.35 | Within Dubra market, adj. to Dubra Readymade Store & Anil Tailoring Shop on<br>Raghunathpur Santaldih Road and adj to M.M.Cloth store and oppo. to Ice Cream<br>Factory on Dubrá-Samtaldih road.                  |
| 70       | Para                       | Jhapra                   | WBPL46            | Dug          | 0.49        | 23.470346               | 86.513335                | 147.56 | Within High School compd on Raghunathpur-Purulia Rd.                                                                                                                                                              |
| 71       | Para                       | Deuli                    | WBPL55A           | Dug          | 0.55        | 23.56329                | <b>86.468192</b>         | 112.58 | Located in the house of Shri Gour Mahato. Just opposite to Tarun Granthagar (Library)<br>on Santaldih road. Depth - 10.50 mdia - 1.50 m M.P. 0.35 m agl.                                                          |
| 72       | Para                       | Kashiberia               | WBPL083           | Dug          | 0.7         | 23.544095               | 86.549105                | 123.16 | Govt. well near Keshiberia School. RHS of Rd. towards Babugram. 3 km from Dubra.                                                                                                                                  |
| 73       | Puncha                     | Kenda                    | WBPL15A           | Dug          | 0.95        | 23.192502               | 86.520563                | 187.17 | In the residence of Shri Sukhdeb Mahato opposite to Pally Seva Sangha at Sardardih<br>more                                                                                                                        |
| - 74     | Puncha                     | Bagda                    | WBPL20            | Dug          | 0.67        | 23.195973               | 86.684726                | 139.65 | Just behind primary health centre. On Hura-Manbazar Rd.                                                                                                                                                           |
| 75       | Puncha                     | Panipathar               | WBPL071           | Dug          | 0.95        | 23.210134               | 86.487155                | 172.6  | On the midway from Purulia to Manbazar, 17 km from Chakaltore. Near Panipathar<br>more Bus stand behind M.K.Nerox & Photo printing and New Era Machines.                                                          |
| 76       | Puncha                     | Chakgopalpur/Napara      | WBPL077           | Dug          | 0.9         | 23.228124               | 86.647035                | 143.68 | Govt. well (LDW-1960). Adjacent to the house of Sapan Mahato. RHS of road towards<br>Bagda.                                                                                                                       |
| 77       | Puncha                     | Kulgara                  | WBPL079           | Dug          | 0.8         | 23.328183               | 86.586637                | 168.68 | Behind bela Sriti Path mondir. Near the Signboard Kulgara Sankaryacharya Mission<br>Vidyamandir. RHS of road towards Keshargar.                                                                                   |
| 78       | Puncha                     | Puncha                   | WBPL085           | Dug          | 0.7         | 23.164032               | 86.655195                | 126.35 | Inside Puncha Police Station.                                                                                                                                                                                     |
| 79       | Puncha                     | Damodarpur               | WBPL089           | Dug          | 0.67        | 23.207322               | 86.666415                | 142.99 | LHS of road from Lalpur to Bagdah infront of the house of Abhiram Sais                                                                                                                                            |
| 80       | Puncha                     | Loulara                  | WBPL090           | Dug          | 0.58        | 23.173953               | 86.66955                 | 157.42 | LAIS of Bagdab - Puneha road infront of the house of Sukumar Banerjee, about 4 km<br>from Bagdah                                                                                                                  |
| 81       | Puncha                     | Matha                    | WBPL103           | Dug          | 0.57        | 23.158048               | 86.545656                | 154.77 | RHS of Banduan Kendra Rd., near the house of Atul Ch. Mahato                                                                                                                                                      |
| 82       | Puncha                     | Taltal                   | WBPL107           | Dug          | 0.5         | 23.211415               | 86.433191                | 175.32 | LAIS of Manbazar - Puncha Road near open ground of Hat Bazar after Pampathar.<br>200m away from Kali Mandir.                                                                                                      |
| 83       | Puncha                     | Dadki                    | WBPL110           | Dug          | 1           | 23.177938               | 86.67714                 | 138.79 | In front of II/o Devnath Dutta L.H.S. Of road towards Purcha 2.5 km before Purcha P.S                                                                                                                             |
| 84       | Puruha                     | Sankhari                 | WBPLIOO           | Dug          | 0.68        | 23.096084               | 86.360499                | 169.1  | LAIS of Bamundiha - Garabazar Kd. near the house of Bhuson Mahto, about 3 km before<br>Barabazar                                                                                                                  |
| 85<br>86 | Purulia - I<br>Dunulia - I | lmundi<br>Dendreme       | WBPL66<br>WDDL007 | Dug          | 0.75        | 23.393683<br>aa ac soar | 86.275304<br>se aa710e   | 218.47 | On Puruha - Jhalda road. Opposite to the approach road for Gourinath Dham Rly. Stn.                                                                                                                               |
| 00<br>07 | Puruna - I                 | randrama<br>Dhahalada    | WBPL 100          | Dug          | 0.00        | 29.208999               | 80.827100                | 181.09 | Lins of Puruna - Arsnar road, opposite side of meanin centre and adjacent of Smriti Bed<br>mother of Dulal Mahato.3 km from Tawna More.                                                                           |
| 84<br>80 | PUFUNA - I                 | DAODAKALA                | WBPLIUD           | Dug          | 0.69        | 23.333432               | Sb.3774S9                | 1/1.81 | LIIS OF BANKUFA - PUPUNA 65-pass, after crossing the hyper kanway track, near the<br>house of Sarbeswar Kalindi at Harijan colony                                                                                 |
| 88       | Purulia-l<br>Duvulia I     | Puruha(Belguma)<br>Tempe | WBPL04<br>WDD1 av | Dug          | 0.65        | 23.321875<br>aa amerika | 86.343006<br>96.950064   | 183.99 | Just left side of the entrance of Agri. Irrigation Office at Belguma, Puruha.                                                                                                                                     |
| 00<br>09 | ruruna-i<br>Duruha.i       | Tallilla<br>Chakaltoro   | WDFL28<br>WRDL45  | Dug          | 0.9<br>0.04 | 29.279042<br>93.936935  | 50.530304<br>\$6.35919\$ | 199,29 | At Tallina more within the nouse of Subat Aumkari & Datk She of nouel.<br>Incide Deimary Health Contro                                                                                                            |
| 91       | Purulia-11                 | Kustar                   | WBPL32            | Dug          | 0.49        | 23.404799               | 86.453162                | 200.26 | nision r rinney income contex.<br>Within Health Centre, at its entrance adj. to Doctors' Quarter near outdoor. On<br>Raubunathnur Purulia read                                                                    |
| 92       | Purulia-11                 | Podalaroad               | WBPL50            | Dug          | 0.43        | 23.369513               | 86.400155                | 199.97 | On Puruliá-Raghunathpur Rd.near the house of Anil Bauri Hariian Para.                                                                                                                                             |
| 93       | Raghunathpur-I             | Bero                     | WBPL31A           | Dug          | 0.35        | 23.525901               | 86.754148                | 124.77 | On Saltora-Raghunathpur road, near bus stand 10 K.m. from Raghunathpur towards<br>Saltora at Kharbora, near Rawi nara, Dooth - 900 m hundia - 9,00 m U P /0 35 m aoi                                              |
| 94       | Raghunathpur-I             | Naduara                  | WBPL47            | Dug          | 0.2         | 23.522744               | 86.67948                 | 118.36 | Inside Raghunathpur LT.I compd, on Raghunathpur-Adra road.                                                                                                                                                        |
| 95       | Raghunathpur-I             | Chinpina                 | WBPL49            | Dug          | 0.69        | 23.535127               | 86.696097                | 106.55 | By the side of Purulia-Bankura rd just at the entrance of the village from<br>Raohunathour & adi to Hari Mandir & house of Badal Rauri.                                                                           |
| 96       | Raghunathpur-I             | Babugram                 | WBPL52            | Dug          | 0.72        | 23.53613                | 86.603018                | 132.41 | Inside Babugram Primary Health Centre, near Doctors' Quarter on Raghunathpur-<br>Santalib road                                                                                                                    |
| 97       | Raghunathpur-II            | Raghunathpur             | WBPL13            | Dug          | 0.71        | 23.545405               | 86.674557                | 113.59 | In the compound of P.W.D.LB.                                                                                                                                                                                      |
| 98       | Rampur                     | Dangardi                 | WBPL19A           | Dug          | 0.78        | 22.948402               | 86.600192                | 133.69 | Opposite to Dangardi Junior Basic School, adjacent to 11/0 Abani Mahato.Located on<br>the left side of road from Dangardi to Sindri, 250 m from Dangardi more on Manbazar<br>to Bandwan road, 1 km before Rampur. |
| 99       | Santuri                    | Leadson                  | WBPL30            | Dug          | 0.63        | 23.519919               | 86.828932                | 131.95 | On Saltora-Raghunathpur road & adj.to the house oæ Atika Mondal.12 km from Saltora<br>towards Raghunathpur(r) Behipd Nihiiam Clinic.                                                                              |
| 100      | Santuri                    | Balitora                 | WBPL42            | Dug          | 0.61        | 23.629301               | 86.855853                | 57.99  | On Neturia-Saltora Rd, at the Bus Stand near house of Shri Gouri Pada Mitra.                                                                                                                                      |
| 101      | Santuri                    | Santuri                  | WBPL105           | Dug          | 0.34        | 23.524307               | 86.856579                | 128.33 | LHS of Raghunathpur - Bankura Rd., back side of Telephone Tower, uear Tarun<br>Sangha and Police station, after Leadason                                                                                          |
| 102      | Tuncha                     | Damodarpur               | WBPL109           | Dug          | 0.6         | 23.201558               | <u>86.668829</u>         | 142.61 | RHS of road towards Purcha 7 near house compound of Dwga Charam Mahato & opp<br>LC.D.S. Center                                                                                                                    |



Figure-12.4: Map showing recommended NHS wells in Purulia district of West Bengal.

| SI. | Block       | Location        | Latitude | Longitude | Toposheet | Quadrant |
|-----|-------------|-----------------|----------|-----------|-----------|----------|
| No  |             |                 |          |           | No.       | No.      |
| 1   | Manbazar-II | Kutni           | 22.979   | 86.556    | 73J/9     | 1A       |
| 2   | Manbazar-II | Durgadi         | 22.953   | 86.686    | 73J/9     | 10       |
| 3   | Manbazar-II | Sankura         | 22.89    | 86.688    | 73J/9     | 20       |
| 4   | Bundwan     | Madhuban        | 22.779   | 86.546    | 73J/9     | 3A       |
| 5   | Bundwan     | Churku          | 22.816   | 86.599    | 73J/9     | 3B       |
| 6   | Bundwan     | Digha           | 22.783   | 86.524    | 73J/10    | 1A       |
| 7   | Bundwan     | Dangarjuri      | 22.802   | 86.465    | 73J/5     | 30       |
| 8   | Jhalda-I    | Piprajara       | 23.441   | 85.891    | 73E/15    | 1B       |
| 9   | Jhalda-II   | Lakshmipur      | 23.436   | 85.972    | 73E/15    | 10       |
| 10  | Jhalda-I    | Luskudih-Dantia | 23.283   | 85.959    | 73E/15    | 30       |
| 11  | Baghmundi   | Suisa           | 23.192   | 85.899    | 73E/16    | 1B       |
| 12  | Baghmundi   | Karihensa       | 23.195   | 85.953    | 73E/16    | 10       |
| 13  | Baghmundi   | Kantadih        | 23.151   | 85.936    | 73E/16    | 20       |
| 14  | Joypur      | Dambera         | 23.559   | 86.051    | 73I/2     | 3A       |
| 15  | Joypur      | Sidhu           | 23.546   | 86.109    | 73I/2     | 3B       |
| 16  | Jhalda-II   | Damra           | 23.467   | 86.11     | 73I/3     | 18       |
| 17  | Joypur      | Selani          | 23.441   | 86.193    | 73I/3     | 10       |
| 18  | Jhalda-II   | Baradi          | 23.311   | 86.043    | 73I/3     | 3A       |

| Table-12.4 : Details of | proposed N | HS wells in Puruli | a district of West Bengal. |
|-------------------------|------------|--------------------|----------------------------|
|-------------------------|------------|--------------------|----------------------------|

| SI. | Block          | Location            | Latitude | Longitude | Toposheet | Quadrant |
|-----|----------------|---------------------|----------|-----------|-----------|----------|
| No  |                |                     |          | 0         | No.       | No.      |
| 19  | Baghmundi      | Ajhodya Hill        | 23.22    | 86.119    | 73I/4     | 1B       |
| 20  | Balarampur     | Kana                | 23.129   | 86.213    | 73I/4     | 10       |
| 21  | Balarampur     | Baraha Chatarma     | 23.066   | 86.154    | 73I/4     | 3B       |
| 22  | Balarampur     | Jagadih             | 23.057   | 86.208    | 73I/4     | 30       |
| 23  | Ragunathpur-II | Nabagram            | 23.618   | 86.469    | 73I/6     | 20       |
| 24  | Para           | Tetalta             | 23.527   | 86.396    | 73I/6     | 3B       |
| 25  | Puruli-I       | Gondhudi            | 23.427   | 86.273    | 73I/7     | 1A       |
| 26  | Puruli-II      | Chainpur            | 23.442   | 86.368    | 73I/7     | 1B       |
| 27  | Puruli-II      | Ragudih             | 23.438   | 86.459    | 73I/7     | 10       |
| 28  | Puruli-II      | Dubcharka           | 23.311   | 86.445    | 73I/7     | 30       |
| 29  | Barabazar      | Ulda                | 23.12    | 86.454    | 73I/8     | 20       |
| 30  | Barabazar      | Ramkanali           | 23.042   | 86.311    | 73I/8     | 3A       |
| 31  | Neturia        | Kalipathar          | 23.68    | 86.706    | 73I/10    | 10       |
| 32  | Ragunathpur-II | Sagarka             | 23.601   | 86.547    | 73I/10    | 2A       |
| 33  | Ragunathpur-II | Barra               | 23.626   | 86.599    | 73I/10    | 2B       |
| 34  | Ragunathpur-I  | Salanchi            | 23.601   | 86.704    | 73I/10    | 20       |
| 35  | Kashipur       | Kusumgora/ Ranjandi | 23.387   | 86.705    | 73I/11    | 20       |
| 36  | Manbazar-I     | Bagdega             | 23.105   | 86.541    | 73I/12    | 2A       |
| 37  | Manbazar-I     | Dhadika             | 23.107   | 86.699    | 73I/12    | 20       |
| 38  | Manbazar-II    | Nalkundi            | 23.033   | 86.552    | 73I/12    | 3A       |
| 39  | Manbazar-I     | Udaypur             | 23.059   | 86.699    | 73I/12    | 30       |
| 40  | Neturia        | Saltore             | 23.677   | 86.802    | 73I/14    | 1A       |
| 41  | Santuri        | Gorsika             | 23.488   | 86.849    | 73I/15    | 18       |
| 42  | Kashipur       | Paharpur            | 23.376   | 86.777    | 73I/15    | 2A       |
| 43  | Kashipur       | Hadalda             | 23.32    | 86.757    | 73I/15    | 3A       |
| 44  | Puncha         | Chorrdi             | 23.219   | 86.763    | 73I/16    | 1A       |

**Groundwater quality data :** The norms for data required for groundwater quality is similar to that of Ground Water Monitoring. Water samples collected from every existing NHS stations as well as from the recommended NHS wells could be utilized for quality analysis.

**Geophysical data :** It is recommended that 2 to 3 Profiling/VES/TEM soundings upto 200 meterinterpretation depth should be carried out in each of the nine quadrants of thetoposheet totalling to 18 to 27 nos. in each sheet to decipher aquifer geometry. A total of 249VES is recommended to carry out in the study area. The recommendation for VES is presented in Figure 12.5 & Table 12.5.



Figure-12.5: Map showing recommended sites for VES/TEM in Purulia district of West Bengal

| Sl.<br>No. | Toposheet<br>No. | Quadrant | No. of<br>VES | Aquifer Type          |
|------------|------------------|----------|---------------|-----------------------|
| 1          | 73J/5            | 1C       | 1             | Aquifer-I, Aquifer-II |
| 2          | 73J/5            | 2C       | 3             | Aquifer-I, Aquifer-II |
| 3          | 73J/5            | 3C       | 2             | Aquifer-I, Aquifer-II |
| 4          | 73J/9            | 1A       | 3             | Aquifer-I, Aquifer-II |
| 5          | 73J/9            | 1B       | 3             | Aquifer-I, Aquifer-II |
| 6          | 73J/9            | 1C       | 2             | Aquifer-I, Aquifer-II |
| 7          | 73J/9            | 2A       | 3             | Aquifer-I, Aquifer-II |
| 8          | 73J/9            | 2B       | 3             | Aquifer-I, Aquifer-II |
| 9          | 73J/9            | 2C       | 1             | Aquifer-I, Aquifer-II |
| 10         | 73J/9            | 3A       | 3             | Aquifer-I, Aquifer-II |
| 11         | 73J/9            | 3B       | 1             | Aquifer-I, Aquifer-II |
| 12         | 73J/10           | 1A       | 1             | Aquifer-I, Aquifer-II |
| 13         | 73E/15           | 1B       | 2             | Aquifer-I, Aquifer-II |
| 14         | 73E/15           | 1C       | 2             | Aquifer-I, Aquifer-II |
| 15         | 73E/15           | 2B       | 2             | Aquifer-I, Aquifer-II |
| 16         | 73E/15           | 2C       | 3             | Aquifer-I, Aquifer-II |
| 17         | 73E/15           | 3B       | 3             | Aquifer-I, Aquifer-II |
| 18         | 73E/15           | 3C       | 3             | Aquifer-I, Aquifer-II |
| 19         | 73E/16           | 1B       | 3             | Aquifer-I, Aquifer-II |
| 20         | 73E/16           | 1C       | 3             | Aquifer-I, Aquifer-II |

| No.         VES           21         73E/16         2C         2         Aquifer-I, Aquifer-II           22         73I/2         3A         2         Aquifer-I, Aquifer-II           23         73I/2         3B         3         Aquifer-I, Aquifer-II           24         73I/3         1A         3         Aquifer-I, Aquifer-II           25         73I/3         1B         3         Aquifer-I, Aquifer-II           26         73I/3         2A         3         Aquifer-I, Aquifer-II           27         73I/3         2A         3         Aquifer-I, Aquifer-II           28         73I/3         2C         3         Aquifer-I, Aquifer-II           30         73I/3         3A         3         Aquifer-I, Aquifer-II           31         73I/3         3C         3         Aquifer-I, Aquifer-II           34         73I/4         1A         3         Aquifer-I, Aquifer-II           35         73I/4         1C         3         Aquifer-I, Aquifer-II           36         73I/4         2A         1         Aquifer-I, Aquifer-II           37         73I/4         2C         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sl. | Toposheet | Quadrant | No. of | Aquifer Type          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|----------|--------|-----------------------|
| 21         73E/16         2C         2         Aquifer-I, Aquifer-I, Aquifer-II           23         73I/2         3A         2         Aquifer-I, Aquifer-II           24         73I/3         1A         3         Aquifer-I, Aquifer-II           25         73I/3         1B         3         Aquifer-I, Aquifer-II           26         73I/3         1C         2         Aquifer-I, Aquifer-II           27         73I/3         2B         3         Aquifer-I, Aquifer-II           28         73I/3         2C         3         Aquifer-I, Aquifer-II           30         73I/3         3A         3         Aquifer-I, Aquifer-II           31         73I/3         3C         3         Aquifer-I, Aquifer-II           32         73I/3         3C         3         Aquifer-I, Aquifer-II           33         73I/4         1A         3         Aquifer-I, Aquifer-II           34         73I/4         1B         3         Aquifer-I, Aquifer-II           35         73I/4         2A         1         Aquifer-I, Aquifer-II           36         73I/4         2B         3         Aquifer-I, Aquifer-II           37         73I/4         2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. | No.       |          | VES    |                       |
| 22         731/2         3A         2         Aquifer-I, Aquifer-II           23         731/2         3B         3         Aquifer-I, Aquifer-II           24         731/3         1A         3         Aquifer-I, Aquifer-II           25         731/3         1B         3         Aquifer-I, Aquifer-II           26         731/3         2A         3         Aquifer-I, Aquifer-II           27         731/3         2A         3         Aquifer-I, Aquifer-II           28         731/3         2B         3         Aquifer-I, Aquifer-II           30         731/3         3A         3         Aquifer-I, Aquifer-II           31         731/3         3C         3         Aquifer-I, Aquifer-II           32         731/4         1A         3         Aquifer-I, Aquifer-II           33         731/4         1C         3         Aquifer-I, Aquifer-II           34         731/4         1C         3         Aquifer-I, Aquifer-II           35         731/4         2A         1         Aquifer-I, Aquifer-II           36         731/4         2C         3         Aquifer-I, Aquifer-II           37         731/4         3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21  | 73E/16    | 2C       | 2      | Aquifer-I, Aquifer-II |
| 23         731/2         3B         3         Aquifer-I, Aquifer-II           24         731/3         1A         3         Aquifer-I, Aquifer-II           25         731/3         1B         3         Aquifer-I, Aquifer-II           26         731/3         2A         3         Aquifer-I, Aquifer-II           27         731/3         2A         3         Aquifer-I, Aquifer-II           28         731/3         2C         3         Aquifer-I, Aquifer-II           30         731/3         3A         3         Aquifer-I, Aquifer-II           31         731/3         3C         3         Aquifer-I, Aquifer-II           32         731/3         3C         3         Aquifer-I, Aquifer-II           34         731/4         1B         3         Aquifer-I, Aquifer-II           35         731/4         1A         3         Aquifer-I, Aquifer-II           36         731/4         2B         3         Aquifer-I, Aquifer-II           37         731/4         2C         3         Aquifer-I, Aquifer-II           38         731/4         2C         3         Aquifer-I, Aquifer-II           39         731/4         3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22  | 73I/2     | 3A       | 2      | Aquifer-I, Aquifer-II |
| 24         731/3         1A         3         Aquifer-I, Aquifer-II           25         731/3         1C         2         Aquifer-I, Aquifer-II           26         731/3         1C         2         Aquifer-I, Aquifer-II           27         731/3         2A         3         Aquifer-I, Aquifer-II           28         731/3         2C         3         Aquifer-I, Aquifer-II           30         731/3         3A         3         Aquifer-I, Aquifer-II           31         731/3         3B         3         Aquifer-I, Aquifer-II           32         731/3         3C         3         Aquifer-I, Aquifer-II           33         731/4         1B         3         Aquifer-I, Aquifer-II           34         731/4         1B         3         Aquifer-I, Aquifer-II           35         731/4         1C         3         Aquifer-I, Aquifer-II           36         731/4         2A         1         Aquifer-I, Aquifer-II           37         731/4         2C         3         Aquifer-I, Aquifer-II           38         731/4         3C         3         Aquifer-I, Aquifer-II           40         731/7         1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23  | 73I/2     | 3B       | 3      | Aquifer-I, Aquifer-II |
| 25         731/3         1B         3         Aquifer-I, Aquifer-II           26         731/3         1C         2         Aquifer-I, Aquifer-II           27         731/3         2A         3         Aquifer-I, Aquifer-II           28         731/3         2B         3         Aquifer-I, Aquifer-II           29         731/3         3A         3         Aquifer-I, Aquifer-II           30         731/3         3C         3         Aquifer-I, Aquifer-II           31         731/3         3C         3         Aquifer-I, Aquifer-II           32         731/4         1A         3         Aquifer-I, Aquifer-II           33         731/4         1B         3         Aquifer-I, Aquifer-II           34         731/4         2A         1         Aquifer-I, Aquifer-II           35         731/4         2B         3         Aquifer-I, Aquifer-II           36         731/4         2B         3         Aquifer-I, Aquifer-II           37         731/4         2B         3         Aquifer-I, Aquifer-II           38         731/4         3C         3         Aquifer-I, Aquifer-II           40         731/4         3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24  | 73I/3     | 1A       | 3      | Aquifer-I, Aquifer-II |
| 26         731/3         1C         2         Aquifer-I, Aquifer-II           27         731/3         2A         3         Aquifer-I, Aquifer-II           28         731/3         2B         3         Aquifer-I, Aquifer-II           29         731/3         3A         3         Aquifer-I, Aquifer-II           30         731/3         3A         3         Aquifer-I, Aquifer-II           31         731/3         3C         3         Aquifer-I, Aquifer-II           32         731/4         1A         3         Aquifer-I, Aquifer-II           33         731/4         1B         3         Aquifer-I, Aquifer-II           34         731/4         1C         3         Aquifer-I, Aquifer-II           35         731/4         1C         3         Aquifer-I, Aquifer-II           36         731/4         2B         3         Aquifer-I, Aquifer-II           37         731/4         2B         3         Aquifer-I, Aquifer-II           38         731/4         3C         3         Aquifer-I, Aquifer-II           40         731/4         3C         3         Aquifer-I, Aquifer-II           41         731/7         1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25  | 73I/3     | 1B       | 3      | Aquifer-I, Aquifer-II |
| 27         731/3         2A         3         Aquifer-I, Aquifer-II,           28         731/3         2B         3         Aquifer-I, Aquifer-II,           29         731/3         3A         3         Aquifer-I, Aquifer-II,           30         731/3         3A         3         Aquifer-I, Aquifer-II,           31         731/3         3C         3         Aquifer-I, Aquifer-II,           32         731/4         1A         3         Aquifer-I, Aquifer-II,           33         731/4         1B         3         Aquifer-I, Aquifer-II           34         731/4         1B         3         Aquifer-I, Aquifer-II           35         731/4         2A         1         Aquifer-I, Aquifer-II           36         731/4         2A         1         Aquifer-I, Aquifer-II           37         731/4         2B         3         Aquifer-I, Aquifer-II           38         731/4         3B         1         Aquifer-I, Aquifer-II           40         731/4         3B         1         Aquifer-I, Aquifer-II           40         731/4         3C         3         Aquifer-I, Aquifer-II           41         731/6         3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26  | 731/3     | 1C       | 2      | Aquifer-I, Aquifer-II |
| 28         731/3         2B         3         Aquifer-I, Aquifer-II,           29         731/3         2C         3         Aquifer-I, Aquifer-II,           30         731/3         3B         3         Aquifer-I, Aquifer-II           31         731/3         3B         3         Aquifer-I, Aquifer-II           32         731/3         3C         3         Aquifer-I, Aquifer-II           33         731/4         1A         3         Aquifer-I, Aquifer-II           34         731/4         1B         3         Aquifer-I, Aquifer-II           36         731/4         2A         1         Aquifer-I, Aquifer-II           36         731/4         2B         3         Aquifer-I, Aquifer-II           37         731/4         2B         3         Aquifer-I, Aquifer-II           38         731/4         2A         1         Aquifer-I, Aquifer-II           40         731/4         3B         1         Aquifer-I, Aquifer-II           40         731/4         3C         3         Aquifer-I, Aquifer-II           41         731/6         3C         3         Aquifer-I, Aquifer-II           42         731/7         1A <t< td=""><td>27</td><td>731/3</td><td>2A</td><td>3</td><td>Aquifer-I, Aquifer-II</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27  | 731/3     | 2A       | 3      | Aquifer-I, Aquifer-II |
| 29 $731/3$ 2C3Aquifer-I, Aquifer-II,30 $731/3$ 3A3Aquifer-I, Aquifer-II,31 $731/3$ 3B3Aquifer-I, Aquifer-II,32 $731/3$ 3C3Aquifer-I, Aquifer-II,33 $731/4$ 1A3Aquifer-I, Aquifer-II34 $731/4$ 1B3Aquifer-I, Aquifer-II35 $731/4$ 1C3Aquifer-I, Aquifer-II36 $731/4$ 2A1Aquifer-I, Aquifer-II37 $731/4$ 2B3Aquifer-I, Aquifer-II38 $731/4$ 2C3Aquifer-I, Aquifer-II39 $731/4$ 3B1Aquifer-I, Aquifer-II40 $731/4$ 3C3Aquifer-I, Aquifer-II41 $731/6$ 3C3Aquifer-I, Aquifer-II42 $731/6$ 3B2Aquifer-I, Aquifer-II43 $731/6$ 3C3Aquifer-I, Aquifer-II44 $731/7$ 1A2Aquifer-I, Aquifer-II45 $731/7$ 1B3Aquifer-I, Aquifer-II46 $731/7$ 2A3Aquifer-I, Aquifer-II47 $731/7$ 2B3Aquifer-I, Aquifer-II48 $731/7$ 3A3Aquifer-I, Aquifer-II50 $731/7$ 3A3Aquifer-I, Aquifer-II51 $731/7$ 3B3Aquifer-I, Aquifer-II52 $731/7$ 3B3Aquifer-I, Aquifer-II54 $731/8$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28  | 73I/3     | 2B       | 3      | Aquifer-I, Aquifer-II |
| 30731/33A3Aquifer-I, Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aquifer-II,<br>Aqui | 29  | 73I/3     | 2C       | 3      | Aquifer-I, Aquifer-II |
| 31 $73I/3$ 3B3Aquifer-I, Aquifer-II32 $73I/3$ 3C3Aquifer-I, Aquifer-II33 $73I/4$ 1A3Aquifer-I, Aquifer-II34 $73I/4$ 1B3Aquifer-I, Aquifer-II35 $73I/4$ 1C3Aquifer-I, Aquifer-II36 $73I/4$ 2A1Aquifer-I, Aquifer-II37 $73I/4$ 2B3Aquifer-I, Aquifer-II38 $73I/4$ 2B3Aquifer-I, Aquifer-II39 $73I/4$ 3B1Aquifer-I, Aquifer-II40 $73I/4$ 3C3Aquifer-I, Aquifer-II41 $73I/6$ 2C2Aquifer-I, Aquifer-II42 $73I/6$ 3B2Aquifer-I, Aquifer-II43 $73I/6$ 3C3Aquifer-I, Aquifer-II44 $73I/7$ 1B3Aquifer-I, Aquifer-II45 $73I/7$ 1B3Aquifer-I, Aquifer-II46 $73I/7$ 2B3Aquifer-I, Aquifer-II47 $73I/7$ 2B3Aquifer-I, Aquifer-II48 $73I/7$ 3B3Aquifer-I, Aquifer-II50 $73I/7$ 3B3Aquifer-I, Aquifer-II51 $73I/8$ 1A3Aquifer-I, Aquifer-II52 $73I/7$ 3C3Aquifer-I, Aquifer-II54 $73I/8$ 1A3Aquifer-I, Aquifer-II55 $73I/8$ 1A3Aquifer-I, Aquifer-II56 $73I/8$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30  | 73I/3     | 3A       | 3      | Aquifer-I, Aquifer-II |
| 32 $73I/3$ 3C         3         Aquifer-I, Aquifer-II           33 $73I/4$ 1A         3         Aquifer-I, Aquifer-II           34 $73I/4$ 1C         3         Aquifer-I, Aquifer-II           35 $73I/4$ 1C         3         Aquifer-I, Aquifer-II           36 $73I/4$ 2B         3         Aquifer-I, Aquifer-II           37 $73I/4$ 2B         3         Aquifer-I, Aquifer-II           38 $73I/4$ 2C         3         Aquifer-I, Aquifer-II           40 $73I/4$ 3C         3         Aquifer-I, Aquifer-II           40 $73I/4$ 3C         3         Aquifer-I, Aquifer-II           41 $73I/6$ 3C         3         Aquifer-I, Aquifer-II           42 $73I/6$ 3C         3         Aquifer-I, Aquifer-II           43 $73I/7$ 1A         2         Aquifer-I, Aquifer-II           44 $73I/7$ 1A         2         Aquifer-I, Aquifer-II           45 $73I/7$ 2A         3         Aquifer-I, Aquifer-II           46 $73I/7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31  | 73I/3     | 3B       | 3      | Aquifer-I, Aquifer-II |
| 33 $731/4$ 1A3Aquifer-I, Aquifer-II34 $731/4$ 1B3Aquifer-I, Aquifer-II35 $731/4$ 1C3Aquifer-I, Aquifer-II36 $731/4$ 2A1Aquifer-I, Aquifer-II37 $731/4$ 2B3Aquifer-I, Aquifer-II38 $731/4$ 2C3Aquifer-I, Aquifer-II39 $731/4$ 3B1Aquifer-I, Aquifer-II40 $731/4$ 3C3Aquifer-I, Aquifer-II41 $731/6$ 2C2Aquifer-I, Aquifer-II42 $731/6$ 3B2Aquifer-I, Aquifer-II43 $731/6$ 3C3Aquifer-I, Aquifer-II44 $731/7$ 1A2Aquifer-I, Aquifer-II45 $731/7$ 1B3Aquifer-I, Aquifer-II46 $731/7$ 1C3Aquifer-I, Aquifer-II47 $731/7$ 2B3Aquifer-I, Aquifer-II48 $731/7$ 2B3Aquifer-I, Aquifer-II50 $731/7$ 3A3Aquifer-I, Aquifer-II51 $731/7$ 3C3Aquifer-I, Aquifer-II52 $731/8$ 1A3Aquifer-I, Aquifer-II54 $731/8$ 1A3Aquifer-I, Aquifer-II55 $731/8$ 1C3Aquifer-I, Aquifer-II56 $731/8$ 2A3Aquifer-I, Aquifer-II57 $731/8$ 3C3Aquifer-I, Aquifer-II58 $731/8$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32  | 73I/3     | 3C       | 3      | Aquifer-I, Aquifer-II |
| 34 $731/4$ 1B         3         Aquifer-I, Aquifer-II           35 $731/4$ 1C         3         Aquifer-I, Aquifer-II           36 $731/4$ 2A         1         Aquifer-I, Aquifer-II           37 $731/4$ 2B         3         Aquifer-I, Aquifer-II           38 $731/4$ 2C         3         Aquifer-I, Aquifer-II           40 $731/4$ 3C         3         Aquifer-I, Aquifer-II           40 $731/4$ 3C         3         Aquifer-I, Aquifer-II           41 $731/6$ 3C         3         Aquifer-I, Aquifer-II           42 $731/6$ 3C         3         Aquifer-I, Aquifer-II           43 $731/7$ 1A         2         Aquifer-I, Aquifer-II           44 $731/7$ 1A         2         Aquifer-I, Aquifer-II           45 $731/7$ 1A         2         Aquifer-I, Aquifer-II           46 $731/7$ 2A         3         Aquifer-I, Aquifer-II           47 $731/7$ 2A         3         Aquifer-I, Aquifer-II           50 $731/7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33  | 73I/4     | 1A       | 3      | Aquifer-I, Aquifer-II |
| 35 $731/4$ 1C         3         Aquifer-I, Aquifer-II           36 $731/4$ 2A         1         Aquifer-I, Aquifer-II           37 $731/4$ 2B         3         Aquifer-I, Aquifer-II           38 $731/4$ 2B         3         Aquifer-I, Aquifer-II           39 $731/4$ 3B         1         Aquifer-I, Aquifer-II           40 $731/4$ 3C         3         Aquifer-I, Aquifer-II           41 $731/6$ 2C         2         Aquifer-I, Aquifer-II           42 $731/6$ 3E         2         Aquifer-I, Aquifer-II           43 $731/6$ 3C         3         Aquifer-I, Aquifer-II           44 $731/7$ 1A         2         Aquifer-I, Aquifer-II           45 $731/7$ 1B         3         Aquifer-I, Aquifer-II           46 $731/7$ 2A         3         Aquifer-I, Aquifer-II           47 $731/7$ 2A         3         Aquifer-I, Aquifer-II           48 $731/7$ 3A         3         Aquifer-I, Aquifer-II           50 $731/7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34  | 731/4     | 1B       | 3      | Aquifer-I, Aquifer-II |
| 36 $73!/4$ $2A$ $1$ Aquifer-I, Aquifer-II $37$ $73!/4$ $2B$ $3$ Aquifer-I, Aquifer-II $38$ $73!/4$ $2C$ $3$ Aquifer-I, Aquifer-II $39$ $73!/4$ $3B$ $1$ Aquifer-I, Aquifer-II $40$ $73!/4$ $3C$ $3$ Aquifer-I, Aquifer-II $41$ $73!/6$ $2C$ $2$ Aquifer-I, Aquifer-II $42$ $73!/6$ $3B$ $2$ Aquifer-I, Aquifer-II $43$ $73!/6$ $3C$ $3$ Aquifer-I, Aquifer-II $44$ $73!/7$ $1A$ $2$ Aquifer-I, Aquifer-II $45$ $73!/7$ $1B$ $3$ Aquifer-I, Aquifer-II $46$ $73!/7$ $2A$ $3$ Aquifer-I, Aquifer-II $46$ $73!/7$ $2A$ $3$ Aquifer-I, Aquifer-II $47$ $73!/7$ $2B$ $3$ Aquifer-I, Aquifer-II $48$ $73!/7$ $2B$ $3$ Aquifer-I, Aquifer-II $49$ $73!/7$ $2C$ $3$ Aquifer-I, Aquifer-II $50$ $73!/7$ $3A$ $3$ Aquifer-I, Aquifer-II $51$ $73!/7$ $3B$ $3$ Aquifer-I, Aquifer-II $52$ $73!/7$ $3C$ $3$ Aquifer-I, Aquifer-II $54$ $73!/8$ $1A$ $3$ Aquifer-I, Aquifer-II $55$ $73!/8$ $2A$ $3$ Aquifer-I, Aquifer-II $56$ $73!/8$ $2B$ $3$ Aquifer-I, Aquifer-II $57$ $73!/8$ $3A$ $3$ Aquifer-I, Aquifer-II<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35  | 731/4     | 1C       | 3      | Aquifer-I, Aquifer-II |
| 37731/42B3Aquifer-I, Aquifer-II38731/42C3Aquifer-I, Aquifer-II39731/43B1Aquifer-I, Aquifer-II40731/43C3Aquifer-I, Aquifer-II41731/62C2Aquifer-I, Aquifer-II42731/63B2Aquifer-I, Aquifer-II43731/63C3Aquifer-I, Aquifer-II44731/71A2Aquifer-I, Aquifer-II45731/71B3Aquifer-I, Aquifer-II46731/72A3Aquifer-I, Aquifer-II47731/72A3Aquifer-I, Aquifer-II48731/72A3Aquifer-I, Aquifer-II50731/73A3Aquifer-I, Aquifer-II51731/73A3Aquifer-I, Aquifer-II52731/73C3Aquifer-I, Aquifer-II53731/81A3Aquifer-I, Aquifer-II54731/81B3Aquifer-I, Aquifer-II55731/82A3Aquifer-I, Aquifer-II56731/82B3Aquifer-I, Aquifer-II58731/82B3Aquifer-I, Aquifer-II60731/83A3Aquifer-I, Aquifer-II61731/83C3Aquifer-I, Aquifer-II62731/101C1Aquifer-I, Aquifer-II63731/102A3Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36  | 731/4     | 2A       | 1      | Aquifer-I, Aquifer-II |
| 38 $73I/4$ 2C3Aquifer-I, Aquifer-II39 $73I/4$ 3B1Aquifer-I, Aquifer-II40 $73I/4$ 3C3Aquifer-I, Aquifer-II41 $73I/6$ 2C2Aquifer-I, Aquifer-II42 $73I/6$ 3B2Aquifer-I, Aquifer-II43 $73I/6$ 3C3Aquifer-I, Aquifer-II43 $73I/6$ 3C3Aquifer-I, Aquifer-II44 $73I/7$ 1A2Aquifer-I, Aquifer-II45 $73I/7$ 1B3Aquifer-I, Aquifer-II46 $73I/7$ 1C3Aquifer-I, Aquifer-II47 $73I/7$ 2A3Aquifer-I, Aquifer-II48 $73I/7$ 2B3Aquifer-I, Aquifer-II50 $73I/7$ 3A3Aquifer-I, Aquifer-II51 $73I/7$ 3A3Aquifer-I, Aquifer-II52 $73I/7$ 3C3Aquifer-I, Aquifer-II53 $73I/8$ 1A3Aquifer-I, Aquifer-II54 $73I/8$ 1B3Aquifer-I, Aquifer-II55 $73I/8$ 1C3Aquifer-I, Aquifer-II56 $73I/8$ 2A3Aquifer-I, Aquifer-II58 $73I/8$ 3A3Aquifer-I, Aquifer-II60 $73I/8$ 3A3Aquifer-I, Aquifer-II61 $73I/8$ 3A3Aquifer-I, Aquifer-II62 $73I/10$ 2A3Aquifer-I, Aquifer-II64 $73I/10$ <td< td=""><td>37</td><td>731/4</td><td>2B</td><td>3</td><td>Aquifer-I, Aquifer-II</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37  | 731/4     | 2B       | 3      | Aquifer-I, Aquifer-II |
| 39         731/4         3B         1         Aquifer-I, Aquifer-II           40         731/4         3C         3         Aquifer-I, Aquifer-II           41         731/6         2C         2         Aquifer-I, Aquifer-II           42         731/6         3B         2         Aquifer-I, Aquifer-II           43         731/6         3C         3         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           45         731/7         1B         3         Aquifer-I, Aquifer-II           46         731/7         1C         3         Aquifer-I, Aquifer-II           47         731/7         2A         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           48         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38  | 731/4     | 2C       | 3      | Aquifer-I, Aquifer-II |
| 40         731/4         3C         3         Aquifer-I, Aquifer-II           41         731/6         2C         2         Aquifer-I, Aquifer-II           42         731/6         3B         2         Aquifer-I, Aquifer-II           43         731/6         3C         3         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           45         731/7         1B         3         Aquifer-I, Aquifer-II           46         731/7         2A         3         Aquifer-I, Aquifer-II           47         731/7         2A         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           49         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3C         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39  | 731/4     | 3B       | 1      | Aquifer-I. Aquifer-II |
| 41         731/6         2C         2         Aquifer-I, Aquifer-II           42         731/6         3B         2         Aquifer-I, Aquifer-II           43         731/6         3C         3         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           44         731/7         1B         3         Aquifer-I, Aquifer-II           45         731/7         1C         3         Aquifer-I, Aquifer-II           46         731/7         2A         3         Aquifer-I, Aquifer-II           47         731/7         2B         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  | 731/4     | 30       | 3      | Aquifer-I. Aquifer-II |
| 12         13         16         16         17         13         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41  | 731/6     | 20       | 2      | Aquifer-I. Aquifer-II |
| 43         731/6         3C         3         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           45         731/7         1B         3         Aquifer-I, Aquifer-II           46         731/7         2A         3         Aquifer-I, Aquifer-II           47         731/7         2A         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           49         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         2A         3         Aquifer-I, Aquifer-II           56         731/8         2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42  | 731/6     | 3B       | 2      | Aquifer-I. Aquifer-II |
| 10         13/7         1A         2         Aquifer-I, Aquifer-II           44         731/7         1A         2         Aquifer-I, Aquifer-II           45         731/7         1B         3         Aquifer-I, Aquifer-II           46         731/7         1C         3         Aquifer-I, Aquifer-II           47         731/7         2A         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           49         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           50         731/7         3B         3         Aquifer-I, Aquifer-II           51         731/7         3C         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         2A         3         Aquifer-I, Aquifer-II           56         731/8         2B         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43  | 731/6     | 30       | 3      | Aquifer-I Aquifer-II  |
| 45         731/7         1B         3         Aquifer-I, Aquifer-II           46         731/7         1C         3         Aquifer-I, Aquifer-II           46         731/7         1C         3         Aquifer-I, Aquifer-II           47         731/7         2A         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           49         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2B         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44  | 731/7     | 1A       | 2      | Aquifer-I Aquifer-II  |
| 10         13/7         12         3         Aquifer-I, Aquifer-II           46         731/7         1C         3         Aquifer-I, Aquifer-II           47         731/7         2A         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           49         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2B         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           60         731/8         3C         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45  | 731/7     | 1R       | 3      | Aquifer-I Aquifer-II  |
| 10         731/7         2A         3         Aquifer-I, Aquifer-II           47         731/7         2A         3         Aquifer-I, Aquifer-II           48         731/7         2B         3         Aquifer-I, Aquifer-II           49         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2A         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           60         731/8         3B         3         Aquifer-I, Aquifer-II           61         731/8         3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46  | 731/7     | 10       | 3      | Aquifer-I Aquifer-II  |
| 48         73I/7         2B         3         Aquifer-I, Aquifer-II           49         73I/7         2C         3         Aquifer-I, Aquifer-II           50         73I/7         3A         3         Aquifer-I, Aquifer-II           51         73I/7         3B         3         Aquifer-I, Aquifer-II           52         73I/7         3C         3         Aquifer-I, Aquifer-II           52         73I/7         3C         3         Aquifer-I, Aquifer-II           53         73I/8         1A         3         Aquifer-I, Aquifer-II           54         73I/8         1B         3         Aquifer-I, Aquifer-II           55         73I/8         1C         3         Aquifer-I, Aquifer-II           56         73I/8         2A         3         Aquifer-I, Aquifer-II           57         73I/8         2B         3         Aquifer-I, Aquifer-II           58         73I/8         2C         3         Aquifer-I, Aquifer-II           59         73I/8         3B         3         Aquifer-I, Aquifer-II           60         73I/8         3C         3         Aquifer-I, Aquifer-II           61         73I/10         1C <td< td=""><td>47</td><td>731/7</td><td>2A</td><td>3</td><td>Aquifer-I, Aquifer-II</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47  | 731/7     | 2A       | 3      | Aquifer-I, Aquifer-II |
| 49         731/7         2C         3         Aquifer-I, Aquifer-II           50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2A         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           60         731/8         3A         3         Aquifer-I, Aquifer-II           61         731/8         3B         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         2B         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48  | 731/7     | 2B       | 3      | Aquifer-I, Aquifer-II |
| 50         731/7         3A         3         Aquifer-I, Aquifer-II           51         731/7         3B         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2A         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           59         731/8         3A         3         Aquifer-I, Aquifer-II           60         731/8         3C         3         Aquifer-I, Aquifer-II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A <t< td=""><td>49</td><td>731/7</td><td>20</td><td>3</td><td>Aquifer-I, Aquifer-II</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49  | 731/7     | 20       | 3      | Aquifer-I, Aquifer-II |
| 50         731/7         3B         3         Aquifer-I, Aquifer-II           51         731/7         3C         3         Aquifer-I, Aquifer-II           52         731/7         3C         3         Aquifer-I, Aquifer-II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2A         3         Aquifer-I, Aquifer-II           56         731/8         2B         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           60         731/8         3B         3         Aquifer-I, Aquifer-II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         3A         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50  | 731/7     | 3A       | 3      | Aquifer-I, Aquifer-II |
| 51       731/7       3C       3       Aquifer-I, Aquifer-II         52       731/8       1A       3       Aquifer-I, Aquifer-II         53       731/8       1A       3       Aquifer-I, Aquifer-II         54       731/8       1B       3       Aquifer-I, Aquifer-II         55       731/8       1C       3       Aquifer-I, Aquifer-II         56       731/8       2A       3       Aquifer-I, Aquifer-II         56       731/8       2B       3       Aquifer-I, Aquifer-II         57       731/8       2B       3       Aquifer-I, Aquifer-II         58       731/8       2C       3       Aquifer-I, Aquifer-II         60       731/8       3B       3       Aquifer-I, Aquifer-II         61       731/8       3C       3       Aquifer-I, Aquifer-II         62       731/10       1C       1       Aquifer-I, Aquifer-II         63       731/10       2A       3       Aquifer-I, Aquifer-II         64       731/10       2B       2       Aquifer-I, Aquifer-II         65       731/10       3A       3       Aquifer-I, Aquifer-II         66       731/10       3B       3 </td <td>51</td> <td>731/7</td> <td>38</td> <td>3</td> <td>Aquifer-I Aquifer-II</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51  | 731/7     | 38       | 3      | Aquifer-I Aquifer-II  |
| 52         731/9         36         3         Aquifer I, Aquifer II           53         731/8         1A         3         Aquifer-I, Aquifer-II           54         731/8         1B         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2A         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           59         731/8         3A         3         Aquifer-I, Aquifer-II           60         731/8         3B         3         Aquifer-I, Aquifer-II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         2B         2         Aquifer-I, Aquifer-II           65         731/10         3B         3         Aquifer-I, Aquifer-II           66         731/10         3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52  | 731/7     | 30       | 3      | Aquifer-I Aquifer-II  |
| 56         731/8         1R         3         Aquifer I, Aquifer II           54         731/8         1C         3         Aquifer-I, Aquifer-II           55         731/8         1C         3         Aquifer-I, Aquifer-II           56         731/8         2A         3         Aquifer-I, Aquifer-II           56         731/8         2B         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           60         731/8         3B         3         Aquifer-I, Aquifer-II           60         731/8         3B         3         Aquifer-I, Aquifer-II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         2B         2         Aquifer-I, Aquifer-II           65         731/10         3A         3         Aquifer-I, Aquifer-II           66         731/10         3E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53  | 731/8     | 1A       | 3      | Aquifer-I Aquifer-II  |
| 51       731/0       1D       3       Aquifer I, Aquifer II         55       731/8       1C       3       Aquifer-I, Aquifer-II         56       731/8       2A       3       Aquifer-I, Aquifer-II         57       731/8       2B       3       Aquifer-I, Aquifer-II         58       731/8       2C       3       Aquifer-I, Aquifer-II         59       731/8       3A       3       Aquifer-I, Aquifer-II         60       731/8       3B       3       Aquifer-I, Aquifer-II         61       731/8       3C       3       Aquifer-I, Aquifer-II         62       731/10       1C       1       Aquifer-I, Aquifer-II         63       731/10       2A       3       Aquifer-I, Aquifer-II         64       731/10       2B       2       Aquifer-I, Aquifer-II         65       731/10       3A       3       Aquifer-I, Aquifer-II         66       731/10       3B       3       Aquifer-I, Aquifer-II         67       731/10       3C       3       Aquifer-I, Aquifer-II         68       731/10       3C       3       Aquifer-I, Aquifer-II         69       731/11       1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54  | 731/8     | 1R       | 3      | Aquifer-I Aquifer-II  |
| 55         731/6         16         3         Aquifer I, Aquifer II           56         731/8         2A         3         Aquifer-I, Aquifer-II           57         731/8         2B         3         Aquifer-I, Aquifer-II           58         731/8         2C         3         Aquifer-I, Aquifer-II           59         731/8         3A         3         Aquifer-I, Aquifer-II           60         731/8         3B         3         Aquifer-I, Aquifer-II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         2B         2         Aquifer-I, Aquifer-II           65         731/10         3A         3         Aquifer-I, Aquifer-II           66         731/10         3B         3         Aquifer-I, Aquifer-II           67         731/10         3C         3         Aquifer-I, Aquifer-II           68         731/10         3C         3         Aquifer-I, Aquifer-II           69         731/11         1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55  | 731/8     | 10       | 3      | Aquifer-I Aquifer-II  |
| 50       731/8       2B       3       Aquifer-I, Aquifer-II         57       731/8       2C       3       Aquifer-I, Aquifer-II         58       731/8       2C       3       Aquifer-I, Aquifer-II         59       731/8       3A       3       Aquifer-I, Aquifer-II         60       731/8       3B       3       Aquifer-I, Aquifer-II         61       731/8       3C       3       Aquifer-I, Aquifer-II         62       731/10       1C       1       Aquifer-I, Aquifer-II         63       731/10       2A       3       Aquifer-I, Aquifer-II         64       731/10       2B       2       Aquifer-I, Aquifer-II         65       731/10       3A       3       Aquifer-I, Aquifer-II         66       731/10       3B       3       Aquifer-I, Aquifer-II         67       731/10       3C       3       Aquifer-I, Aquifer-II         68       731/10       3C       3       Aquifer-I, Aquifer-II         69       731/11       1A       3       Aquifer-I, Aquifer-II         70       731/11       1B       3       Aquifer-I, Aquifer-II         71       731/11       2A <t< td=""><td>56</td><td>731/8</td><td>2.A</td><td>3</td><td>Aquifer-I Aquifer-II</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56  | 731/8     | 2.A      | 3      | Aquifer-I Aquifer-II  |
| 57         731/8         2C         3         Aquifer I, Aquifer II           58         731/8         2C         3         Aquifer-I, Aquifer-II           59         731/8         3A         3         Aquifer-I, Aquifer-II           60         731/8         3B         3         Aquifer-I, Aquifer-II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         2B         2         Aquifer-I, Aquifer-II           65         731/10         3A         3         Aquifer-I, Aquifer-II           66         731/10         3B         3         Aquifer-I, Aquifer-II           66         731/10         3C         3         Aquifer-I, Aquifer-II           67         731/10         3C         3         Aquifer-I, Aquifer-II           68         731/11         1A         3         Aquifer-I, Aquifer-II           69         731/11         1B         3         Aquifer-I, Aquifer-II           70         731/11         1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57  | 731/8     | 2B       | 3      | Aquifer-I Aquifer-II  |
| 50       731/0       20       3       Aquifer I, Aquifer II         59       731/8       3A       3       Aquifer-I, Aquifer-II         60       731/8       3B       3       Aquifer-I, Aquifer-II         61       731/8       3C       3       Aquifer-I, Aquifer-II         62       731/10       1C       1       Aquifer-I, Aquifer-II         63       731/10       2A       3       Aquifer-I, Aquifer-II         64       731/10       2B       2       Aquifer-I, Aquifer-II         65       731/10       3A       3       Aquifer-I, Aquifer-II         66       731/10       3B       3       Aquifer-I, Aquifer-II         67       731/10       3C       3       Aquifer-I, Aquifer-II         68       731/10       3C       3       Aquifer-I, Aquifer-II         69       731/11       1A       3       Aquifer-I, Aquifer-II         70       731/11       1C       3       Aquifer-I, Aquifer-II         71       731/11       2A       3       Aquifer-I, Aquifer-II         72       731/11       2B       3       Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58  | 731/8     | 20       | 3      | Aquifer-I Aquifer-II  |
| 37         731/0         311         3         Aquifer I, Aquifer II           60         731/8         3B         3         Aquifer-I, Aquifer-II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         2B         2         Aquifer-I, Aquifer-II           65         731/10         3A         3         Aquifer-I, Aquifer-II           66         731/10         3B         3         Aquifer-I, Aquifer-II           66         731/10         3B         3         Aquifer-I, Aquifer-II           67         731/10         3C         3         Aquifer-I, Aquifer-II           68         731/10         3C         3         Aquifer-I, Aquifer-II           69         731/11         1A         3         Aquifer-I, Aquifer-II           70         731/11         1C         3         Aquifer-I, Aquifer-II           71         731/11         2A         3         Aquifer-I, Aquifer-II           72         731/11         2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59  | 731/8     | 34       | 3      | Aquifer-I Aquifer-II  |
| 60         731/0         30         31         31         14quifer I, Aquifer II           61         731/8         3C         3         Aquifer-I, Aquifer-II           62         731/10         1C         1         Aquifer-I, Aquifer-II           63         731/10         2A         3         Aquifer-I, Aquifer-II           64         731/10         2B         2         Aquifer-I, Aquifer-II           65         731/10         3A         3         Aquifer-I, Aquifer-II           66         731/10         3B         3         Aquifer-I, Aquifer-II           66         731/10         3C         3         Aquifer-I, Aquifer-II           67         731/10         3C         3         Aquifer-I, Aquifer-II           68         731/11         1A         3         Aquifer-I, Aquifer-II           69         731/11         1B         3         Aquifer-I, Aquifer-II           70         731/11         1C         3         Aquifer-I, Aquifer-II           71         731/11         2A         3         Aquifer-I, Aquifer-II           72         731/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60  | 731/8     | 3R       | 3      | Aquifer-I Aquifer-II  |
| 61       731/0       36       3       Aquifer I, Aquifer II         62       731/10       1C       1       Aquifer-I, Aquifer-II         63       731/10       2A       3       Aquifer-I, Aquifer-II         64       731/10       2B       2       Aquifer-I, Aquifer-II         65       731/10       3A       3       Aquifer-I, Aquifer-II         66       731/10       3B       3       Aquifer-I, Aquifer-II         67       731/10       3C       3       Aquifer-I, Aquifer-II         68       731/11       1A       3       Aquifer-I, Aquifer-II         69       731/11       1B       3       Aquifer-I, Aquifer-II         70       731/11       1C       3       Aquifer-I, Aquifer-II         71       731/11       2A       3       Aquifer-I, Aquifer-II         72       731/11       2B       3       Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61  | 731/8     | 30       | 3      | Aquifer-I Aquifer-II  |
| 62       731/10       10       10       1       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62  | 731/10    | 10       | 1      | Aquifer-I Aquifer-II  |
| 63         73/10         2A         3         Aquifer-I, Aquifer-II           64         73I/10         2B         2         Aquifer-I, Aquifer-II           65         73I/10         3A         3         Aquifer-I, Aquifer-II           66         73I/10         3B         3         Aquifer-I, Aquifer-II           67         73I/10         3C         3         Aquifer-I, Aquifer-II           68         73I/11         1A         3         Aquifer-I, Aquifer-II           69         73I/11         1B         3         Aquifer-I, Aquifer-II           70         73I/11         1C         3         Aquifer-I, Aquifer-II           71         73I/11         2A         3         Aquifer-I, Aquifer-II           72         73I/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63  | 731/10    | 24       | 2      | Aquifer-I Aquifer-II  |
| 64         73/10         2B         2         Aquifer-I, Aquifer-II           65         73I/10         3A         3         Aquifer-I, Aquifer-II           66         73I/10         3B         3         Aquifer-I, Aquifer-II           67         73I/10         3C         3         Aquifer-I, Aquifer-II           68         73I/11         1A         3         Aquifer-I, Aquifer-II           69         73I/11         1B         3         Aquifer-I, Aquifer-II           70         73I/11         1C         3         Aquifer-I, Aquifer-II           71         73I/11         2A         3         Aquifer-I, Aquifer-II           72         73I/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64  | 731/10    | 2R<br>2B | 2      | Aquifer-I Aquifer-II  |
| 65         731/10         3A         3         Aquifer-I, Aquifer-II           66         731/10         3B         3         Aquifer-I, Aquifer-II           67         731/10         3C         3         Aquifer-I, Aquifer-II           68         731/11         1A         3         Aquifer-I, Aquifer-II           69         731/11         1B         3         Aquifer-I, Aquifer-II           70         731/11         1C         3         Aquifer-I, Aquifer-II           71         731/11         2A         3         Aquifer-I, Aquifer-II           72         731/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65  | 731/10    | 20       | 2      | Aquifer-I Aquifor II  |
| 67         73I/10         30         3         Aquifer-I, Aquifer-II           67         73I/10         3C         3         Aquifer-I, Aquifer-II           68         73I/11         1A         3         Aquifer-I, Aquifer-II           69         73I/11         1B         3         Aquifer-I, Aquifer-II           70         73I/11         1C         3         Aquifer-I, Aquifer-II           71         73I/11         2A         3         Aquifer-I, Aquifer-II           72         73I/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66  | 731/10    | 38       | 2      | Aquifer-I Aquifer II  |
| 67         731/10         30         3         Aquifer-I, Aquifer-II           68         731/11         1A         3         Aquifer-I, Aquifer-II           69         731/11         1B         3         Aquifer-I, Aquifer-II           70         731/11         1C         3         Aquifer-I, Aquifer-II           71         731/11         2A         3         Aquifer-I, Aquifer-II           72         731/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67  | 731/10    | 30       | 2      | Aquifer-I Aquifor II  |
| 60         731/11         1A         5         Aquifer-I, Aquifer-II           69         731/11         1B         3         Aquifer-I, Aquifer-II           70         731/11         1C         3         Aquifer-I, Aquifer-II           71         731/11         2A         3         Aquifer-I, Aquifer-II           72         731/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69  | 721/11    | 1 Λ      | 2      | Aquifer I Aquifer II  |
| 70         73I/11         1D         3         Aquifer-I, Aquifer-II           70         73I/11         1C         3         Aquifer-I, Aquifer-II           71         73I/11         2A         3         Aquifer-I, Aquifer-II           72         73I/11         2B         3         Aquifer-I, Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60  | 721/11    | 1A<br>1R | 2<br>2 | Aquifer-I Aquifor II  |
| 70         731/11         10         5         Aquiter-I, Aquifer-II           71         731/11         2A         3         Aquifer-I, Aquifer-II           72         731/11         2B         3         Aquifer-I Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70  | 721/11    | 10       | 2<br>2 | Aquifer I Aquifer II  |
| 71 $731/11$ $2R$ $3$ Aquifer-I Aquifer-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70  | 731/11    | 2 10     | 2      | Aquifer-I Aquifor II  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72  | 731/11    | 2A<br>2R | 2      | Aquifer-I Aquifer-II  |

| SI. | Toposheet | Quadrant | No. of | Aquifer Type          |
|-----|-----------|----------|--------|-----------------------|
| No. | No.       |          | VES    |                       |
| 73  | 73I/11    | 2C       | 3      | Aquifer-I, Aquifer-II |
| 74  | 73I/11    | 3A       | 3      | Aquifer-I, Aquifer-II |
| 75  | 73I/11    | 3B       | 3      | Aquifer-I, Aquifer-II |
| 76  | 73I/11    | 3C       | 3      | Aquifer-I, Aquifer-II |
| 77  | 73I/12    | 1A       | 3      | Aquifer-I, Aquifer-II |
| 78  | 73I/12    | 1B       | 3      | Aquifer-I, Aquifer-II |
| 79  | 73I/12    | 1C       | 3      | Aquifer-I, Aquifer-II |
| 80  | 73I/12    | 2A       | 3      | Aquifer-I, Aquifer-II |
| 81  | 73I/12    | 2B       | 3      | Aquifer-I, Aquifer-II |
| 82  | 73I/12    | 2C       | 3      | Aquifer-I, Aquifer-II |
| 83  | 73I/12    | 3A       | 3      | Aquifer-I, Aquifer-II |
| 84  | 73I/12    | 3B       | 3      | Aquifer-I, Aquifer-II |
| 85  | 73I/12    | 3C       | 3      | Aquifer-I, Aquifer-II |
| 86  | 73I/14    | 1A       | 1      | Aquifer-I, Aquifer-II |
| 87  | 73I/14    | 2A       | 3      | Aquifer-I, Aquifer-II |
| 88  | 73I/14    | 2B       | 2      | Aquifer-I, Aquifer-II |
| 89  | 73I/14    | 3A       | 3      | Aquifer-I, Aquifer-II |
| 90  | 73I/14    | 3B       | 2      | Aquifer-I, Aquifer-II |
| 91  | 73I/15    | 1A       | 3      | Aquifer-I, Aquifer-II |
| 92  | 73I/15    | 1B       | 1      | Aquifer-I, Aquifer-II |
| 93  | 73I/15    | 2A       | 3      | Aquifer-I, Aquifer-II |
| 94  | 73I/15    | 3A       | 2      | Aquifer-I, Aquifer-II |

### ACKNOWLEDGEMENT

The authors are extremely thankful to Dr. Anadi Gayen, Scientist-'E'(HG) & Head of Office, Dr. S.K. Samanta, Regional Director (Retd.) for the overall guidance and supervision provided during the present study, spanning over two Annual Action Plans (AAP: 2019-20 and AAP: 2020-21). Immense contribution of Smt Sandhya Yadav, Scientist-'E'(HG), Technical Secretary and the the OIC(NAQUIM) needs a special mention in bringing the report to fruition and all the consequent presentations made before the competent authorities during this entire process.

Dr. Indranil Roy, Scientist-'D'(HG) has scrutinized the manuscript and gave valuable suggestions regarding improvement of the content of this report.

Authors express their immsence thanks and gratitude to Shri Sunil Kumar, Chairman, CGWb, Dr. P. Nandkumaran, Chairman(Retd.), CGWB, Shri Satishkumar, Member(East), CGWb, Dr. Utpal Gogoi, Member(East)(Retd.), CGWB for their valuable suggestions and unflinching support and encouragement.

We are very much thankful to Sh. Atalanta Narayan Chowdhury, Asst. Chemist for preparing thematic diagrams on chemical quality and to Dr. Suparna Datta, Asst. Chemist for chemical analysis of samples. Special thanks are due to Ms. Mahasweta Mukherjee and Ms. Rajyashree Nandi, Young Professionals for painstakingly preparing a number of thematic maps that are integral components of the Block Level Aquifer Management Plans of Purulia district. We are also very much thankful to Sh. S.M. Hossain, Scientist-'D'(HG), Smt. Rose Anita Kujur, Scientist-'E'(HG) Smt. ChirashreeMohanty, Scientist-'D'(HG), Dr. A. K. Sinha, Scientist-'B'(GP), Shri Sujit Sarkar, Scientist-'B'(GP) for providing data, interpretation and subsequent write-ups and diagrams in preparing the geophysical part of this report. Thanks are also due to all our office colleagues of Central Ground Water Board, Eastern Region, Kolkata for their valuable suggestions and constructive criticism and constant support. Last but not the least, a special thanks to our respective family members for the patience and support extended during preparation of this report, many a times beyond office hours and on holidays.

Ms. Zumchillo T. Ezung, Scientist-'B'(HG) Ms. Monisha Baruah, Scientist-'B'(HG) Shri Anirvan Choudhury, Scientist-'B'(HG)

### **BIBLIOGRAPHY / REFERENCES**

- Aquifers Systems of West Bengal, CGWB, Eastern Region Technical Series Reports
- Basic Data Reports of Ground Water Exploration in Purulia District, CGWB, Eastern Region Technical Series Reports
- District Ground Water Information Booklet Purulia District, West Bengal, CGWB, Eastern Region Technical Series Reports
- District Survey Report for Purulia District, West Bengal, Govt. of West Bengal Publication
- Ground Water Year Book(2000-2020), West Bengal & Andaman & Nicobar Islands, CGWB, Eastern Region Technical Series Reports
- iMIS Portal Data of Public Health Engineering Department Directorate, Govt of West Bengal
- Master Plan for Artificial Recharge(2006, 2013, 2020), West Bengal, CGWB, Eastern Region Technical Series Reports
- National Compilation of Dynamic Ground Water Resource Assessment(2004, 2009, 2011, 2013, 2017, 2020), CGWB Technical Report
- Rainfall Data IMD, Govt. of India
- State Hydrogeology Report, West Bengal

### ANNEXURES

| SI. | Block        | Location    | Lat     | Long    | Date of    | Well Type | Well ID  | Lab Code   | рH   | EC   | TH  | Ca | Mg   | Na  | K    | CO3 | HCO <sub>3</sub> | Total             | Cl  | NO <sub>3</sub> | S04 | F    | TDS  | Fe   |
|-----|--------------|-------------|---------|---------|------------|-----------|----------|------------|------|------|-----|----|------|-----|------|-----|------------------|-------------------|-----|-----------------|-----|------|------|------|
| no. |              |             |         |         | Sampling   |           |          |            |      |      |     |    |      |     |      |     |                  | Alk               |     |                 |     |      |      |      |
|     |              |             |         |         |            |           |          |            |      |      |     |    |      |     |      |     |                  | as                |     |                 |     |      |      |      |
|     |              |             |         |         |            |           |          |            |      |      |     |    |      |     |      |     |                  | CaCO <sub>3</sub> |     |                 |     |      |      |      |
| 1   | Arsha        | Arsha       | 23.3228 | 86.1581 | 18.06.2019 | Dug Well  | WBPL008  | C - 597/19 | 8.07 | 576  | 190 | 16 | - 36 | 43  | 16.0 | 0   | 220              | 180               | 78  | BDL             | 7   | 0.31 | 332  | 0.04 |
| 2   | Arsha        | Kantadihi   | 23.2175 | 86.2989 | 30.05.2019 | Dug Well  | WBPL029  | C • 613/19 | 7.89 | 1984 | 865 | 60 | 174  | 94  | 7.6  | 0   | 214              | 175               | 557 | 4               | 62  | 0.10 | 1089 | 0.05 |
| 3   | Arsha        | Sirkabad    | 23.2747 | 86.1942 | 29.05.2019 | Dug Well  | WBPL044B | C - 622/19 | 7.96 | 833  | 215 | 10 | 46   | 82  | 10.5 | 0   | 299              | 245               | 117 | 9               | BDL | 0.94 | 458  | 0.03 |
| 4   | Arsha        | Hansla More | 23.3272 | 86.1717 | 19.06.2019 | Dug Well  | WBPL096  | C - 646/19 | 8.00 | 260  | 105 | 14 | 17   | 12  | 1.8  | 0   | 128              | 105               | 21  | 2               | BDL | 0.64 | 147  | 0.07 |
| 5   | Baghmundi    | Korenge     | 23.2364 | 85.9850 | 01.06.2019 | Dug Well  | WBPL041  | C - 620/19 | 7.81 | 250  | 105 | 16 | 16   | 11  | 1.8  | 0   | 128              | 105               | 18  | 5               | BDL | 1.17 | 147  | 0.04 |
| 6   | Bagmundi     | Baghmundi   | 23.1950 | 86.0681 | 30.05.2019 | Dug Well  | WBPL009  | C - 598/19 | 7.85 | 1386 | 465 | 22 | 100  | 89  | 27.9 | 0   | 214              | 175               | 266 | 43              | 88  | 0.28 | 765  | BDL  |
| 7   | Balarampur   | Namsole     | 23.1306 | 86.2456 | 19.06.2019 | Dug Well  | WBPL097  | C - 647/19 | 7.94 | 286  | 115 | 24 | 13   | 15  | 1.6  | 0   | 122              | 100               | 28  | BDL             | BDL | 0.37 | 157  | 0.01 |
| 8   | Balarampur   | Dava        | 23.1042 | 86.1392 | 19.06.2019 | Dug Well  | WBPL098  | C - 648/19 | 7.64 | 535  | 150 | 18 | 26   | 54  | 4.1  | 0   | 67               | 55                | 96  | 41              | 34  | 0.66 | 314  | 0.01 |
| 9   | Barabazar    | Takariya    | 23.1600 | 86.3200 | 28.05.2019 | Dug Well  | WBPL017A | C - 603/19 | 7.86 | 701  | 200 | 12 | 41   | 62  | 15.1 | 0   | 165              | 135               | 96  | 24              | 63  | 0.64 | 415  | 0.04 |
| 10  | Barabazar    | Sindri      | 23.0600 | 86.4800 | 20.06.2019 | Dug Well  | WBPL018  | C - 604/19 | 7.74 | 740  | 225 | 10 | 49   | 63  | 2.7  | 0   | 159              | 130               | 138 | 40              | 26  | 0.47 | 426  | 0.04 |
| 11  | Barabazar    | Barabazar   | 23.0000 | 86.3800 | 29.05.2019 | Dug Well  | WBPL048  | 0-624/19   | 8.08 | 1728 | 540 | 58 | - 96 | 106 | 65.l | 0   | 403              | 330               | 312 | 37              | 24  | 0.34 | 943  | 0.01 |
| 12  | Barabazar    | Bamundiha   | 23.2389 | 86.3536 | 27.06.2019 | Dug Well  | WBPL068  | C - 633/19 | 7.84 | 311  | 105 | 22 | 12   | 29  | 1.6  | 0   | 116              | 95                | 50  | 3               | BDL | 0.08 | 188  | 0.39 |
| 13  | Bundwan      | Dhabani     | 22.9000 | 86.4900 | 20.06.2019 | Dug Well  | WBPL061  | C - 629/19 | 8.08 | 709  | 305 | 8  | 69   | 24  | 9.5  | 0   | 207              | 170               | 99  | 40              | 17  | 0.27 | 393  | 0.01 |
| 14  | Hura         | Keshargarh  | 23.2689 | 86.5561 | 20.06.2019 | Dug Well  | WBPL025  | C - 610/19 | 8.24 | 1430 | 530 | 14 | 120  | 88  | 14.9 | 0   | 360              | 295               | 252 | 39              | 43  | 0.16 | 791  | 0.01 |
| 15  | Hura         | Ludurka     | 23.3478 | 86.5422 | 20.06.2019 | Dug Well  | WBPL027A | C - 611/19 | 7.77 | 153  | 65  | 14 | 7    | 8   | 1.6  | 0   | 67               | 55                | 14  | 4               | 8   | 0.12 | 99   | 0.02 |
| 16  | Hura         | Bishpuria   | 23.2861 | 86.7231 | 31.05.2019 | Dug Well  | WBPL039  | C - 618/19 | 7.82 | 1047 | 485 | 16 | 108  | 42  | 2.1  | 0   | 171              | 140               | 266 | 17              | 37  | 0.19 | 592  | 0.03 |
| 17  | Hura         | Lalpur      | 23.2806 | 86.7611 | 01.06.2019 | Dug Well  | WBPL074  | C - 635/19 | 8.02 | 683  | 220 | 12 | 46   | 59  | 9.2  | 0   | 177              | 145               | 96  | 34              | 39  | 0.28 | 403  | 0.04 |
| 18  | Hura         | Raheradhi   | 23.2744 | 86.6408 | 19.06.2019 | Dug Well  | WBPL076  | C - 636/19 | 8.04 | 392  | 165 | 12 | 33   | 19  | 4.4  | 0   | 183              | 150               | 25  | BDL             | 23  | 0.17 | 228  | 0.04 |
| 19  | Hura         | Duriakata   | 23.2986 | 86.6625 | 29.05.2019 | Dug Well  | WBPL084  | C - 639/19 | 8.15 | 414  | 160 | 36 | 17   | 29  | 1.2  | 0   | 201              | 165               | 35  | 7               | BDL | 0.24 | 248  | 0.04 |
| 20  | Hura         | Kulabahal   | 23.2997 | 86.5422 | 30.05.2019 | Dug Well  | WBPL091  | C - 643/19 | 8.13 | 967  | 220 | 22 | 40   | 85  | 38.7 | 0   | 195              | 160               | 138 | 86              | 22  | 0.26 | 552  | 0.02 |
| 21  | Jaypur       | Narayanpur  | 23.4100 | 86.2000 | 01.06.2019 | Dug Well  | WBPL021  | C - 606/19 | 7.97 | 441  | 140 | 12 | 27   | 45  | 0.4  | 0   | 159              | 130               | 35  | BDL             | 43  | 0.37 | 259  | 0.01 |
| 22  | Jhalda - II  | Durgu       | 23.3653 | 85.9756 | 29.05.2019 | Dug Well  | WBPL088  | C - 641/19 | 7.94 | 1153 | 440 | 14 | - 98 | 67  | 4.5  | 0   | 134              | 110               | 280 | 84              | BDL | 0.16 | 630  | 0.02 |
| 26  | Jhalda - II  | Kotshila    | 23.4175 | 86.1417 | 20.06.2019 | Dug Well  | WBPL007A | C - 596/19 | 7.69 | 838  | 290 | 10 | 64   | 67  | 3.7  | 0   | 116              | 95                | 174 | 8               | 67  | 0.23 | 464  | 0.01 |
| 23  | Jhalda-I     | Tulin       | 23.3797 | 85.8983 | 30.05.2019 | Dug Well  | WBPL012B | C - 599/19 | 7.88 | 1221 | 345 | 16 | 74   | 122 | 8.5  | 0   | 128              | 105               | 305 | 16              | 57  | 0.24 | 678  | 0.01 |
| 24  | Jhalda-I     | Jhalda      | 23.4472 | 86.0336 | 20.06.2019 | Dug Well  | WBPL022A | C - 607/19 | 7.95 | 844  | 220 | 18 | 43   | 85  | 1.8  | 0   | 171              | 140               | 156 | 17              | 47  | 0.24 | 473  | 0.03 |
| 25  | Jhalda-I     | Jhargo      | 23.3083 | 85.8944 | 31.05.2019 | Dug Well  | WBPL023  | C - 608/19 | 8.36 | 543  | 230 | 22 | 43   | 25  | 2.8  | 27  | 159              | 175               | 67  | 26              | BDL | 0.21 | 299  | 0.02 |
| 27  | Joypur       | Joypur      | 23.4172 | 86.1428 | 31.05.2019 | Dug Well  | WBPL038A | C - 617/19 | 7.78 | 2208 | 575 | 14 | 131  | 193 | 27.9 | 0   | 134              | 110               | 436 | 225             | 112 | 0.62 | 1222 | 0.01 |
| 28  | Kashipur     | Gaurandih   | 23.4339 | 86.7667 | 19.06.2019 | Dug Well  | WBPL014B | C - 601/19 | 7.75 | 1943 | 540 | 18 | 120  | 168 | 9.3  | 0   | 146              | 120               | 326 | 279             | 74  | 0.41 | 1085 | 0.02 |
| 29  | Kashipur     | Indrabil    | 23.4114 | 86.7825 | 20.06.2019 | Dug Well  | WBPL024  | C - 609/19 | 8.23 | 1325 | 525 | 20 | 115  | 88  | 7.2  | 0   | 573              | 470               | 145 | 20              | BDL | 0.16 | 745  | 0.07 |
| 30  | Kashipur     | Simla       | 23.3956 | 86.6497 | 30.05.2019 | Dug Well  | WBPL040  | C - 619/19 | 7.83 | 1195 | 475 | 12 | 108  | 71  | 4.4  | 0   | 104              | 85                | 372 | 3               | 26  | 0.27 | 660  | 0.51 |
| 31  | Kashipur     | Napara      | 23.4239 | 86.6664 | 30.05.2019 | Dug Well  | WBPL054  | C - 626/19 | 7.74 | 863  | 295 | 14 | 63   | 49  | 12.9 | 0   | 195              | 160               | 113 | 43              | 66  | 0.12 | 481  | 0.01 |
| 32  | Kashipur     | Palash Kola | 23.4908 | 86.6700 | 19.06.2019 | Dug Well  | WBPL104  | C - 650/19 | 7.83 | 2548 | 880 | 18 | 203  | 155 | 2.9  | 0   | 122              | 100               | 542 | 214             | 205 | 0.76 | 1416 | 0.03 |
| 33  | Kotshila     | Ukma        | 23.3981 | 86.0606 | 30.05.2019 | Dug Well  | WBPL094  | 0-644/19   | 8.21 | 698  | 210 | 16 | 41   | 76  | 4.6  | 0   | 177              | 145               | 128 | 5               | 27  | 0.84 | 406  | 0.04 |
| 34  | Manbazar - I | Sindurpur   | 23.1219 | 86.6097 | 19.06.2019 | Dug Well  | WBPL102  | 6-649/19   | 8.35 | 958  | 290 | 30 | 52   | 63  | 31.3 | 24  | 214              | 215               | 113 | 41              | 51  | 0.52 | 527  | 0.04 |
| 35  | Manbazar-I   | Manbazar    | 23.0600 | 86.6500 | 20.06.2019 | Dug Well  | WBPL001  | 0 - 593/19 | 8.05 | 694  | 130 | 14 | 23   | 91  | 1.0  | 0   | 220              | 180               | 103 | BDL             | 15  | 0.24 | 381  | 0.01 |

#### Annexure – 1 : Chemical parameters for Phreatic Aquifers assessed from various sampling points in Purulia district of West Bengal (Source: NABL Laboratory, CGWB, ER, Kolkata)

| SI. | Block           | Location     | Lat      | Long    | Date of    | Well Type | Well ID  | Lab Code   | рН   | EC   | TH  | Ca | Mg  | Na  | K           | CO3 | HCO3 | Total             | Cl  | NO <sub>3</sub> | S04 | F    | TDS      | Fe   |
|-----|-----------------|--------------|----------|---------|------------|-----------|----------|------------|------|------|-----|----|-----|-----|-------------|-----|------|-------------------|-----|-----------------|-----|------|----------|------|
| no. |                 |              |          |         | Sampling   |           |          |            |      |      |     |    |     |     |             |     |      | Alk               |     |                 |     |      | 1        |      |
|     |                 |              |          |         |            |           |          |            |      |      |     |    |     |     |             |     |      | as                |     |                 |     |      | 1        |      |
|     |                 |              |          |         |            |           |          |            |      |      |     |    |     |     |             | -   |      | CaCO <sub>3</sub> |     |                 |     |      | <u> </u> |      |
| 36  | Manbazar-II     | Ankro        | 22.9100  | 86.5700 | 19.06.2019 | Dug Well  | WBPL062  | C - 630/19 | 8.05 | 561  | 175 | 8  | 38  | 48  | 3.8         | 0   | 238  | 195               | 60  | 4               | BDL | 0.45 | 307      | 0.15 |
| 37  | Manbazar-II     | Khariduyara  | 22.9892  | 86.6300 | 20.06.2019 | Dug Well  | WBPL069  | C - 634/19 | 8.20 | 758  | 245 | 16 | 50  | 72  | 2.8         | 0   | 256  | 210               | 124 | BDL             | BDL | 0.36 | 421      | 0.02 |
| 38  | Neturia         | Gobag        | 24.0189  | 87.2925 | 19.06.2019 | Dug Well  | WBPL058  | C - 628/19 | 7.81 | 645  | 145 | 22 | 22  | 50  | 36.4        | 0   | 116  | 95                | 85  | 36              | 47  | 0.17 | 368      | 0.08 |
| 39  | Nituria         | Nituria      | 23.6622  | 86.8247 | 19.06.2019 | Dug Well  | WBPL063  | C - 631/19 | 7.98 | 623  | 225 | 20 | 43  | 41  | 2.9         | 0   | 201  | 165               | 53  | 29              | 35  | 0.37 | 347      | 0.01 |
| 40  | Para            | Anara        | 23.4914  | 86.5647 | 01.06.2019 | Dug Well  | WBPL005  | C - 595/19 | 7.83 | 820  | 230 | 10 | 50  | 76  | 1.9         | 0   | 207  | 170               | 110 | 28              | 47  | 0.08 | 449      | 0.02 |
| 41  | Para            | Para         | 23.5106  | 86.5153 | 02.06.2019 | Dug Well  | WBPL033A | C - 616/19 | 8.25 | 1322 | 395 | 18 | 85  | 103 | 9.0         | 0   | 268  | 220               | 170 | 179             | BDL | 0.24 | 728      | 0.02 |
| 42  | Para            | Deuli        | 23.5633  | 86.4681 | 20.06.2019 | Dug Well  | WBPL055A | C - 627/19 | 8.09 | 800  | 340 | 18 | 72  | 42  | 1.5         | 0   | 183  | 150               | 138 | 31              | 39  | 0.19 | 454      | 0.03 |
| 43  | Para            | Kashiberia   | 23.5442  | 86.5492 | 29.05.2019 | Dug Well  | WBPL083  | C - 638/19 | 8.32 | 1410 | 445 | 66 | 68  | 114 | 11.4        | 0   | 354  | 290               | 174 | BDL             | 162 | 0.41 | 812      | 0.04 |
| 44  | Puncha          | Kenda        | 23.1931  | 86.5183 | 01.06.2019 | Dug Well  | WBPL015A | C - 602/19 | 7.90 | 476  | 115 | 12 | 21  | 63  | 7.7         | 0   | 183  | 150               | 64  | BDL             | 9   | 0.18 | 288      | 0.06 |
| 45  | Puncha          | Bagda        | 23.1958  | 86.6847 | 01.06.2019 | Dug Well  | WBPL020  | C - 605/19 | 7.87 | 650  | 280 | 18 | 57  | 22  | 5.6         | 0   | 214  | 175               | 103 | BDL             | 21  | 0.18 | 356      | 0.02 |
| 46  | Puncha          | Kulgara      | 23.1639  | 86.6553 | 31.05.2019 | Dug Well  | WBPL079  | C - 637/19 | 7.77 | 155  | 55  | 14 | 5   | 13  | 1.0         | 0   | 79   | 65                | 11  | BDL             | BDL | 0.18 | 92       | 0.04 |
| 47  | Puncha          | Puncha       | 23.1589  | 86.6517 | 29.05.2019 | Dug Well  | WBPL085  | C - 640/19 | 8.03 | 1985 | 590 | 24 | 129 | 192 | 4.7         | 0   | 281  | 230               | 369 | 83              | 134 | 0.14 | 1106     | 0.01 |
| 48  | Puncha          | Damodarpur   | 23.1989  | 86.6667 | 29.05.2019 | Dug Well  | WBPL089  | C - 642/19 | 7.90 | 1791 | 735 | 26 | 163 | 65  | 3.8         | 0   | 153  | 125               | 379 | 176             | 74  | 0.31 | 980      | 0.02 |
| 40  | Dumilia I       | Purulia      | <u> </u> | 07.9700 | 90.07 9010 | D         | WIDDLOOA | 0 504/10   | 7.54 | 2(4  | 197 | 0  | 97  | 90  |             | 0   | 150  | 120               | าา  | 1               | 10  | 0.17 | 200      | 0.02 |
| 49  | ruruna - 1      | (Belguma)    | 29.9201  | 00.0000 | 20.00.2019 | bug wen   | WBTL004  | t • 394/19 | 1.54 | 304  | 125 | Ö  | 20  | 29  | ə. <i>t</i> | U   | 159  | 150               | -92 | 1               | 10  | 0.10 | 208      | 0.05 |
| 50  | Purulia - I     | Tamna        | 23.2736  | 86.3511 | 20.06.2019 | Dug Well  | WBPL028  | C - 612/19 | 7.96 | 1159 | 395 | 12 | 89  | 82  | 2.9         | 0   | 153  | 125               | 252 | 73              | 36  | 0.23 | 640      | 0.02 |
| 51  | Purulia - I     | Chakaltore   | 23.2364  | 86.3592 | 29.05.2019 | Dug Well  | WBPL045  | C - 623/19 | 7.98 | 542  | 205 | 16 | 40  | 36  | 1.8         | 0   | 153  | 125               | 82  | 21              | 18  | 0.68 | 308      | 0.03 |
| 52  | Purulia - I     | Imundi       | 23.3936  | 86.2753 | 18.06.2019 | Dug Well  | WBPL066  | C - 632/19 | 7.95 | 1560 | 440 | 14 | 98  | 133 | 38.4        | 0   | 299  | 245               | 347 | 33              | 13  | 0.13 | 859      | BDL  |
| 53  | Purulia - I     | Pandrama     | 23.2664  | 86.3228 | 01.06.2019 | Dug Well  | WBPL095  | C - 645/19 | 7.90 | 820  | 325 | 18 | 68  | 47  | 3.5         | 0   | 116  | 95                | 167 | 35              | 48  | 0.23 | 457      | 0.02 |
| 54  | Purulia - II    | Dhobakata    | 23.3333  | 86.3775 | 02.06.2019 | Dug Well  | WBPL106  | C - 652/19 | 8.15 | 1168 | 330 | 30 | 62  | 112 | 3.1         | 0   | 281  | 230               | 191 | 17              | 53  | 0.38 | 641      | 0.01 |
| 55  | Purulia - II    | Kustar       | 23.4047  | 86.4531 | 26.06.2019 | Dug Well  | WBPL032  | C - 615/19 | 8.30 | 685  | 250 | 14 | 52  | 53  | 7.9         | 0   | 323  | 265               | 64  | 18              | BDL | 0.08 | 407      | 0.30 |
| 56  | Purulia - II    | Podalaroad   | 23.3772  | 86.4056 | 28.05.2019 | Dug Well  | WBPL050  | C - 625/19 | 7.81 | 2108 | 730 | 70 | 135 | 121 | 8.0         | 0   | 201  | 165               | 415 | 259             | 30  | 0.73 | 1161     | 0.01 |
| 57  | Raghunathpur-I  | Bero         | 23.5289  | 86.7544 | 29.05.2019 | Dug Well  | WBPL031A | C - 614/19 | 7.98 | 435  | 115 | 12 | 21  | 54  | 2.4         | 0   | 146  | 120               | 46  | BDL             | 39  | 0.06 | 263      | 0.07 |
| 58  | Raghunathpur-ii | Raghunathpur | 23.9669  | 87.0183 | 19.06.2019 | Dug Well  | WBPL013  | C - 600/19 | 7.97 | 1016 | 285 | 10 | 63  | 97  | 1.4         | 0   | 201  | 165               | 163 | 7               | 91  | 0.56 | 557      | BDL  |
| 59  | Santuri         | Balitora     | 23.6294  | 86.8558 | 01.06.2019 | Dug Well  | WBPL042  | C - 621/19 | 7.60 | 937  | 300 | 16 | 63  | 79  | 2.6         | 0   | 183  | 150               | 142 | 3               | 95  | 0.86 | 513      | 0.02 |
| 60  | Santuri         | Santuri      | 23.5247  | 86.8567 | 02.06.2019 | Dug Well  | WBPL105  | C - 651/19 | 7.90 | 375  | 165 | 22 | 27  | 15  | 4.1         | 0   | 116  | 95                | 57  | BDL             | 18  | 0.24 | 213      | 0.02 |

#### Annexure – 1 : Chemical parameters for Phreatic Aquifers assessed from various sampling points in Purulia district of West Bengal (Source: NABL Laboratory, CGWB, ER, Kolkata)

| SI. | Block      | Location                 | Lat     | Long    | Date of    | Well ID      | Lab Code    | рH   | EC  | TH  | Ca | Mg | Na  | K   | CO3 | HCO <sub>3</sub> | Total  | Cl   | NO <sub>3</sub> | S04 | F    | TDS | Fe   |
|-----|------------|--------------------------|---------|---------|------------|--------------|-------------|------|-----|-----|----|----|-----|-----|-----|------------------|--------|------|-----------------|-----|------|-----|------|
| no. |            |                          |         |         | Sampling   |              |             |      |     |     |    |    |     |     |     |                  | Alk as |      |                 |     |      |     |      |
| 1   | Arsa       | Arsa                     | 23.3231 | 86.1157 | 24,10,2020 | EW 01        | C - 792/20  | 8.34 | 860 | 255 | 74 | 17 | 76  | 3.5 | 0   | 98               | 80     | 192  | BDL             | 75  | 0.81 | 498 | 2.03 |
| 2   | Arsa       | Arsa                     | 23.3231 | 86.1157 | 24.10.2021 | EW 02        | 0 - 793/20  | 8.30 | 884 | 335 | 80 | 33 | 41  | 5.5 | Ô   | 98               | 80     | 196  | BDL             | 52  | 0.43 | 468 | 0.21 |
| 3   | Arsa       | Ihuihka                  | 23.2807 | 86.2794 | 09.01.2021 | EW           | C - 806/20  | 8.40 | 65] | 215 | 44 | 26 | 53  | 4.8 | 0   | 122              | 100    | 68   | BDL             | 110 | 1.62 | 380 | BDL  |
| 4   | Arsa       | Jhuihka                  | 23.2807 | 86.2794 | 29.01.2021 | OW           | C - 810/20  | 8.36 | 584 | 215 | 56 | 18 | 38  | 5.4 | 0   | 177              | 145    | 58   | BDL             | 72  | 1.23 | 357 | 0.57 |
| 5   | Arsa       | Sirkabad                 | 23.2757 | 86.1943 | 25.08.2019 | EW           | 0 - 52/20   | 7.81 | 418 | 180 | 32 | 24 | 19  | 3.6 | 0   | 226              | 185    | 28   | 1               | BDL | 1.21 | 247 | BDL  |
| 6   | Arsa       | Sirkabad                 | 23.2757 | 86.1943 | 08.09.2020 | 0W 01        | C - 785/20  | 8.23 | 428 | 155 | 54 | 5  | 28  | 3.0 | 0   | 165              | 135    | 22   | 12              | 31  | 0.51 | 256 | BDL  |
| 7   | Arsa       | Sirkabad                 | 23.2757 | 86.1943 | 12.09.2020 | 0W 02        | C - 786/20  | 8.27 | 416 | 160 | 36 | 17 | 28  | 3.1 | 0   | 183              | 150    | 22   | 12              | 32  | 0.48 | 262 | BDL  |
| 8   | Barabazar  | Bamundiha                | 23.1159 | 86.3654 | 10.01.2020 | EW 01        | C - 1224/19 | 7.83 | 979 | 125 | 44 | 4  | 145 | 4.6 | 0   | 134              | 110    | 152  | 28              | 94  | 0.00 | 553 | BDL  |
| 9   | Barabazar  | Bamundiha                | 23.1167 | 86.3635 | 01.02.2020 | EW 02        | 0 - 1232/19 | 8.25 | 928 | 90  | 22 | 9  | 156 | 3.2 | 0   | 134              | 110    | 152  | BDL             | 108 | 0.00 | 532 | BDL  |
| 10  | Barabazar  | Bamundiha                | 23.1159 | 86.3654 | 16.03.2020 | 0W           | C - 525A/20 | 7.96 | 927 | 90  | 28 | 5  | 157 | 2.6 | 0   | 159              | 130    | 167  | BDL             | 64  | 0.00 | 521 | 1.87 |
| 11  | Barabazar  | Bodaldih                 | 23.1508 | 86.4175 | 21.02.2018 | 0W 01        | 0 - 23/19   | 6.64 | 316 | 130 | 32 | 12 | 25  | 6.6 | 0   | 183              | 150    | 35   | 9               | 3   | 0.07 | 202 | BDL  |
| 12  | Barabazar  | Bodaldih                 | 23.1508 | 86.4175 | 03.07.2019 | <b>OW</b> 02 | C - 653/19  | 7.74 | 279 | 105 | 22 | 12 | 27  | 4.8 | 0   | 153              | 125    | 25   | 3               | 10  | 0.14 | 196 | BDL  |
| 13  | Barabazar  | Shankhari -<br>Bansberia | 23.0510 | 86.3570 | 25.08.2019 | EW 01        | C - 1070/19 | 7.86 | 351 | 155 | 10 | 32 | 13  | 1.3 | 0   | 189              | 155    | 14   | BDL             | BDL | 0.00 | 186 | BDL  |
| 14  | Barabazar  | Shankhari -<br>Bansberia | 23.0512 | 86.3572 | 16.10.2019 | EW 02        | C - 1077/19 | 7.63 | 181 | 100 | 6  | 21 | 8   | 1.3 | 0   | 116              | 95     | 14   | 3               | BDL | 0.00 | 124 | BDL  |
| 15  | Barabazar  | Shankhari -<br>Bansberia | 23.0512 | 86.3572 | 10.12.2019 | OW           | C - 1092/19 | 7.92 | 199 | 75  | 22 | 5  | 10  | 1.1 | 0   | 98               | 80     | 11   | 2               | BDL | 0.02 | 110 | BDL  |
| 16  | Hura       | Ladhurka                 | 23.3521 | 86.5309 | 08.02.2018 | EW 01        | С-1566/17   | 8.12 | 705 | 210 | 22 | 38 | 64  | 5.1 | 0   | 110              | 90     | 145  | 13              | 22  | 0.00 | 399 | 1.26 |
| 17  | Hura       | Ladhurka                 | 23.3521 | 86.5309 | 15.02.2018 | EW 02        | 0 - 1567/17 | 7.12 | 690 | 195 | 20 | 35 | 67  | 5.3 | 0   | 104              | 85     | 142  | 14              | 25  | 0.00 | 391 | 0.72 |
| 18  | Hura       | Ladhurka                 | 23.3521 | 86.5309 | 21.02.2018 | EW 03        | C - 1568/17 | 7.15 | 710 | 205 | 20 | 38 | 63  | 5.l | 0   | 98               | 80     | 149  | 14              | 21  | 0.00 | 396 | 1.68 |
| 19  | Hura       | Lakhanpur                | 23.3409 | 86.5732 | 24.05.2018 | EW           | C - 110/18  | 7.78 | 315 | 120 | 34 | 9  | 20  | 4.2 | 0   | 85               | 70     | 53   | 12              | 15  | 0.80 | 199 | 0.80 |
| 20  | Hura       | Lalpur                   | 23.3066 | 86.6248 | 15.03.2018 | EW           | 0 - 29/18   | 8.08 | 185 | 155 | 28 | 21 | 17  | 2.7 | 0   | 116              | 95     | 43   | 11              | 1   | 0.77 | 118 | 0.83 |
| 21  | Hura       | Rakhera-<br>Bishpuria    | 23.2661 | 86.7483 | 12.09.2018 | EW           | C - 1051/18 | 8.24 | 531 | 320 | 40 | 53 | 19  | 4.6 | 0   | 220              | 180    | 85   | 2               | 1   | 0.44 | 340 | 0.33 |
| 22  | Jhalda I   | Goria                    | 23.3284 | 86.2336 | 18.05.2017 | EW           | 0 - 536/17  | 7.79 | 378 | 185 | 34 | 24 | 49  | 3.4 | 0   | 348              | 385    | 15   | 4               | 10  | 1.32 | 179 | 0.78 |
| 23  | Jhalda I   | Ichag                    | 23.3326 | 85.9251 | 06.09.2017 | EW           | C - 1310/17 | 8.14 | 372 | 80  | 22 | 6  | 51  | 4.0 | 0   | 201              | 165    | 18   | BDL             | 4   | 0.08 | 237 | 0.82 |
| 24  | Jhalda I   | Jhalda                   | 23.3655 | 85.9616 | 10.12.2018 | EW           | C - 1476/17 | 8.20 | 344 | 80  | 18 | 9  | 46  | 2.2 | 0   | 128              | 105    | 35   | 1               | 14  | 0.00 | 217 | 3.34 |
| 25  | Jhalda I   | Mahatomara               | 23.4236 | 85.9124 | 16.04.2017 | EW 01        | 0 - 2/17    | 6.68 | 910 | 215 | 74 | 7  | 27  | 5.0 | 0   | 67               | 55     | 120  | 2               | 14  | 1.4  | 583 | 1.47 |
| 26  | Jhalda I   | Mahatomara               | 23.4236 | 85.9124 | 16.04.2017 | EW 02        | 0 - 3/17    | 7.34 | 626 | 230 | 60 | 19 | 14  | 3.8 | 0   | 116              | 95     | - 96 | BDL             | 6   | 1.21 | 400 | 1.38 |
| 29  | Jhalda I   | Tulin                    | 23.3776 | 85.9006 | 24.12.2017 | EW 02        | 0 - 1477/17 | 8.01 | 395 | 105 | 30 | 7  | 41  | 2.2 | 0   | 146              | 120    | 43   | 1               | 9   | 0.86 | 234 | BDL  |
| 30  | Jhalda I   | Tulin                    | 23.3776 | 85.9006 | 25.11.2016 | EW 02        | C - 41/16   | 7.68 | 273 | 90  | 10 | 16 | 20  | 2.2 | 0   | 140              | 120    | 11   | 34              | 1   | 0.39 | 175 | 0.11 |
| 27  | Jhalda II  | Kotshila                 | 23.4055 | 86.0717 | 28.10.2016 | EW           | C - 38/16   | 7.98 | 769 | 205 | 20 | 38 | 43  | 3.1 | 0   | 116              | 95     | 113  | 33              | 35  | 0.8  | 492 | 0.11 |
| 28  | Jhalda II  | Kotshila                 | 23.4055 | 86.0717 | 28.10.2016 | OW           | C - 38/16   | 7.68 | 756 | 185 | 6  | 41 | 57  | 4.8 | 0   | 159              | 130    | 43   | 33              | 34  | 0.5  | 484 | 0.12 |
| 31  | Manbazar I | Gopalnagar<br>HS         | 23.1325 | 86.5879 | 31.01.2019 | EW           | C - 1145/18 | 7.98 | 368 | 150 | 12 | 29 | 20  | 1.7 | 0   | 195              | 160    | 21   | 1               | 8   | 0.72 | 214 | 0.92 |

## Annexure – 2 : Decadal water level data (2010 to 2019) from various NHNSstationsthat has been utilized for preparing Depth to Water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)

| SI. | Block      | Location   | Lat     | Long    | Date of    | Well ID | Lab Code    | рH   | EC   | TH  | Ca  | Mg   | Na   | K   | CO3 | HCO <sub>3</sub> | Total  | Cl  | NO <sub>3</sub> | S04 | F    | TDS | Fe   |
|-----|------------|------------|---------|---------|------------|---------|-------------|------|------|-----|-----|------|------|-----|-----|------------------|--------|-----|-----------------|-----|------|-----|------|
| no. |            |            |         |         | Sampling   |         |             |      |      |     |     |      |      |     |     |                  | Alk as |     |                 |     |      |     | 1    |
|     |            |            |         |         |            |         |             |      |      |     |     |      |      |     |     |                  | CaCO3  |     |                 |     |      |     |      |
| 32  | Puncha     | Kurukthupa | 23.1478 | 86.5249 | 31.01.2019 | EW      | C - 1146/18 | 8.29 | 246  | 75  | 16  | 9    | 24   | 2.6 | 0   | 122              | 100    | 14  | BDL             | 10  | 0.69 | 151 | 0.48 |
| 33  | Puncha     | Loulara    | 23.1742 | 86.6618 | 12.10.2018 | EW      | C - 1053/18 | 8.25 | 465  | 285 | 42  | - 44 | - 44 | 3.5 | 0   | 275              | 225    | 46  | 8               | BDL | 0.62 | 298 | 0.48 |
| 34  | Puncha     | Napara     | 23,2210 | 86.6454 | 19.11.2018 | EW      | C - 1055/18 | 8.03 | 883  | 355 | 84  | 35   | 61   | 3.1 | 0   | 201              | 165    | 202 | 2               | BDL | 0.34 | 565 | 0.77 |
| 35  | Puncha     | Napara     | 23.2210 | 86.6454 | 30.11.2018 | OW      | C - 1057/18 | 6.76 | 1057 | 335 | 102 | 19   | 70   | 4.0 | 0   | 134              | 110    | 213 | 42              | 49  | 0.52 | 582 | 0.98 |
| 36  | Purulia I  | Ambagan    | 23.3255 | 86.3437 | 31.07.2016 | EW      | 0 - 23/16   | 7.68 | 665  | 130 | 12  | 24   | 93   | 4.0 | 0   | 110              | 90     | 113 | 26              | 41  | 0.51 | 426 | 0.09 |
| 37  | Purulia I  | Ambagan    | 23.3255 | 86.3437 | 31.07.2016 | OW      | 0 - 23/16   | 7.63 | 774  | 135 | 26  | 17   | 89   | 4.7 | 0   | 165              | 135    | 124 | 27              | 22  | 0.8  | 495 | 0.21 |
| 38  | Purulia I  | Belguma    | 23.3271 | 86.3457 | 30.04.2016 | EW      | C - 003/16  | 7.96 | 639  | 140 | 24  | 19   | 77   | 3.4 | 0   | 189              | 155    | 74  | 24              | 35  | 0.6  | 409 | 0.10 |
| 39  | Purulia I  | Belguma    | 23.3271 | 86.3457 | 30.04.2016 | OW      | C - 003/16  | 7.65 | 530  | 90  | 14  | 13   | 86   | 3.2 | 0   | 153              | 125    | 64  | 24              | 29  | 0.4  | 339 | 0.13 |
| 40  | Purulia I  | Chaklatore | 23.2425 | 86.3534 | 31.01.2019 | EW      | 0 - 1238/18 | 8.12 | 460  | 140 | 20  | 22   | 36   | 2.1 | 0   | 226              | 185    | 18  | 6               | 12  | 0.81 | 254 | 0.43 |
| 41  | Purulia I  | Chhara     | 23.3707 | 86.4193 | 19.01.2018 | EW      | 0 - 1555/17 | 7.17 | 493  | 160 | 20  | 27   | 39   | 5.6 | 0   | 110              | 90     | 74  | 22              | 24  | 0.66 | 293 | 0.36 |
| 42  | Purulia I  | Chhara     | 23.3707 | 86.4193 | 13.04.2018 | EW 02   | C - 30/18   | 7.81 | 386  | 215 | 46  | 24   | 26   | 1.6 | 0   | 177              | 145    | 71  | 10              | l   | 0.47 | 247 | 0.22 |
| 43  | Purulia I  | Pandrama   | 23.2676 | 86.3153 | 05.12.2020 | EW      | C - 800/20  | 8.27 | 684  | 245 | 62  | 22   | 41   | 4.0 | 0   | 122              | 100    | 135 | BDL             | 58  | 0.53 | 396 | 0.06 |
| 44  | Purulia I  | Pandrama   | 23.2676 | 86.3153 | 22.12.2020 | OW      | C - 805/20  | 8.25 | 673  | 245 | 62  | 22   | 41   | 4.0 | 0   | 92               | 75     | 140 | BDL             | 58  | 0.52 | 383 | 0.31 |
| 45  | Purulia II | Gengara    | 23.3439 | 86.4241 | 19.06.2018 | EW      | C - 679/18  | 8.03 | 397  | 140 | 4   | 32   | 48   | 2.3 | 0   | 195              | 160    | 50  | BDL             | BDL | 0.27 | 254 | 0.50 |
| 46  | Purulia II | Gengara    | 23.3439 | 86.4241 | 03.07.2018 | OW      | C - 689/18  | 7.92 | 359  | 140 | 36  | 12   | 36   | 2.8 | 0   | 177              | 145    | 60  | BDL             | 4   | 0.26 | 230 | 0.01 |
| 47  | Purulia II | Hutmura    | 23.3524 | 86.4737 | 30.07.2018 | EW      | C - 690/18  | 7.52 | 1318 | 360 | 64  | 49   | 109  | 3.7 | 0   | 201              | 165    | 230 | BDL             | 4   | 0.29 | 844 | 0.58 |

Annexure – 2 : Decadal water level data (2010 to 2019) from various NHNSstationsthat has been utilized for preparing Depth to Water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)

| SL.<br>NO | BLOCK       | VILLAGE            | LATITUDE  | LONGITUDE   | RL     | WELL-ID  | MP   | LOCATION                                                                                                                             | APR 2010_19 | NOV 2010_19 |
|-----------|-------------|--------------------|-----------|-------------|--------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 1         | Arsha       | Arsha              | 23 322406 | 86 158107   | 332.3  | WBPL08   | 0.32 | Within the Forest Reat office & one-to Arsha P.S.                                                                                    | 0.71        | -0.83       |
| 2         | Arsha       | Kantadihi          | 23.217356 | 86.298971   | 206.65 | WBPL29   | 0.51 | Inside sub-health centre appraochable from Arsha                                                                                     | -0.67       | -0.36       |
| 3         | Baøhmundi   | Mathbura           | 23,119536 | 86.075843   | 193.21 | WBPL37   | 0.87 | Inside Forest Range Office. Rd approaching Balarampur.                                                                               | -3.13       | -1.88       |
| 4         | Baghmundi   | Korenge            | 23,236565 | 85,985109   | 198.29 | WBPL41   | 0.68 | Backside of the Hospital.                                                                                                            | -0.52       | 0.25        |
| 5         | Bagmundi    | Baghmundi          | 23.195178 | 86.048332   | 197.77 | WBPL09   | 0.86 | In Baghmundi P.S. adiacent to Shiva Temple.                                                                                          | 0.82        | -0.17       |
| 6         | Balarampur  | Namsole            | 23.130699 | 86.245471   | 199.98 | WBPL097  | 0.62 | LHS of Tawna - Balarampur Rd., infront of of Sub - health centre . About 3 km from Baraumra towards Balarampur                       | 0.29        | 0.2         |
| 7         | Balarampur  | Dava               | 23.104287 | 86.139284   | 154.92 | WBPL098A | 0.64 | LHS of Balarampur - Baghmundi Rd., adjacent to the house of Surya Kanta Kumar, about 7 km before Matha.                              | 0.23        | -3.76       |
| 8         | Balarampur  | Baraurma           | 23.164166 | 86.262704   | 205.17 | WBPL26   | 0.72 | Inside school compound.                                                                                                              | 1.95        | 0.56        |
| 9         | Barabazar   | Bamundiha          | 23.11644  | 86.36552    | 170.5  | WBPL67   | 0.7  | Within P.H.C. on Purulia - Manbazar road.                                                                                            | -1.59       | -0.03       |
| 10        | Barabazar   | Bamundiha          | 23.113518 | 86.365424   | 191.17 | WBPL68   | 0.5  | Within P.H.C. on Purulia - Manbazar road.                                                                                            | -0.86       | 0.44        |
| 11        | Barabazar   | Purihasa           | 23.067356 | 86.363933   | 162.03 | WBPL086  | 0.5  | RHS of Purulia - Barabazar road, before reaching Barabazar 1.50 m north from Hari mandir, infront of house of Guru                   | -1.04       | -0.06       |
|           |             |                    |           |             |        |          |      | Mahato, 750 m from Kumari river Bridge.                                                                                              |             |             |
| 12        | Barabazar   | Aga Jhore          | 23.044452 | 86.442333   | 134.12 | WBPL099  | 0.65 | RHS of Purulia - Manbazar Rd. , near the house of Sahadeb Mahato, about 5 km before Sindri                                           | 0.11        | 0.98        |
| 13        | Barabazar   | Takariya           | 23.159837 | 86.348147   | 204.03 | WBPL17A  | 0.6  | On Rd.to Barabazar near the house of Sri Kandru Mahato.                                                                              | 0.03        | -0.52       |
| 14        | Barabazar   | Sindri             | 23.043614 | 86.494011   | 131.77 | WBPL18   | 0.64 | Near Primary Health Centre on Manbazar-Purulia Raod.                                                                                 | 0.69        | 0.55        |
| 15        | Barabazar   | Barabazar          | 23.028913 | 86.362432   | 145.31 | WBPL48D  | 0.54 | Inside hospital compound, located in front of "Indoor Patient" near pump house. Sardardih more Old KSP Well.                         | 0.16        | 1.99        |
| 16        | Bundwan     | Dhabani            | 22.926845 | 86.446175   | 162.18 | WBPL61   | 0.55 | Near house of Sufi singh at Sardar Para, EHS of road from Bandwan to Barabazar, 8.5 km from Bandwan, at the end of                   | -0.23       | -0.62       |
|           |             |                    |           |             |        |          |      | village                                                                                                                              |             |             |
| 17        | Hura        | Hura               | 23.301122 | 86.662737   | 145.27 | WBPL03   | 1.06 | In the compound of Police Station                                                                                                    | -0.06       | 0.26        |
| 18        | Hura        | Katagora           | 23.294402 | 86.630873   | 177.1  | WBPL65   | 0.5  | Within P.H.C. campus. On Lalgon - Manbazar road.                                                                                     | -5.29       | -0.55       |
| 19        | Hura        | Lalpur             | 23.301914 | 86.631246   | 189.32 | WBPL074  | 0.73 | Behind Dayal Onkareswar Shivalay Mandir. RHS of road from Lalpur to Bagda. Tekchongora village.                                      | -0.09       | 0.47        |
| 20        | Hura        | Raheradhi          | 23.228441 | 86.645938   | 168.19 | WBPL076  | 0.83 | RHS of road towards Bagda 1km. Beffore Napara. Near the residence of Ashok Dutta (Owner of dugwell), Satyajit Mess.                  | -0.75       | 0.22        |
| 21        | Hura        | Duriakata          | 23.297736 | 86.688712   | 143.61 | WBPL084  | 0.5  | RHS of Bispuria - Hura road, about 3 - to 4 km from Bispuria, " Dilse" Shop, Hura G.P. country Liquor shop of Mihir                  | -0.52       | -0.53       |
|           |             |                    | 20.000101 | 0.4 # (1000 | 144.50 | WEBLACI  |      | Nandi.                                                                                                                               | 0.44        |             |
| 22        | Hura        | Kulabahal          | 23.303131 | 86.541829   | 164.73 | WBPL091  | 0.65 | RHS of Keshargarh - Ludhurka road via Ground Nore. Back side of the house of Bairay, Judhistir and Arun Mahato                       | -0.64       | 0.02        |
| 23        | Hura        | Keshargarh         | 23.269088 | 86.556936   | 159.17 | WBPL25   | 0.6  | Appraoch from Kulgura on Purulia-Hura road, about 8km South of Kulgura and 10m SW of Janata Clothes Store.                           | 0.61        | 0.19        |
| 24        | Hura        | Ludurka            | 23.351291 | 86.523225   | 174.6  | WBPL27A  | 0.68 | Inside Pandeya line hotel, after crossing Primary Health Centre and Reliance Petrol Pump; way to Purulia.                            | 3.64        | 0.4         |
| 25        | Hura        | Bishpuria          | 23.282697 | 86.741533   | 103    | WBPL39   | 0.65 | Inside Bispuria Library-Sahitya Sadan, on Purulia-Bankura Road.                                                                      | -0.39       | -0.95       |
| 26        | Jaypur      | Narayanpur         | 23.411132 | 86.211051   | 211.12 | WBPL21   | 0.64 | At the entrance of P.W.D. I.B. at Narayanpur, left side on the paddy held.                                                           | 0.71        | 0.03        |
| 27        | Jhalda - II | Durgu              | 23.3853/2 | 86.012713   | 252.85 | WBPL088  | 0.5  | 4 to 5 km towards Jhalda from Kotsila, LHS of road, adj. To Photo Binding of Sunil Kumar.                                            | -0.4        | -0.09       |
| 28        | Jhalda-I    | Tulin              | 23.379209 | 85.898152   | 196.78 | WBPL12B  | 0.58 | On the way to JUTSITSRAM HIGH SCHOOL before crossing the railway level crossing in the house of Shaktipada Mahato at                 | 1.84        | -1.38       |
| 20        | Ibalda I    | Ibalda             | 92 264294 | 95 060050   | 270.25 | WDDI 99A | 0.75 | Upput pata.<br>Laestad in Satushala Viduanith (High School) on Tulin road - Donth - 0.00 m hmn: Dia - 2.73 m M.D. 0.75 m ad. Changad | 1.91        | 0.24        |
| 29        | Jildilla-I  | Jilalua            | 25.504504 | 05.700757   | 270.55 | WDI LZZA | 0.75 | no 4/02 by A K (battariaa                                                                                                            | 1.21        | 0.24        |
| 30        | Ihalda-I    | Ihargo             | 23 308233 | 85 89469    | 208 23 | WBPL23   | 0.65 | on Thalda-Ragmundi Bd inside village 50m N of Ananda Marg School                                                                     | -0.25       | 1.53        |
| 31        | Ihalda-II   | Kotshila           | 23.404287 | 86.071455   | 248.17 | WBPL07A  | 0.75 | Inside BDO Office compound. On Purulia-Banchi road.                                                                                  | -1.99       | 1.03        |
| 32        | lovpur      | Iovour Forest More | 23.411831 | 86,189568   | 222.98 | WBPL092  | 0.65 | LHS of Purulia - Thalda road, back side of Shrinihas Dhaha and Karmokar Cement Centre, Toynur about 5 km                             | 0.18        | -1.76       |
| 33        | lovpur      | lovpur             | 23.417232 | 86,143009   | 214.21 | WBPL38A  | 0.62 | Located in the Police Station Compound near bus stand opposite to U.B.L. Just left side after entrance. Denth - 13.00 m              | -0.23       | 0.22        |
|           | a . Then    | 2.07 F             |           |             |        |          | 0.0- | bmpdia - 1.23 m M.P. 0.62 m agl                                                                                                      | ·           | •           |
| 34        | Kashipur    | Rangani            | 23.483566 | 86.671395   | 111.34 | WBPL70   | 0.8  | Opposite to vetanary hospital on Adra - Kashipur road.                                                                               | -0.68       | -0.4        |
| 35        | Kashipur    | Palash Kola        | 23.490689 | 86.670035   | 131.88 | WBPL104  | 0.62 | LHS of Adra - Kashipur Rd. near the house of Shibram Dubey, Just entrance of Kashipur Rd. from Adra                                  | -0.62       | 0.04        |

# Annexure – 3 : Decadal water level data (2010 to 2019) from various NHNSstationsthat has been utilized for preparing Depth to Water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)

| SL.<br>NO | BLOCK             | VILLAGE                        | LATITUDE     | LONGITUDE | RL     | WELL-ID   | MP   | LOCATION                                                                                                                                                                                                     | APR 2010_19 | NOV 2010_19 |
|-----------|-------------------|--------------------------------|--------------|-----------|--------|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 36        | Kashipur          | Gaurandih                      | 23.434316    | 86.767264 | 119.12 | WBPL14B   | 0.6  | In the residence of Shri Sushil Patra, which is opposite to Gaurandih Junior High School.                                                                                                                    | -0.86       | 1.26        |
| 37        | Kashipur          | Indrabil                       | 23.452539    | 86.774899 | 109.45 | WBPL24    | 1    | Approach from Kashipur & inside the house of Gurupada just entering in the village. In the residence of Gurupada Bauri.                                                                                      | 1.84        | 1.24        |
| 38        | Kashipur          | Simla                          | 23.380268    | 86.646979 | 142.22 | WBPL40    | 0.64 | On Kashipur-Hura Rd., within Majura-Amdiha High School.                                                                                                                                                      | -0.15       | 0.55        |
| 39        | Kashipur          | Kapasitha                      | 23.434846    | 86.72364  | 97.63  | WBPL53B   | 0.77 | In the compound of Ma Manikeswari light house(r) Owner Pvt Shri Jadhubir Mahato.                                                                                                                             | -0.95       | -1.34       |
| 40        | Kashipur          | Napara                         | 23.430372    | 86.662776 | 120.8  | WBPL54    | 0.75 | Inside Forest guard's Quarter at Nawapara on Kashipur-Hura Road.                                                                                                                                             | -0.01       | 0.4         |
| 41        | Kotshila          | Nowahatu                       | 23.427401    | 86.054567 | 269.41 | WBPL093   | 0.66 | RHS of Kotshila - Barurula road, at the farm of Lalbahadur Rajwar. Barurala about 5 km                                                                                                                       | -2.08       | 0.88        |
| 42        | Kotshila          | Ukma                           | 23.423116    | 86.037756 | 267.74 | WBPL094   | 0.64 | RHS of Bararula - Durgu road, back side of Shiva Mandir. Durgu about 5 km                                                                                                                                    | 2.16        | 0.58        |
| 43        | Manbazar          | Gopalnagar                     | 23.137127    | 86.585397 | 109.89 | WBPL087   | 0.4  | On Manbazar - Purulia road, after crossing Goplanagar village, besides Gopalnagar Siva mandir & Kali Mandir.                                                                                                 | 0.01        | 0.03        |
| 44        | Manbazar - I      | Sindurpur                      | 23.121968    | 86.609792 | 126.24 | WBPL102   | 0.64 | RHS of Jitujuri - Kunda - Purulia Rd., near the house of Budheswar Mahato. After 1 km from Jitjuri                                                                                                           | -0.23       | 0.19        |
| 45        | Manbazar-I        | Manbazar                       | 23.059361    | 86.659135 | 114.22 | WBPL01    | 0.7  | Inside Manbazar Police Station.                                                                                                                                                                              | 2.43        | 0.74        |
| 46        | Manbazar-II       | Khariduyara                    | 22.988664    | 86.629541 | 103.69 | WBPL69    | 0.7  | Within P.H.C. campus. On Barabazar - Manbazar road.                                                                                                                                                          | -0.11       | 0.42        |
| 47        | Manbazar-II       | Ankro                          | 22.912271    | 86.550649 | 121    | WBPL62    | 0.58 | In the premises of PHC, near pump house behind main hospital building.Ankro village is 6 km from Bandwan on                                                                                                  | 1.4         | 1.55        |
| 10        | N                 | 0 I .                          | 28 ( 10 ( 11 | 0(01/0/0  | 01.17  | WIDDL = / | 0.0  | Manbazar road.                                                                                                                                                                                               | 0.55        | 0.1/        |
| 48        | Neturia           | Sarbori                        | 23.649641    | 86.814248 | 81.16  | WBPL56    | 0.8  | Inside commercial check post on Raghunathpur-Barakar Rd.                                                                                                                                                     | 2.75        | 0.16        |
| 49        | Neturia           | Gobag                          | 23.591949    | 86.762734 | 102.58 | WBPL58    | 0.73 | Located at the entrance of the village adj. to Purulia-Bankura Rd. in front of Haradhan Garai's tycle reparing Shop.                                                                                         | -0.26       | -0.49       |
| 50        | Nituria           | Nituria                        | 23.662027    | 86.824667 | 56.29  | WBPL63    | 1.08 | In the campus of Shiva Temple. Upposite to Nituria Police Station. (new well from Nov 2010)                                                                                                                  | -0.16       | -0.12       |
| 51        | Para              | Anara                          | 23.491296    | 86.56469  | 153.21 | WBPL05    | 0.84 | Inside the compd of 33 KV sub-station, just after the Chapuri gate on Raghunathpur-Purulia road.                                                                                                             | -0.66       | 1.96        |
| 52        | Para              | Kashiberia                     | 23.544095    | 86.549105 | 123.16 | WBPL083   | 0.7  | Govt. well near Keshiberia School. RHS of Rd. towards Babugram. 3 km from Dubra.                                                                                                                             | -0.43       | 0.28        |
| 53        | Para              | Para                           | 23.510533    | 86.515082 | 159.05 | WBPL33A   | 0.8  | LHS of road from Para to Dubra, near bus stand, adjacent to the house of Subhash Modak, in front of the shop Gauri<br>Sankar Sweets.                                                                         | -0.24       | -0.01       |
| 54        | Para              | Dubra                          | 23.543654    | 86.520021 | 128.35 | WBPL34    | 1    | Within Dubra market, adj. to Dubra Readymade Store & Anil Tailoring Shop on Raghunathpur Santaldih Road and adj<br>to M.M.Clath store and some to be forem Esclory, on Dubrá, Santaldih read                 | -0.18       | -0.62       |
| 55        | Para              | Ihanra                         | 23 470346    | 86 513335 | 147 56 | WRPLA6    | 0.49 | Within High School compto a Raghunathnur.Purulia Rd                                                                                                                                                          | 1.62        | 0.78        |
| 56        | Para              | Deuli                          | 23.56329     | 86 468192 | 112 58 | WBPL55A   | 0.47 | Frank ing is sense of Shri Cour Mahato. Just opposite to Tarun Granthagar (Library) on Santaldih road. Depth - 10.50                                                                                         | -0.55       | 0.57        |
| 00        | Turu              | boun                           | 20.00027     | 00.1001/2 | 112.00 | W DI LOOM | 0.00 | mdia - 1.50 m M.P. 0.55 m agl.                                                                                                                                                                               | 0.00        | 0.01        |
| 57        | Puncha            | Panipathar                     | 23.210134    | 86.487155 | 172.6  | WBPL071   | 0.95 | On the midway from Purulia to Manbazar, 17 km from Chakaltore. Near Panipathar more Bus stand behind M.K.Xerox & Photo printing and New Fee Machines                                                         | -0.92       | 0.63        |
| 50        | Puncha            | Chakgonalnur/Nanara            | 92 990194    | 96 647025 | 142.69 | WDDI 077  | 0.0  | From printing and New Etd Mathines.                                                                                                                                                                          | 0.34        | 9.11        |
|           | r ununa<br>Duncha | Ulangopaipui/Napara<br>Kulaara | 20.220124    | 00.047033 | 140.00 | WDDL070   | 0.9  | bovi, wen (LDW-1900). Aujatent to me nouse of sapan manato, nus of foad fowards bagita.<br>Babind bele Sriti Bath mondin. Near the Signboard Kulgere Sankerwasherve Niesion Videamendin. DUS of read towards | -0.34       | -2.11       |
| 39        | runtna            | Kuigara                        | 23,320103    | 00.300037 | 100.00 | W DT 1079 | 0.0  | bennin bela siru rani monur, ven nie signoon u kuigara sankaryacharya mission viuyamanun, kuis oi roau iowarus<br>Keshargar.                                                                                 | 0.02        | 0.45        |
| 60        | Puncha            | Puncha                         | 23.164032    | 86.655195 | 126.35 | WBPL085   | 0.7  | Inside Puncha Police Station.                                                                                                                                                                                | -1.19       | 0.51        |
| 61        | Puncha            | Loulara                        | 23.173953    | 86.66955  | 157.42 | WBPL090   | 0.58 | LHS of Bagdah - Puneha road infront of the house of Sukumar Banerjee, about 4 km from Bagdah                                                                                                                 | -l.l        | -1.49       |
| 62        | Puncha            | Matha                          | 23.158048    | 86.545656 | 154.77 | WBPL103   | 0.57 | RHS of Banduan Kendra Rd., near the house of Atul Ch. Mahato                                                                                                                                                 | -3.54       | 0.5         |
| 63        | Puncha            | Kenda                          | 23.192502    | 86.520563 | 187.17 | WBPL15A   | 0.95 | In the residence of Shri Sukhdeb Mahato opposite to Pally Seva Sangha at Sardardih more                                                                                                                      | -1.21       | -0.24       |
| 64        | Puncha            | Bagda                          | 23.195973    | 86.684726 | 139.65 | WBPL20    | 0.67 | Just behind primary health centre. On Hura-Manbazar Rd.                                                                                                                                                      | 0.84        | -0.74       |
| 65        | Purulia           | Sankhari                       | 23.056084    | 86.360455 | 169.1  | WBPL100   | 0.68 | LHS of Bamundiha - Barabazar Rd. near the house of Bhuson Mahto, about 3 km before Barabazar                                                                                                                 | -2.04       | 0.6         |
| 66        | Purulia - 1       | Dhobakata                      | 23.333432    | 86.377485 | 171.81 | WBPL106   | 0.69 | LHS of Bankura - Purulia By-pass, after crossing the flyover Railway track , near the house of Sarbeswar Kalindi at<br>Harijan colony                                                                        | 0.58        | 1.17        |
| 67        | Purulia - I       | Imundi                         | 23.393683    | 86.275304 | 218.47 | WBPL66    | 0.75 | On Purulia - Jhalda road. Opposite to the approach road for Gourinath Dham Rly. Stn.                                                                                                                         | 0.5         | 0.31        |
| 68        | Purulia - I       | Pandrama                       | 23.268935    | 86.327106 | 181.63 | WBPL095   | 0.66 | LIIS of Purulia - Arshar road, opposite side of health centre and adjacent of Smriti Bedi mother of Dulal Mahato.3 km from Tawna More.                                                                       | 0.1         | 0.95        |
| 69        | Purulia-I         | Purulia(Belguma)               | 23.321875    | 86.343006 | 183.99 | WBPL04    | 0.65 | Just left side of the entrance of Agri. Irrigation Office at Belguma, Purulia.                                                                                                                               | -0.74       | 0.35        |
|           |                   |                                |              |           |        |           |      |                                                                                                                                                                                                              |             |             |

# Annexure – 3 : Decadal water level data (2010 to 2019) from various NHNSstationsthat has been utilized for preparing Depth to Water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)

| SL. | BLOCK           | VILLAGE      | LATITUDE  | LONGITUDE | RL     | WELL-ID | MP   | LOCATION                                                                                                                 | APR 2010_19 | NOV 2010_19 |
|-----|-----------------|--------------|-----------|-----------|--------|---------|------|--------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| NO  |                 |              |           |           |        |         |      |                                                                                                                          |             |             |
| 70  | Purulia-I       | Tamna        | 23.273642 | 86.350964 | 153.25 | WBPL28  | 0.3  | At Tamna more within the House of Subal Adhikari & back side of Hotel.                                                   | 0           | 0.15        |
| 71  | Purulia-II      | Kustar       | 23.404799 | 86.453162 | 200.26 | WBPL32  | 0.49 | Within Health Centre, at its entrance adj. to Doctors' Quarter near outdoor. On Raghunathpur-Purulia road.               | 0.04        | 0.15        |
| 72  | Purulia-II      | Podalaroad   | 23.369513 | 86.400155 | 199.97 | WBPL50  | 0.43 | On Puruliá-Raghunathpur Rd,near the house of Anil Bauri Harijan Para.                                                    | 0.08        | 0.21        |
| 73  | Puruliya-I      | Chakaltore   | 23.236235 | 86.359198 | 163.22 | WBPL45  | 0.94 | Inside Primary Health Centre.                                                                                            | -0.96       | 0.27        |
| 74  | Raghunathpur-I  | Bero         | 23.525901 | 86.754148 | 124.77 | WBPL31A | 0.35 | On Saltora-Raghunathpur road, near bus stand 10 K.m. from Raghunathpur towards Saltora at Kharbora, near Bauri para.     | -0.24       | -1.49       |
|     |                 |              |           |           |        |         |      | Depth - 9.00 m bmpdia - 2.40 m.M.P. 0.35 m agl.                                                                          |             |             |
| 75  | Raghunathpur-I  | Naduara      | 23.522744 | 86.67948  | 118.36 | WBPL47  | 0.2  | Inside Raghunathpur I.T.I compd, on Raghunathpur-Adra road.                                                              | 4.13        | 0.66        |
| 76  | Raghunathpur-I  | Chinpina     | 23.535127 | 86.696097 | 106.55 | WBPL49  | 0.69 | By the side of Purulia-Bankura rd just at the entrance of the village from Raghunathpur & adj.to Hari Mandir & house of  | -0.62       | -1.67       |
|     |                 |              |           |           |        |         |      | Badal Bauri.                                                                                                             |             |             |
| 77  | Raghunathpur-I  | Babugram     | 23.53613  | 86.603018 | 132.41 | WBPL52  | 0.72 | Inside Babugram Primary Health Centre, near Doctors' Quarter on Raghunathpur-Santaldih road.                             | 0.36        | 0.41        |
| 78  | Raghunathpur-II | Raghunathpur | 23.545405 | 86.674557 | 113.59 | WBPL13  | 0.71 | In the compound of P.W.D.I.B.                                                                                            | 7.46        | -0.71       |
| 79  | Rampur          | Dangardi     | 22.948402 | 86.600192 | 133.69 | WBPL19A | 0.78 | Opposite to Dangardi Junior Basic School, adjacent to H/O Abani Mahato.Located on the left side of road from Dangardi to | -0.83       | 0.33        |
|     |                 |              |           |           |        |         |      | Sindri, 250 m from Dangardi more on Manbazar to Bandwan road, 1 km before Rampur.                                        |             |             |
| 80  | Santuri         | Santuri      | 23.524307 | 86.856579 | 128.33 | WBPL105 | 0.34 | LHS of Raghunathpur - Bankura Rd., back side of Telephone Tower, near Tarun Sangha and Police station, after Leadason    | 0.91        | -2.35       |
| 81  | Santuri         | Leadson      | 23.519919 | 86.828932 | 131.95 | WBPL30  | 0.63 | On Saltora-Raghunathpur road & adj.to the house oæ Atika Mondal.12 km from Saltora towards Raghunathpur(r) Behind        | 1.08        | 0.17        |
|     |                 |              |           |           |        |         |      | Mihijam Clinic.                                                                                                          |             |             |
| 82  | Santuri         | Balitora     | 23.629301 | 86.855853 | 57.99  | WBPL42  | 0.61 | On Neturia-Saltora Rd, at the Bus Stand near house of Shri Gouri Pada Mitra.                                             | 1.96        | -0.3        |

Annexure – 3 : Decadal water level data (2010 to 2019) from various NHNSstationsthat has been utilized for preparing Depth to Water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)

| SL.<br>NO | BLOCK       | VILLAGE            | LATITUDE  | LONGITUDE | RL     | WELL-ID  | MP   | LOCATION                                                                                                                                                   | APR_19 | NOV_19 |
|-----------|-------------|--------------------|-----------|-----------|--------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| 1         | Arsha       | Kantadihi          | 23.164166 | 86.262704 | 205.17 | WBPL29   | 0.72 | Inside sub-health centre appraochable from Arsha.                                                                                                          | 9.59   | 6.29   |
| 2         | Arsha       | Sirkabad           | 23.380268 | 86.646979 | 142.22 | WBPL44B  | 0.64 | About 50 m North West of PHC main building within open field. Located backside of OPD buiding &water supply for domestic use.                              | 6.88   | 4.51   |
| 3         | Arsha       | Hansla More        | 23.279444 | 86.259949 | 206.96 | WBPL096  | 0.64 | RHS of Tawna More - Arsha road, adjacent the house of Baridas Kaibarta. About 6 km from Pandrama                                                           | 7.82   | 4.86   |
| 4         | Baghmundi   | Mathbura           | 23.404799 | 86.453162 | 200.26 | WBPL37   | 0.49 | Inside Forest Range Office, Rd approaching Balarampur.                                                                                                     | 11.77  | 6.43   |
| 5         | Baghmundi   | Korenge            | 23.417232 | 86.143009 | 214.21 | WBPL41   | 0.62 | Backside of the Hospital.                                                                                                                                  | 5.1    | 2.96   |
| 6         | Balarampur  | Baraurma           | 23.308233 | 85.89469  | 208.23 | WBPL26   | 0.65 | Inside school compound.                                                                                                                                    | 3.16   | 2.2    |
| 7         | Balarampur  | Namsole            | 23.130699 | 86.245471 | 199.98 | WBPL097  | 0.62 | LHS of Tawna - Balarampur Rd., infront of of Sub - health centre . About 3 km from Baraumra towards Balarampur                                             | 5.48   | 2.24   |
| 8         | Balarampur  | Dava               | 23.104287 | 86.139284 | 154.92 | WBPL098A | 0.64 | LHS of Balarampur - Baghmundi Rd., adjacent to the house of Surya Kanta Kumar,about 7 km before Matha.                                                     | 7.08   | 5.97   |
| 9         | Barabazar   | Takariya           | 23.545405 | 86.674557 | 113.59 | WBPL17A  | 0.71 | On Rd.to Barabazar near the house of Sri Kandru Mahato.                                                                                                    | 6      | 3.12   |
| 10        | Barabazar   | Sindri             | 23.434316 | 86.767264 | 119.12 | WBPL18   | 0.6  | Near Primary Health Centre on Manbazar-Purulia Raod.                                                                                                       | 6.39   | 2.72   |
| 11        | Barabazar   | Barabazar          | 23.274027 | 86.1956   | 227.99 | WBPL48D  | 0.6  | Inside hospital compound, located in front of "Indoor Patient" near pump house. Sardardih more Old KSP Well.                                               | 7.09   | 2.27   |
| 12        | Barabazar   | Bamundiha          | 22.912271 | 86.550649 | 121    | WBPL67   | 0.58 | Within P.H.C. on Purulia - Manbazar road.                                                                                                                  | 8.54   | 4.15   |
| 13        | Barabazar   | Bamundiha          | 23.662027 | 86.824667 | 56.29  | WBPL68   | 1.08 | Within P.H.C. on Purulia - Manbazar road.                                                                                                                  | 8.27   | 4.29   |
| 14        | Barabazar   | Purihasa           | 23.067356 | 86.363933 | 162.03 | WBPL086  | 0.5  | RHS of Purulia - Barabazar road, before reaching Barabazar 1.50 m north from Hari mandir, infront of house of Guru Mahato, 750 m from Kumari river Bridge. | 9.11   | 4.86   |
| 15        | Barabazar   | Aga Jhore          | 23.044452 | 86.442333 | 134.12 | WBPL099  | 0.65 | RHS of Purulia - Manbazar Rd. , near the house of Sahadeb Mahato, about 5 km before Sindri                                                                 | 6.3    | 2.79   |
| 16        | Bundwan     | Dhabani            | 23.430372 | 86.662776 | 120.8  | WBPL61   | 0.75 | Near house of Sufi singh at Sardar Para, EHS of road from Bandwan to Barabazar, 8.5 km from Bandwan, at the end of village                                 | 9.41   | 5.76   |
| 17        | Hura        | Hura               | 23.301122 | 86.662737 | 145.27 | WBPL03   | 1.06 | In the compound of Police Station                                                                                                                          | 12     | 8      |
| 18        | Hura        | Keshargarh         | 23.364384 | 85.960959 | 270.35 | WBPL25   | 0.75 | Appraoch from Kulgura on Purulia-Hura road, about 8km South of Kulgura and 10m SW of Janata Clothes Store.                                                 | 4.84   | 2.58   |
| 19        | Hura        | Ludurka            | 23.452539 | 86.774899 | 109.45 | WBPL27A  | 1    | Inside Pandeya line hotel, after crossing Primary Health Centre and Reliance Petrol Pump; way to Purulia.                                                  | 2.57   | 2.02   |
| 20        | Hura        | Bishpuria          | 23.543654 | 86.520021 | 128.35 | WBPL39   | 1    | Inside Bispuria Library-Sahitya Sadan, on Purulia-Bankura Road.                                                                                            | 6.82   | 4.08   |
| 21        | Hura        | Matipur            | 23.591949 | 86.762734 | 102.58 | WBPL065  | 0.73 | Within P.H.C. campus. On Lalgon - Manbazar road.                                                                                                           | 11.55  | 3.22   |
| 22        | Hura        | Lalpur             | 23.11644  | 86.36552  | 170.5  | WBPL074  | 0.7  | Behind Dayal Onkareswar Shivalay Mandir. RHS of road from Lalpur to Bagda. Tekchongora village.                                                            | 5.88   | 2.11   |
| 23        | Hura        | Raheradhi          | 23.113518 | 86.365424 | 191.17 | WBPL076  | 0.5  | RHS of road towards Bagda 1km. Beffore Napara. Near the residence of Ashok Dutta (Owner of dugwell), Satyajit Mess.                                        | 6.98   | 2.97   |
| 24        | Hura        | Duriakata          | 23.297736 | 86.688712 | 143.61 | WBPL084  | 0.5  | RHS of Bispuria - Hura road, about 3 - to 4 km from Bispuria, " Dilse" Shop, Hura G.P. country Liquor shop of Mihir Mandi.                                 | 7.88   | 4.37   |
| 25        | Hura        | Kulabahal          | 23.303131 | 86.541829 | 164.73 | WBPL091  | 0.65 | RHS of Keshargarh - Ludhurka road via Ground More. Back side of the house of Bairav, Judhistir and Arun Mahato                                             | 7.39   | 4.74   |
| 26        | Hura        | Kumardihi          | 23.286871 | 86.720188 | 121.87 | WBPL108  | 0.8  | in the house of Nirhakar Mondal.LHS of the road towards Puruliya after crosing Birpuria near teliphone tower                                               | 7.84   | 4.44   |
| 27        | Hura        | Mongalpur          | 23.314907 | 86.610959 | 150.33 | WBPL111  | 1    | Inside compound of new line hotel of Ripon Ghosh.LHS of road towards Puruliya & 2 km from Lalpur more                                                      | 4.94   | 3.09   |
| 28        | Hura        | Asanboni           | 23.308029 | 86.581673 | 170.69 | WBPL112  | 0.7  | opposite H/O Swapan Mahato near Primary school RHS of the road to Keshargarh                                                                               | 6.38   | 2.77   |
| 29        | Hura        | Gurda More         | 23.343019 | 86.557895 | 163.05 | WBPL113  | 0.3  | Puruliya-Hura road LHS of road towards Puruliya and by the side of Yadav hotel                                                                             | 2.3    | 1.5    |
| 30        | Jaypur      | Narayanpur         | 23.043614 | 86.494011 | 131.77 | WBPL21   | 0.64 | At the entrance of P.W.D. I.B. at Narayanpur, left side on the paddy field.                                                                                | 2.82   | 1.66   |
| 31        | Jhalda - II | Durgu              | 23.385372 | 86.012713 | 252.85 | WBPL088  | 0.5  | 4 to 5 km towards Jhalda from Kotsila, LHS of road, adj. To Photo Binding of Sunil Kumar.                                                                  | 8.99   | 1.52   |
| 32        | Jhalda-I    | Tulin              | 23.404287 | 86.071455 | 248.17 | WBPL12B  | 0.75 | On the way to JOYSIYSRAM HIGH SCHOOL before crossing the railway level crossing in the house of Shaktipada Mahato at Uppur                                 | 5.83   | 4.34   |
|           |             |                    |           |           |        |          |      | para.                                                                                                                                                      |        |        |
| 33        | Jhalda-l    | Jhalda             | 22.948402 | 86.600192 | 133.69 | WBPL22A  | 0.78 | Located in Satyabala Vidyapith (High School) on Tulin road. Depth - 9.00 m bmp; Dia - 3.73 m. M.P. 0.75 m agl. Changed on 4/02 by A.K.Chatterjee.          | 4.75   | 2.49   |
| 34        | Jhalda-I    | Jhargo             | 23.195973 | 86.684726 | 139.65 | WBPL23   | 0.67 | On Jhalda-Bagmundi Rd,inside village, 50m N of Ananda Marg School.                                                                                         | 8.09   | 5.37   |
| 35        | Joypur      | Joypur             | 23.510533 | 86.515082 | 159.05 | WBPL38A  | 0.8  | Located in the Police Station Compound near bus stand opposite to U.B.I. Just left side after entrance. Depth - 13.00 m bmpdia - 1.23 m M.P. 0.62 m agl    | 7.46   | 3.16   |
| 36        | Joypur      | Joypur Forest More | 23.411831 | 86.189568 | 222.98 | WBPL092  | 0.65 | LHS of Purulia - Jhalda road, back side of Shrinibas Dhaba and Karmokar Cement Centre. Joypur about 5 km                                                   | 5.48   | 4.39   |
| 37        | Kashipur    | Gaurandih          | 23.195178 | 86.048332 | 197.77 | WBPL14B  | 0.86 | In the residence of Shri Sushil Patra, which is opposite to Gaurandih Junior High School.                                                                  | 7.87   | 2.02   |

## Annexure – 4 : Annual water level data (2019) from various NHNSstations that have been used for preparing the Depth to water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)

| SL.<br>NO | BLOCK             | VILLAGE                         | LATITUDE     | LONGITUDE              | RL     | WELL-ID             | MP   | LOCATION                                                                                                                                                                                                              | APR_19 | NOV_19       |
|-----------|-------------------|---------------------------------|--------------|------------------------|--------|---------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|
| 38        | Kashipur          | Indrabil                        | 23.411132    | 86.211051              | 211.12 | WBPL24              | 0.64 | Approach from Kashipur & inside the house of Gurupada just entering in the village. In the residence of Gurupada Bauri.                                                                                               | 5.17   | 2.22         |
| 39        | Kashipur          | Simla                           | 23.119536    | 86.075843              | 193.21 | WBPL40              | 0.87 | On Kashipur-Hura Rd., within Majura-Amdiha High School.                                                                                                                                                               | 8.02   | 3.84         |
| 40        | Kashipur          | Kapasitha                       | 23.028913    | 86.362432              | 145.31 | WBPL53B             | 0.54 | In the compound of Ma Manikeswari light house(r) Owner Pvt Shri Jadhubir Mahato.                                                                                                                                      | 8.56   | 5.73         |
| 41        | Kashipur          | Napara                          | 23.535127    | 86.696097              | 106.55 | WBPL54              | 0.69 | Inside Forest guard's Quarter at Nawapara on Kashipur-Hura Road.                                                                                                                                                      | 5.86   | 2.38         |
| 42        | Kashipur          | Rangani                         | 23,294402    | 86.630873              | 177.1  | WBPL70              | 0.5  | Opposite to vetanary hospital on Adra - Kashipur road.                                                                                                                                                                | 7.32   | 3.85         |
| 43        | Kashipur          | Palash Kola                     | 23.490689    | 86.670035              | 131.88 | WBPL104             | 0.62 | LHS of Adra - Kashipur Rd. near the house of Shibram Dubey, Just entrance of Kashipur Rd. from Adra                                                                                                                   | 8.37   | 5.09         |
| 44        | Kotshila          | Nowahatu                        | 23.427401    | 86.054567              | 269.41 | WBPL093             | 0.66 | RHS of Kotshila - Barurula road, at the farm of Lalbahadur Rajwar. Barurala about 5 km                                                                                                                                | 8.71   | 4.21         |
| 45        | Kotshila          | Ukma                            | 23.423116    | 86.037756              | 267.74 | WBPL094             | 0.64 | RHS of Bararula - Durgu road, back side of Shiva Mandir. Durgu about 5 km                                                                                                                                             | 4.3    | 2.73         |
| 46        | Manbazar          | Gopalnagar                      | 23.137127    | 86.585397              | 109.89 | WBPL087             | 0.4  | On Manbazar - Purulia road, after crossing Goplanagar village, besides Gopalnagar Siva mandir & Kali Mandir.                                                                                                          | 3.18   | 2.67         |
| 47        | Manbazar-I        | Manbazar                        | 23.059361    | 86.659135              | 114.22 | WBPL01              | 0.7  | Inside Manbazar Police Station.                                                                                                                                                                                       | 6.03   | 2.97         |
| 48        | Manbazar-I        | Sindurpur                       | 23.121968    | 86.609792              | 126.24 | WBPL102             | 0.64 | RHS of Jitujuri - Kunda - Purulia Rd., near the house of Budheswar Mahato. After 1 km from Jitjuri                                                                                                                    | 7.99   | 2.83         |
| 49        | Manbazar-II       | Ankro                           | 23.56329     | 86.468192              | 112.58 | WBPL62              | 0.55 | In the premises of PHC, near pump house behind main hospital building.Ankro village is 6 km from Bandwan on Manbazar road.                                                                                            | 7.17   | 3.97         |
| 50        | Manbazar-II       | Khariduyara                     | 23,294402    | 86.630873              | 177.1  | WBPL69              | 0.5  | Within P.H.C. campus. On Barabazar - Manbazar road.                                                                                                                                                                   | 7.18   | 4.23         |
| 51        | Neturia           | Sarbori                         | 23.53613     | 86.603018              | 132.41 | WBPL56              | 0.72 | Inside commercial check post on Raghunathpur-Barakar Rd.                                                                                                                                                              | 5.32   | 2.05         |
| 52        | Neturia           | Gobag                           | 23.434846    | 86.72364               | 97.63  | WBPL58              | 0.77 | Located at the entrance of the village adj. to Purulia-Bankura Rd. in front of Haradhan Garai's Cycle reparing Shop.                                                                                                  | 5.96   | 3.64         |
| 53        | Nituria           | Nituria                         | 23.649641    | 86.814248              | 81.16  | WBPL63              | 0.8  | In the campus of Shiva Temple. Opposite to Nituria Police Station. (new well from Nov 2010)                                                                                                                           | 4.26   | 1.92         |
| 54        | Para              | Anara                           | 23.491296    | 86.56469               | 153.21 | WBPL05              | 0.84 | Inside the compd of 33 KV sub-station, just after the Chapuri gate on Raghunathpur-Purulia road.                                                                                                                      | 8.43   | 3.1          |
| 55        | Para              | Para                            | 23.519919    | 86.828932              | 131.95 | WBPL33A             | 0.63 | LHS of road from Para to Dubra, near bus stand, adjacent to the house of Subhash Modak, in front of the shop Gauri Sankar Sweets.                                                                                     | 6.56   | 3.75         |
| 56        | Para              | Dubra                           | 23.525901    | 86.754148              | 124.77 | WBPL34              | 0.35 | Within Dubra market, adj. to Dubra Readymade Store & Anil Tailoring Shop on Raghunathpur Santaldih Road and adj to M.M.Cloth                                                                                          | 8.43   | 4.95         |
|           |                   |                                 |              |                        |        |                     |      | store and oppo. to Ice Cream Factory on Dubrá-Samtaldih road.                                                                                                                                                         |        |              |
| 57        | Para              | Jhapra                          | 23.629301    | 86.855853              | 57.99  | WBPL46              | 0.61 | Within High School compd on Raghunathpur-Purulia Rd.                                                                                                                                                                  | 3.16   | 2.34         |
| 58        | Para              | Deuli                           | 23.369513    | 86.400155              | 199.97 | WBPL55A             | 0.43 | Located in the house of Shri Gour Mahato. Just opposite to Tarun Granthagar (Library) on Santaldih road. Depth - 10.50 mdia - 1.50                                                                                    | 8.66   | 5.53         |
|           | D                 | 77 1 1 1                        | 00 5 1 100 5 | 0/ 5/0105              | 100.17 | WIDDI 000           | 0.7  | m M.P. 0.55 m agi.                                                                                                                                                                                                    | 0.07   |              |
| 59        | Para              | Kashiberia                      | 23.544095    | 86.549105              | 123.16 | WBPL083             | 0.7  | Lovi, well near Keshiberia School, RHS of Rd. towards Babugram, 3 km from Dubra.                                                                                                                                      | 8.05   | 4.41         |
| 60        | Puncha            | Kenda                           | 23.379209    | 85.898152              | 196.78 | WBPL15A<br>WDD100   | 0.58 | In the residence of Shri Sukhdeb Mahato opposite to Pally Seva Sangha at Sardardih more                                                                                                                               | 7.74   | 3.3          |
| 61        | Puncha            | Bagda                           | 23.159837    | 86.348147              | 204.03 | WBPL20              | 0.6  | Just behind primary health centre. Un Hura-Manbazar Kd.                                                                                                                                                               | 5.25   | 3.22         |
| 62        | Puncha            | Panipathar                      | 23.393683    | 86.275304              | 218.47 | WBPL071             | 0.75 | Un the midway from Purulia to Manbazar, 17 km from Uhakallore. Near Panipathar more Bus stand behind M.K.Aerox & Photo mining and New Fire Machines.                                                                  | 7.89   | 2.57         |
| 62        | Duncha            | Chalzaonalnur Nanara            | 92 990194    | 96.647025              | 142.60 | WDDI 077            | 0.0  | printing and New Erd Mathines.                                                                                                                                                                                        | 6.54   | 2.09         |
| 64        | r ununa<br>Duncha | Ullangopaipui/Napara<br>Kulaara | 20,220124    | 00.047033              | 140.00 | WDDL070             | 0.9  | oovi, wen (LDW-1700), Aujateni to me nouse of Sapan Manato, nus of fodo towards bagua.<br>Pakind bala Sriti Dath mandir. Near the Siznheard Kulzara Santaryasharya Missian Vidyamandir. DUS of read towards Kasharzar | 7.14   | 3.92<br>4.07 |
| 65        | r ununa<br>Duncha | Ruigara                         | 20.020100    | 00.300037<br>96.655105 | 100.00 | WDDL007             | 0.0  | bennu bela Situ Fali monun, Near me Signoodi u Kuigata Sankaryacharya Mission Viuyananun, Kiis of fodu towarus Kesnargar.<br>Incida Duncha Daliaa Statian                                                             | 7.9    | 4.97<br>5 72 |
| 66        | Puncha            | Tununa<br>Damodarpur            | 23.104032    | 96 666415              | 142.00 | WDDL000             | 0.7  | INNUE Function Former Station.                                                                                                                                                                                        | 9.51   | 4.69         |
| 67        | r uncha<br>Puncha | Damouarpui<br>Loulara           | 23.207322    | 86 66955               | 142.99 | WBFL009<br>WRPL000  | 0.07 | Lins of foad from Latput to baguan mitorit of the house of Sukumar Ranariaa, about 4 km from Ragdah                                                                                                                   | 0.01   | 4.02         |
| 69        | Puncha            | Natha                           | 23.173733    | 96 545656              | 154.77 | WDD11070<br>WDD1102 | 0.50 | DHS of Danduan Kandra Dd., near the house of Atul Ch. Mahato.                                                                                                                                                         | 0.02   | 2.01         |
| 60        | Puncha            | Damodarpur                      | 23.130040    | 86 668820              | 149.61 | WRPI 100            | 0.57 | RHS of read towards Purcha 7 noar house connound of Dwee Charam Mahata & one ICDS Contor                                                                                                                              | 9.70   | 3.01         |
| 70        | Puncha            | Daniouarpui<br>Dadki            | 23.201330    | 86 67714               | 132.01 | WRPI110             | 1    | In front of H /o Devnsth Dutta 1 H S. Of road towards Purcha 2.5 km hofore Purcha P.S.                                                                                                                                | 7.9    | 3.41         |
| 71        | Purulia           | Sankhari                        | 23.177,730   | 86 360455              | 160.1  | WRPI100             | 0.69 | HY non of Hydrocenaan butta 2013, of foat towards furtha 2.5 km betoef furtha 1.5<br>HY of Ramundiha , Rarahazar Rd, near the house of Rhusen Mahto, shout 3 km before Rarahazar                                      | 0.0    | 3.13         |
| 79        | Purulia - I       | Imundi                          | 23.030004    | 86 446175              | 162.18 | WBP166              | 0.00 | Any or bamanarma - balabazar no, near the nouse of binason manify, about 5 Kill Denve Balabazar<br>An Purulia - Thalda road - Annosite to the annoach road for Gourinath Aham Riv. Stn                                | 4.03   | 9.35<br>9.19 |
| 72        | Purulia - I       | Pandrama                        | 22.720045    | 86 397106              | 102.10 | WRPI 005            | 0.55 | on Furuna, gnava road, opposite to the approach road for obtinate brain my, sur.<br>HS of Purulia , Arshar road, opposite side of health centre and adjacent of Smriti Radi mother of Dulal Mahata 3 km from Tawaya   | 7.9    | 17           |
| 10        | 1 UI UIIa - I     | י מועוימווים                    | 23,200733    | 00.327100              | 101.00 | W DI 1079           | 0.00 | ная отгититы за знаг гоан, оррозит зногот неани сепит ани анјасент от знити вен шоннег от внаг ланацо, з КШ ПОШ Тамиа<br>Моге,                                                                                        | 1.2    | 1.1          |
| 74        | Purulia - I       | Dhobakata                       | 23.333432    | 86.377485              | 171.81 | WBPL106             | 0.69 | LHS of Bankura - Purulia By-pass, after crossing the flyover Railway track , near the house of Sarbeswar Kalindi at Harijan colony                                                                                    | 4.47   | 2.46         |

## Annexure – 4 : Annual water level data (2019) from various NHNSstations that have been used for preparing the Depth to water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)

| SL. | BLOCK           | VILLAGE          | LATITUDE  | LONGITUDE | RL     | WELL-ID | MP   | LOCATION                                                                                                                             | APR_19 | NOV_19 |
|-----|-----------------|------------------|-----------|-----------|--------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| NO  |                 |                  |           |           |        |         |      |                                                                                                                                      |        |        |
| 75  | Purulia-I       | Purulia(Belguma) | 23.321875 | 86.343006 | 183.99 | WBPL04  | 0.65 | Just left side of the entrance of Agri. Irrigation Office at Belguma, Purulia.                                                       | 8.22   | 3.05   |
| 76  | Purulia-I       | Tamna            | 23.269088 | 86.556936 | 159.17 | WBPL28  | 0.6  | At Tamna more within the House of Subal Adhikari & back side of Hotel.                                                               | 4.8    | 2.33   |
| 77  | Purulia-I       | Chakaltore       | 23.236565 | 85.985109 | 198.29 | WBPL45  | 0.68 | Inside Primary Health Centre.                                                                                                        | 5.59   | 1.65   |
| 78  | Purulia-II      | Kustar           | 23.217356 | 86.298971 | 206.65 | WBPL32  | 0.51 | Within Health Centre, at its entrance adj. to Doctors' Quarter near outdoor. On Raghunathpur-Purulia road.                           | 6.67   | 4.02   |
| 79  | Puruliya-ii     | Podalaroad       | 23.470346 | 86.513335 | 147.56 | WBPL50  | 0.49 | On Puruliá-Raghunathpur Rd,near the house of Anil Bauri Harijan Para.                                                                | 5.77   | 2.49   |
| 80  | Raghunathpur-I  | Bero             | 23.273642 | 86.350964 | 153.25 | WBPL31A | 0.3  | On Saltora-Raghunathpur road, near bus stand 10 K.m. from Raghunathpur towards Saltora at Kharbora, near Bauri para. Depth -         | 5.91   | 4.41   |
|     |                 |                  |           |           |        |         |      | 9.00 m bmpdia - 2.40 m.M.P. 0.35 m agl.                                                                                              |        |        |
| 81  | Raghunathpur-I  | Naduara          | 23.29433  | 86.200712 | 226.33 | WBPL47  | 0.84 | Inside Raghunathpur I.T.I compd, on Raghunathpur-Adra road.                                                                          | 4.67   | 3.95   |
| 82  | Raghunathpur-I  | Chinpina         | 23.236235 | 86.359198 | 163.22 | WBPL49  | 0.94 | By the side of Purulia-Bankura rd just at the entrance of the village from Raghunathpur & adj.to Hari Mandir & house of Badal        | 4.99   | 3.89   |
|     |                 |                  |           |           |        |         |      | Bauri.                                                                                                                               |        |        |
| 83  | Raghunathpur-I  | Babugram         | 23.522744 | 86.67948  | 118.36 | WBPL52  | 0.2  | Inside Babugram Primary Health Centre, near Doctors' Quarter on Raghunathpur-Santaldih road.                                         | 5.77   | 2.58   |
| 84  | Raghunathpur-II | Raghunathpur     | 23.322406 | 86.158107 | 332.3  | WBPL13  | 0.32 | In the compound of P.W.D.I.B.                                                                                                        | 4.66   | 6.61   |
| 85  | Rampur          | Dangardi         | 23.192502 | 86.520563 | 187.17 | WBPL19A | 0.95 | Opposite to Dangardi Junior Basic School, adjacent to H/O Abani Mahato.Located on the left side of road from Dangardi to Sindri, 250 | 9.07   | 3.26   |
|     |                 |                  |           |           |        |         |      | m from Dangardi more on Manbazar to Bandwan road, 1 km before Rampur.                                                                |        |        |
| 86  | Santuri         | Leadson          | 23.351291 | 86.523225 | 174.6  | WBPL30  | 0.68 | On Saltora-Raghunathpur road & adj.to the house oæ Atika Mondal.12 km from Saltora towards Raghunathpur(r) Behind Mihijam            | 5.58   | 3.68   |
|     |                 |                  |           |           |        |         |      | Clinic.                                                                                                                              |        |        |
| 87  | Santuri         | Balitora         | 23.282697 | 86.741533 | 103    | WBPI42  | 0.65 | On Neturia-Saltora Rd, at the Bus Stand near house of Shri Gouri Pada Mitra.                                                         | 3.76   | 3.03   |
| 88  | Santuri         | Santuri          | 23.524307 | 86.856579 | 128.33 | WBPL105 | 0.34 | LHS of Raghunathpur - Bankura Rd., back side of Telephone Tower, near Tarun Sangha and Police station, after Leadason                | 3.76   | 4.28   |

## Annexure – 4 : Annual water level data (2019) from various NHNSstations that have been used for preparing the Depth to water Level Maps in Purulia district of West Bengal (Source: RODC, CGWB, ER, Kolkata)