Draft Report

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

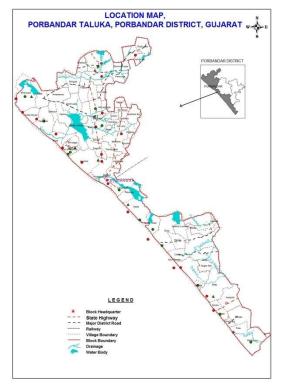
भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPS AND MANAGEMENT PLAN

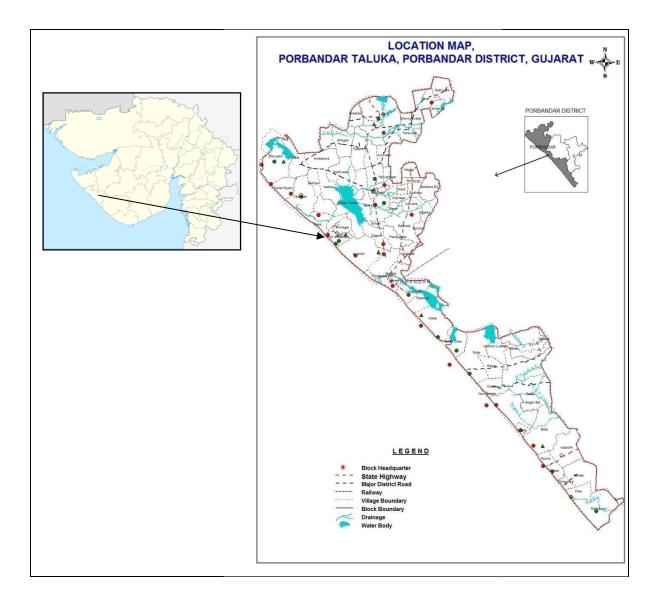

Porbandar, Porbandar District, Gujarat

पश्चिमी मध्य क्षेत्र, अहमदाबाद West Central Region, Ahmedabad

भारत सरकार जल संसाधन, नदी विकास एवम् गंगा संरक्षण मंत्रालय केंद्रीय भूमि जल बोर्ड

GOVERNMENT OF INDIA MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT AND GANGA REJUVENATION

REPORT ON


AQUIFER MAPS & MANAGEMENT PLANS PORBANDAR, PORBANDAR DISTRICT, GUJARAT STATE

CENTRAL GROUND WATER BOARD WEST CENTRAL REGION AHMEDABAD

MANAGEMENT PLANS OF PORBANDAR TALUKA, PORBANDAR DISTRICT, GUJARAT STATE

1. SALIENT FEATURES

1		1	DODDAND		- 2						
1	Name of the TALUKA	:		AR - 1,075.32 H	Km²						
	& Area		21°13'40" to								
	Location		69°22'54" to	70°01′41″ E							
	(Fig-1)										
2	No. of Town, villages	:	3, 74								
3	District/State	:	Porbandar/C	2							
4	Population (2011	:	Male- 94807	7, Female- 90384	, Total	- 185,	191				
	Census)										
5	Normal Rainfall (mm)	:		Monsoon Rainfa							
			868.70 mm	-Average Monso	on Rai	nfall (in mm) (2003	-12)			
6	Agriculture (20015-16)	:	Kh	arif Crops		Rabi	Crops				
			Crop	Area in Hact	Cr	ор	Area in Hact				
			Groundnut	41180	Whea	at	1565				
			Castor	2070	Gram	۱	5555				
			Cotton	2030	Jira 21		2185				
			Vegetables	220	Coria	nder	2890				
			Fodder	14640	Mug		690				
			Tal	5	Juvar	•	4140				
			Bajri	10	Vege	tables	205				
			Mug	40	Fodd	er	5960				
			Adad	120	Onio	n	35				
			Total	60315	Total		23440				
7	Existing and future		Sector			Existi	ng (MCM)	Future			
	water demands (MCM)							(MCM)			
						(Year					
								2025)			
			Domestic and Industrial3.499.66								
			Irrigation			49.89		1.25			
8	Water level behaviour (2015) (Fig-2 & 3)		10-40 m (Pr	10-40 m (Pre-monsoon)							

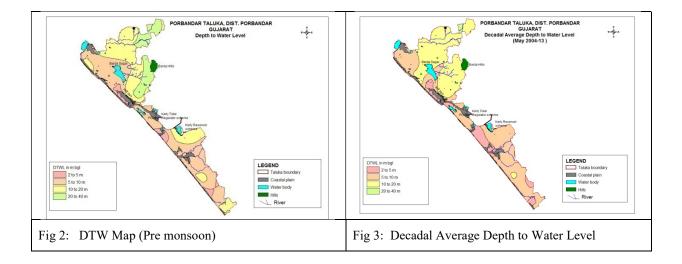
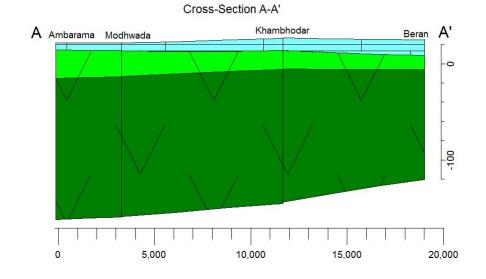


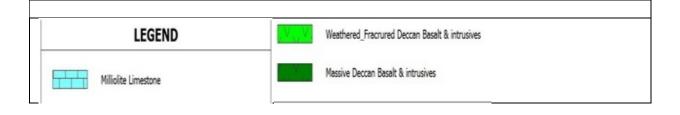
Fig-1: Location Map

1. Hydrogeology:

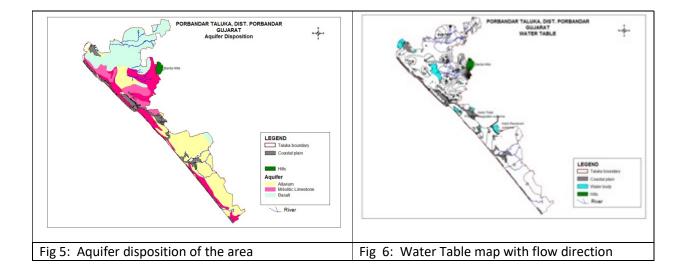
Mainly three formations form aquifers in the area (Fig.2) namely Basalt, Limestone and Alluvium. The limestone constitute both Miliolitic limestone and Gaj limestone, however the quality of water is saline in Gaj limestone at depths. Alluvium is surficial features and does not forms good aquifer though the quality of ground water is also saline at depth. In upstream area the basaltic aquifer is only aquifer where the ground water exists upto the depth of weathering and in the fracture zones wherever encountered in the depth. Two hydrogeological Cross sections are given in Fig. 4 & 5.

Water Table map (Fig 6) shows water table are high around Barda hill in the north and have steep slope, the elevation of water table reduces almost to sea level along the sea. Flow direction is in general towards south and south west.


Subsurface Hydrogeology


As inferred from borehole data of the Porbandar Taluka, Miliolitic limestone and weathered and fractured Basalt forms the principal aquifer in the Taluka. The depth of drilling ranges from 53.9 to 150 mbgl and the average discharge ranges from 0.83 to 14.67 lps. The quality of water has Salinity problem particularly area close to vicinity of sea, Ghed area. Transmissivity value is observed 130 m²/day.

2. AQUIFER DISPOSITION


Name of aquifer	Aquifer material	Nature of aquifer		kness m)	Nature of porosity	Averag e Yield	Quality	
	Min. Max.			m3/day				
Miliolitic limestone	Limestone	Unconfined	2.27	46	Primary and secondary (Poreses, fractures and solution cavities)	210	Fresh at shallow depth and saline in depth in contact of Gaj formation	
Deccan Trap	Basalt	Unconfined (Weathered and fractured)	1	65	Secondary (weathered & fracture)	182	Fresh	

	Confined (Massive & amygdolidal)	Explore up to the depth of 350 m	Secondary (fractures, joints, shears and flow contacts)	Fresh
--	--	---	---	-------

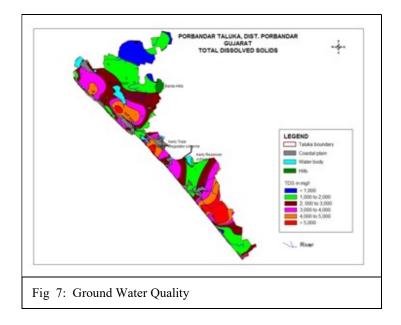
Fig-4: Stratigraphic Section

Large part of the taluka is having depth to water level between 5 to 10 m bgl. However in the north western part water levels are more than 20 m bgl, whereas in the south western part near the coast water levels are less than 5 m bgl (fig 2). The decadal average depth to water levels also depict almost similar picture, the deepest water levels of more than 20 mbgl are on the north western parts and large area is occupied by water levels between 5 and 20 mbgl, whereas, shallow water levels are observed on south western part of taluka (Fig.3).

3. Groundwater resource extraction, contamination. Dynamic GW Resources in MCM

Total groundwater availability of the area is estimated in year 2013 is 60.81 MCM and total groundwater withdrawal for all purposes is 53.38 MCM. The stage of groundwater development is 87.79% and the taluka is categorized "Semi-critical". Ground Water Resources upto 200 m depth are given below in table 2.

S No.	Item	Fresh	Saline	Total
1	Area	530.00	587.60	1117.60
2	Total GW Recharge	64.01	10.32	74.33
3	Net GW Availability	60.81	9.29	70.10
4	Gross Draft	53.38	5.21	58.59
5	Net Availability for Future	1.25	4.07	
	Irrigation			5.32
6	Stage of GW Development	87.79	56.14	71.97


Table: 2 Groundwater resources 2013

In Storage GW Resources

Typr of Rock Formation	Total Geographical Area (sq km)	Total Unit Area(sq km)	Fresh Area(sq km)	Saline/Brackish Area(sq km)	Depth of Bedrock(Soft Rock Areas/Depth upto which the aquifer is commonly Developed (HR Areas) (m)	Average Pre monsoon Water Level in (m)	Total saturated Thickness m	Thickness of the Granular Zone-Fracture zone/Productive Zone below Premonsoon WL(M)	Average Specific Yield (Sy) Fraction	FRESH In storage GW Resources (MCM)	BRACKISH/SALINE In storage GW Resources (MCM)
1	2	5	6	7	8	9	10	11	12	13	14
Alluvium & Miliolite		747.95	353.52	394.43	19.5	10.86	8.64		0.12	366.53	408.95
Tertiary-Gaj		70.35		70.35	51.1	9.14	41.96		0.1	0.00	295.19
Basalt- Weathered		314.61	139.2	175.41	25.35	14.99	10.36		0.02	28.84	36.34
Basalt-Massive- Fractured zone			139.2		93.42			9.342	0.002	2.60	0.00
Total	1143	1132.91	492.72	640.19						397.97	740.48

Chemical quality of groundwater

Ground water quality is major issue in the area. Salinity is expressed in terms of total dissolved solids (TDS). About 37% (401 sq. km) of area (Fig. 7) falls TDS more than 2000 mg/litre. Ground water quality is good in the upstream area, whereas, it deteriorates towards sea.

Ground Water Issues

The Gaj aquifer underlying Miliolitic aquifer contains inherent salinity and development in this aquifer has to be very well coordinated as there are chances of up coning of salinity in case of over exploitation of overlying aquifer.

The main issues of water management are as detailed below:

- Salinity Ingress
- Inherent Salinity of Gaj Formation
- Sustainability of hard rock Aquifers
- Non Availability of sufficient Surface Water for Irrigation.
- Lack of awareness and involvement of stake holders in decision making.

4. Groundwater resource enhancement.

Table- 3 Computation of volume (MCM) of water required for recharge

Aquifer	Volume of unsaturated zone avilable for artificial recharge	Specific yiled factor	Volume of water required for recharge MCM	Volume of available surplus surface water(90%) planned for Artificial recharge (MCM)
Basalt	335.55	0.03	10.067	2.47
Limestone	327.5	0.15	49.124	2.36
	685.45		59.191	4.83

 Table: 4 Computation of Recharge structures.

Aquifer	Area feasible for artificial recharge Sq. km	Surplus surface water resources in Taluka MCM	Volume of surface water planned for Artificial recharge (MCM)	Volume of water planned for conservation through Farm Pond	Volume of water planned for recharge through Check Dam	No of Farm Pond (Unit storage 0.05MCM)	No of Check Dam (Unit 0.05 MCM)
Basalt	111.50		2.47	1.98	0.49	40	10
Limestone	106.77		2.36	1.70	0.66	34	13
Total	218.27	5.37	4.83			74	23

Financial Outlay of the Plan

The total estimated cost of the Plan is 984.69 lakh, which includes Rs 184 lakh for ground water recharge activities, Rs 740 lakh (Farm ponds), 13.8 lakh for ground water monitoring (Piezometer construction) and Rs 46.89 lakh towards operation and maintenance charges. The tentative cost estimates of the various activities of the Plan are shown in Table 5.

Feasible Artificial Recharge & Water Conservation structures/ activities	Tentative Design	Quantity (in nos. or area in sq. m)	Rainwater harvested (mcm)	Tentative unit cost (in Rs lakh)	Total tentative cost (in Rs lakh)	Expected Annual GW recharge/ conservation (mcm)					
	Recharge Structures/ Activities										
Check Dam		23	1.15	8	184	1.04					
		Sub total			184	1.04					
Water Conservation Activities											
Farm Pond (3 fillings)	(30 m x 30m x 1.5 m) 900 sq.m or 0.1 ha	74	3.7	10	740	2.59					
		Impact as	ssessment & I	Monitoring							
Piezometer	Up to 80 m bgl	23		0.6	13.8						
Impact assessm	ent will be co	arried out by	implemneting	gagency							
O & M - 5% of	total cost of	the scheme			46.89						
TOTAL					984.69						

Table: 5 Cost estimates of Recharge structures and monitoring well (Piezometers):

Note: Type, number and cost of structure may vary according to site after ground verification

The tentative location of villages for construction of Check Dams and their cost estimates are shown in Fig. 8 and Table 6.

Table-6 : TENTATIVE LIST OF VILLAGES WHERE ARTIFICIAL RECHARGE STRUCTREUS CAN BE TAKEN UP

			PORBANDAR TALUKA. PORBANDAR DISTRICT LOCATION OF CHECK DAM
Sr. No.	Taluka	Village Name	
1	PORBANDAR	Bakharla	
2	PORBANDAR	Advana	
3	PORBANDAR	Ishvariya	
4	PORBANDAR	, Vachhoda	
5	PORBANDAR	Vinjhrana	Ker l
6	PORBANDAR	Khistri	LEGEND Check Dam
7	PORBANDAR	Katvana	Hils Village boundary
8	PORBANDAR	Sinhjhar	
9	PORBANDAR	Beran	Fig. 8 tentative location of Check Dams
10	PORBANDAR	Rinavada	
11	PORBANDAR	Bakharla	
12	PORBANDAR	Kolikhada	
13	PORBANDAR	Bakharla	
14	PORBANDAR	Boricha	
15	PORBANDAR	Bakharla	
16	PORBANDAR	Advana	
17	PORBANDAR	Advana	
18	PORBANDAR	Sisli	
		Kindar	
19	PORBANDAR	Kheda	
20	PORBANDAR	Bagvadar	
21	PORBANDAR	Rinavada	
22	PORBANDAR	Kantela	
23	PORBANDAR	Bharvada	

1. Demand Side Management:

As the surface water is not available to improve the supply of water, demand side management is essential.

 Table: 7 Crop wise area in Hectares covered under micro irrigation methods (source

 Gujarat Green Revolution Company, Vadodara, Gujarat).

	Area covered under micro
	irrigation in
Сгор	Hectares
BAJRA	35.72
Banana	0.83
BITTER GUARD	3.23
BOTTLE GUARD	5.6
BRINJAL	28.72
CASTOR	35.98
CHILLI	122.04
COCONUT	7.07
COTTON	281.12
CUCUMBER	2.93
GARLIC	4.52
GERBERA	1
GINGER	0.4
GOURDS	1.6
GRAM	54.63
GREEN GRAM	29.87
GROUNDNUT	17815.92
Mango	17.64
Pomogranate	7.79
ΡΟΤΑΤΟ	1
PULSES	9.56
Sapota	1.44
ΤΟΜΑΤΟ	16.77
WHEAT	1395.49
Grand Total	19880.87

Water use efficiency by Drip Irrigation in Rabi crop season:

An area of 19881 hectare is covered by micro-irrigation scheme (MIS) under different crops grown in the district (Table 7). In the taluka 8140 Ha.land (year 2015-16) is covered by the crop of Wheat, jira (cumin), onion castor and Juvar and out of which 1395 Ha. area is irrigated by micro irrigation (Source GGRC, Vadodara, Gujarat). It is estimated the groundwater saving in the district by adopting the drip irrigation method in an area of 4047 Ha. to the crop mentioned in the Table 8 is about 6.21 MCM during the Rabi crop season. It is estimated saving of groundwater through Drip irrigation to the Crop Groundnut and Cotton are 7.58 MCM and 9.77 MCM respectively (Table 9 to 12).

Table: 8 Water saving in MCM by application of Drip Irrigation in proposed 60% balance area left under micro irrigation during main Rabi corp.

Taluka	Crop Area in	Ha.	Wheat	Jira	Onion	Castor	Juvar	Total
	Rabi Crop ar	1565	2185	35	215	4140	8140	
	Area Under N	۸IS	1395.49	0	0	0	0	1395
	Balance Are	a	169.51	2185	35	215	4140	6745
	Proposed 60% are	a to the						
	balance for micro ir							
	Ha.	102	1311	21	129	2484	4047	
Porbandar	Crop water	Flood						
1 Of Barlaar	requirements(mm)	Irrigation	532	150	540	300	950	494
		Drip						
		Irrigation	396	100	330	214	665	341
		water						
		saving in						
		mm	136	50	210	86	285	153
	water saving in	МСМ	0.14	0.66	0.04	0.11	7.08	6.21

Table: 9 Are under micro irrigation for Groundnut corp.

Taluka	Pre-	Kharif -	Total crop	Area	Balance	Proportna	Proportnate Proposed MIS in 60%		
	Kharif	Rainfed 2nd	area in Ha.	covered	Area in	of balance area in sq. Km			
	Irrigated	week of		Under	Ha.				
	4th week	June to 1st		MIS in					
	of May	week of		На		Summer	Kharif	Total	
	to 2nd	July					-		
	week of								
	June								
Porbandar	2775	38405	41180	17816	23364	9.45	130.74	140.18	

MANAGEMENT PLANS OF PORBANDAR TALUKA, PORBANDAR DISTRICT, GUJARAT STATE Page 90

Table: 10 Water saving in MCM by application of Drip Irrigation in proposed 60% balance area left under micro irrigation for groundnut corp.

Taluka		rigation by ater in MCM		ation by er in MCM	Water saving			
	Pre- Kharif season	Kharif (25% groundwater used to required water)	Summer (75% groundwater to required water)	Kharif (25% groundwater to required water)	Summer Kharif Total			
Porbandar	8.42	29.12	6.72	23.24	1.70	5.88	7.58	

Table:11 Are under micro irrigation for cotton corp.

Taluka	Pre	Kharif-	Total	Area	Balance	Proportionate Proposed MIS					
	Kharif-	Rainfed	crop	covered	Area in	in 60% of balance area in sq.					
	Irrigated	2nd	area in	Under	Ha.	Km					
	4th	week of	Ha.	MIS in							
	week of	June to		На		Summer	Total				
	May to	1st									
	2nd	week of									
	week of	July									
	June										
Porbandar	0	1910	1910	281	1629	0.00	9.77	9.77			

Table:12 Water saving in MCM by application of Drip Irrigation in proposed 60% balance area left under micro irrigation for Cotton corp.

	Flood	Irrigation by	MIS Irrig	gation by			
Taluka	ground	water in MCM	groundwat	Water saving			
	Pre Kharif	Kharif (25% groundwater used to required water)	Summer (Kharif (25% 75% groundwater groundwater to required to required water) water)		Summer	Kharif	Total
			,				
Porbandar	0.00	1.71	0.00	1.09	0.00	0.63	0.63

Expected Benefits or outcome of the Plan

Ground water recharge and water conservation Plan of Porbandar Taluka, Porbandar district envisages gainful utilization of 1.16 MCM of surplus non committed surface water for recharging of depleted aquifer system. Besides this, the proposed intervention would also lead to reduction of pre-existing ground water draft by 3.68 MCM annually through construction of farm ponds. By adopting the micro-irrigation area in the remaining area conserve the 17.48 MCM of groundwater draft in the district.

With the additional recharge and water conservation interventions as proposed in the Plan, it is anticipated that with enhanced recharge and reduction in ground water draft, the stage of ground water development will reduce to 52% from the existing 88%. The projected status of ground water resources and utilization scenario is presented in table 13.

Table :13 Projected Status of Groundwater Resource & Utilization on Recharge and Micro-Irrigation Interventions

Taluka	Net G.W. Availability (MCM)	Additional Recharge from RWH (mcm)	Total Net G.W. Availability after intervention (mcm)	Existing G.W Draft for all purpose (mcm)	Saving of Ground water through conservation (mcm)	Saving of Ground water through MIS (mcm)	Net GW draft after interventions (mcm)	Present stage of G.W. development (%)	Projected stage of G.W. Developement (in %)	
Porbandar	60.81	1.16	61.97	53.38	3.68	17.48	32.22	88		52

Projected irrigation potential:

It is estimated 3087 Ha additional irrigation potential may be created in the taluka on 70% of groundwater development Table 14.

District	Stage	Net G.W. Availability (MCM)	Additional Recharge from Check Dam (mcm)	Total Net G.W. Availability after intervention (mcm)	Max GW avilable on 70% development MCM	Existing G.W Draft for all purpose (mcm)	Balance GW avilable on 70% development to Existing Draft	Saving of Ground water through Farm ponds (mcm)	Saving of Ground water through MIS (mcm)	Net GW avilable for withdrawl after interventions (mcm)	Average crop water requirement by Drip Irrigationm	Additional area may be Irrigate in sq. km	Additional area may be Irrigate in Ha
Porbandar	70	60.81	1	61.84	42.56464	53.38	-11	3	17	9.26	0.3	31	3087

Table: 14 Irrigation command area on 70% of development of groundwater

CONCLUSION AND RECOMMENDATION:

- 1. It is recommended to increase the recharge of groundwater from external surface water sources. It is also important to properly maintain and timely operate the existing recharge and salinity control structures.
- Recommended to construct the 23 check dam and 74 Farm ponds in the Taluka to recharge 1.16 MCM and conserve 3.68 MCM of non committed available surface water.
- During the electrification of well/ bore wells, the micro-irrigation through drip/sprinkler irrigation should be made mendatory, so as to minimize use of groundwater.
- 4. 4047 Hectares area may brought under micro-irrigation to adopt Drip method to save about 6.21 MCM of water during the Rabi crop season.
- 14018 Hectare Groundnut crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 7.58 MCM of water.
- 6. 9770 Hectare Cotton crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 0.63 MCM of water.

- 7. 3087 Hectare land may additionally irrigated on 70% of groundwater development and observing all intervention proposed.
- The implementation of the project would result in additional recharge. The other tangible/ non-tangible benefits of the project are:
- □ Recharging the ground water will help in arresting the rapid decline in ground water resources and will also ensure improvement in quality of ground water by way of dilution.
- Proposed structures and measures will also enhance the ground water potential and would ensure sustainability of ground water resources.
- □ Surface runoff water stored or harnessed can be used as supplemental irrigational resources and will reduce the stress on the ground water.
- □ Besides, it will also help in reducing the amount and spate of storm water being drained by river and controlling soil erosion.