

भारत सरकार Government of India जल शक्ति मंत्रालय, Ministry of Jal Shakti, जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, Department of Water Resources, River Development and Ganga Rejuvenation

# केंद्रीय भूमि जल बोर्ड Central Ground Water Board

# NAQUIM 2.0

# जलभृत प्रबंधन योजना Aquifer Management Plan भलस्वा लैंडफिल साइट, एन सी टी दिल्ली Bhalaswa Landfill Site, N.C.T Delhi

N.C.T Delhi 2024

eOffice File No: MHQ/1/2024-M(HQ)-Part (21)-comp no. 17280



भारत सरकार Government of India जल शक्ति मंत्रालय Ministry of Jal Shakti

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग Department of Water Resources River Development and Ganga Rejuvenation केंद्रीय भूमिजल बोर्ड Central Ground Water Board

# जलभृत प्रबंधन योजना Aquifer Management Plan भलस्वा लैंडफिल साइट,एन.सी.टी दिल्ली Bhalaswa Landfill Site, N.C.T Delhi

प्राथमिक ताप्रकार: जल प्रदूषित क्षेत्र Priority Type: Water Contaminated Area

> N.C.T Delhi 2024



### CENTRAL GROUND WATER BOARD

# MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION

## MINISTRY OF JAL SHAKTI GOVERNMENT OF INDIA

## GROUND WATER CONTAMINATION STUDIES AROUND BHALASWA LANDFILL SITE, N.C.T, DELHI

#### CONTRIBUTORS

| Team Lead               | Sh. S.K. Mohiddin          | Regional Director               |
|-------------------------|----------------------------|---------------------------------|
| Expert (Hydrogeology)-1 | Sh. Vandlabu Praveen Kumar | Assistant Hydrogeologist (AHG)  |
| Expert (Geophysics)     | Smt. Mamta                 | Senior Technical Assistant (GP) |

# STATE UNIT OFFICE, NCT, DELHI JUNE 2024



डॉ. सुनील कुमारअम्बास्ट Dr. Sunil Kumar Ambast



भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केंद्रीय भूमि जल बोर्ड Government of India Ministry of Jal Shakti Department of Water Resources, River Development and Ganga Rejuvenation Central Ground Water Board

#### MESSAGE

It gives me immense pleasure to present the "Ground Water Contamination Studies around Bhalaswa Landfill Site." This report is a significant step towards the sustainable management of groundwater resources in the region, reflecting our ongoing commitment to safeguarding this vital resource.

The NAQUIM 2.0 initiative has been developed with the goal of providing detailed, issuespecific groundwater management solutions tailored to the needs of the Bhalaswa Landfill Site. Through meticulous aquifer mapping, data collection, and chemical analysis, this report offers valuable insights into the groundwater dynamics of the area and proposes scientifically backed management strategies for its sustainable use. This report will also helpful for identification of flow direction of contaminants.

I extend my sincere gratitude to the dedicated team of hydrogeologists, geophysist and other experts whose tireless efforts have made this report possible. Their collaborative work exemplifies our commitment to addressing groundwater challenges with precision and care.

I am confident that this report will serve as a crucial resource for policymakers, planners, and stakeholders involved in groundwater management, ensuring the long-term availability and quality of groundwater in Bhalaswa Landfill Site. Together, let us continue to work towards a water-secure future.

Stofueboal -

Dr. Sunil Kumar Ambast Chairman



टी. बी. एन. सिंह T.B.N. Singh



जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केंद्रीय भूमिजल बोर्ड Government of India Ministry of Jal Shakti Department of Water Resources, River Development and Ganga Rejuvenation Central Ground Water Board

भारत सरकार

#### MESSAGE

I am pleased to present the "Ground Water Contamination Studies around Bhalaswa Landfill Site." This report is a testament to our dedication to advancing groundwater management practices in landfill areas and ensuring the sustainable use of this precious resource in the region.

The NAQUIM 2.0 project represents a significant leap forward in our understanding of the complex groundwater systems in Bhalaswa Landfill Site. By integrating cutting-edge technology with traditional hydrogeological methods, this report provides a comprehensive analysis of the area's aquifers, offering actionable insights for effective management and conservation.

I commend the entire team of experts, including hydrogeologists, geophysicst and support staff, for their unwavering commitment and collaborative efforts in bringing this report to fruition. Their expertise and diligence are reflected in the detailed findings and recommendations presented here, which will undoubtedly serve as a valuable guide for sustainable groundwater management.

This report is not just a document but a call to action for all stakeholders involved in groundwater management. It is my hope that the strategies outlined within will be implemented effectively, contributing to the long-term water security and resilience of Bhalaswa Landfill Site.

T B N Singh Member (CGWA)





भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केंद्रीय भूमिजल बोर्ड Government of India Ministry of Jal Shakti Department of Water Resources, River Development and Ganga Rejuvenation Central Ground Water Board

#### FOREWORD

"Ground Water Contamination Studies around Bhalaswa Landfill Site" study addresses the significant challenges faced by Bhalaswa Landfill Site, including severe groundwater contamination, over-extraction for urban, industrial, and agricultural needs, and deteriorating water quality. These issues, compounded by rapid urbanization and inadequate recharge, highlight the urgent need for effective and sustainable groundwater management strategies.

The NAQUIM 2.0 study for Bhalaswa Landfill Site offers an in-depth understanding of the region's aquifer systems. By conducting detailed hydrogeological mapping, geophysical surveys, and water quality assessments, the study proposes scientifically robust and practically implementable management strategies.

This report is the result of the dedicated efforts of an exceptional team. I extend my heartfelt gratitude to Sh. Vandlabu Praveen Kumar, Assistant Hydrogeologist (AHG), Smt. Mamta, Geophysicist (STA) whose specialized knowledge and collaborative efforts have enriched the quality of this report.

This report is intended to serve as a vital resource for policymakers, planners, and stakeholders, providing them with the tools to make informed decisions for Ground Water Contamination Studies around Bhalaswa Landfill Site. I am confident that the strategies outlined here will significantly contribute to addressing the groundwater challenges and ensuring the block's water security and overall economic growth.

8.10.6

S. K. Mohiddin Regional Director

#### ACKNOWLEDGEMENT

The author acknowledges with deep gratitude Dr. Sunil Kumar Ambast, Chairman, Central Ground Water Board, for providing the opportunity to prepare the "Ground Water Contamination Studies around Bhalaswa Landfill Site". Sincere thanks are extended to T.B.N. Singh, Member, CGWA, for his invaluable guidance, encouragement, and suggestions during the preparation of this report. The author also expresses heartfelt thanks to Shri S. K. Mohiddin, Regional Director and Team Leader Central Ground Water Board, State Unit Office, NCT, Delhi for his valuable guidance and constant encouragement throughout the process.

I am also grateful to Ms. Kriti Mishra, SC-C, Sh. Gyanendra Rai, STA-HG for providing guidance at various stages of the study. Thanks are also due to Sh. S. Ashok Kumar, STA-HG, who carefully went through the draft copy of this report, corrections and his help in map preparation.

Efforts of Shri. Shashi Kant Singh, Scientist 'D' for his help provided in the analysis and interpretation of geophysical data, Cross section preparation is gratefully acknowledged. I would like to give thanks to Mrs. Prachi Gupta, Scientist – 'D', regarding report correction and thanks to Sh. Rinkumoni Burman, ACH for his help to the preparation of chemical maps. The author extended their thanks to CWC Chemical Laboratory officials for Bacteriological Analysis and Sh. Chandan Gupta, STA (GP) for geophysical surveys.

The author is grateful to the technical section, RODC, and library of the CGWB, SUO, Delhi, as well as to state agencies, for providing various necessary data, without which this report would not have been completed.

Lastly, I would like to thank all those who helped in various stages of this effort.

Sh. Vandlabu Praveen Kumar Assistant Hydrogeologist (AHG)

### **EXECUTIVE SUMMARY**

The normal annual rainfall of NCT Delhi is 611.8 mm. The rainfall increases from the southwest to the northwest. About 81% of the annual rainfall is received during the monsoon months of July, August, and September. The rest of the annual rainfall is received as winter rain and as thunderstorm rain in the pre and post-monsoon months. NCT Delhi is occupied by quartzite inter-bedded with mica schist belonging to Delhi Super Group (Delhi ridge) overlain by unconsolidated sediments of Quaternary to Recent age. The thickness of overlying alluvium is highly variable on the eastern and western sides of the ridge. It is generally thicker (>300m) on the west of the ridge. The study area falls under alluvial deposits.

The sanitary landfill (SFL) site at Bhalaswa is one of the three major landfill sites in Delhi and it is situated in the Model town tehsil of the North District. The total area of the SFL, Bhalaswa is 52 acres (21.06 Hectors). About 2500 MT/day of solid waste is being dumped at this site and the filling of this site was commissioned in 1994. The solid waste received at the site is levelled, restructured, and compacted by hydraulic bulldozers. The height of the dump is about 60-65 meters from the surrounding ground level. The elevation in the area is from 206-221 m above MSL.

The area is underlain by quaternary alluvium of about 200 m thick, below which weathered and fractured quartzite is present. Based on the lithology and geophysical logs, a generalized subsurface geological cross-section shows that the area is underlain by fine to medium sand (Yamuna sand) mixed with coarse gravel up to a depth of about 40 mbgl below which older alluvium consisting of predominantly clay with silt and kankar is present. The groundwater development in the areas is mainly through shallow hand pumps and shallow tube wells of 30 to 40 m depth. The yield of tube wells varies from 400 to 600 LPM. The Hydraulic Conductivity is 9 m/day in the area.

For the purpose of demarcation of groundwater contamination in the area, three buffer zones have been drawn i.e., 1 Km Buffer Zone, 2 Km Buffer Zone & 5 Km Buffer Zone. The density of sampling and groundwater level monitoring is high at 1 Km buffer zone and gradually reducing the sample locations. Depth to water level in June 2023 varies from 3.56 to 12.88 mbgl and in Nov-2023 varies from 3.17 to 14.90 mbgl. Water levels are shallow i.e., about 3.56 (June) mbgl and 3.17(Nov) mbgl at near Bhalaswa Lake, and deep water levels at i.e., 12.88 (June) and 14.90 (Nov) Haiderpur. Analysis of water table contours of June 2023 & Nov-2023 indicates that regional groundwater flows are towards the East i.e., towards Yamuna River. Water table contour in the area varies from 212 to 196 m amsl but local ground water flow pattern is different. It flows towards JJ Clusters located north of the SLF, Near Transport Nagar. The groundwater flows in the southern part i.e., the Jahangirpuri area towards South Eastern direction.

The general groundwater quality in Bhalaswa area is brackish. Groundwater is not used for drinking purposes. The ground water is mostly used for washing and cleaning purposes. Based on pre-monsoon water quality results, pH of most of the groundwater samples is more than 7

i.e., slightly alkaline. The pH of leachate samples is about 8. The electrical conductivity of leachate samples is 39000  $\mu$ S/cm and 38845  $\mu$ S/cm. Out of 10 groundwater samples, 7 samples are showing EC more than the permissible limit (>3000  $\mu$ S/cm). Fluoride and Nitrate is more than the permissible limit in leachate samples. Heavy metals Iron, Arsenic, Chromium and Nickel have been found more than the permissible limit in 2 leachate samples. Only 1 leachate sample showed Uranium, lead, and Manganese more than the permissible limit. Out of 10 groundwater samples 5 samples showed manganese more than the permissible limit (0.3mg/l).

A total 10 samples were collected for bacteriological analysis and got them analyzed from CWC laboratory. In leachate samples, faecal coliform bacteria count is 130000 and 390000 MPN/100 ml. In ground water samples it varies from 18 MPN/100 ml to 390000 MPN/100 ml. Out of 10 samples 9 samples are showing faecal coliform bacteria count more than permissible limit i.e., 1000 MPN/100 ml. The range of total coliform bacteria varies from 36 to 160,00, 000 MPN/100ml. Thus, the groundwater in and around SLF sites is highly bacteriologically contaminated. A total of 7 Stakeholder feedback forms were collected from stakeholders during the field. Most of the Tube wells are at shallow depth as they mentioned in the stakeholder forms. Most of the tube wells/Hand Pumps are used for washing & Cleaning, Construction purposes only. For drinking purposes they are depending on DJB to supply water. Some Stakeholders informed us that the water colour gets transformed to yellow colour after 2-3 hours. As discussed in the field with the locals, it has been learned that the locals do not consume the groundwater for drinking purposes. Hence the health issues related to the groundwater could not be ascertained.

For precise demarcation of groundwater contamination, a total of 41 samples were collected. The samples were earlier submitted to Chemical Lab, NWR Chandigarh, and later on shifted to WR, Jaipur for Major elements analysis, and for trace metals, samples were submitted to NR, Lucknow. VES data indicates that freshwater sediments are followed by the saline water sediments. The thickness of freshwater sediments is thin in major study areas. The depth to fresh–saline water interface varies from 22mbgl to 65mbgl. Groundwater quality below the fresh saline water interface is saline all through up to the bedrock.

The Depth to water level recorded in the Study area during June 2023 varied from 3.56 to 12.88 meters below ground level (mbgl). Groundwater level data from a total of 14 observation wells have been analyzed. The Depth to water level recorded in the study area during November 2023 varied from 2.86 to 14.90 mbgl. Groundwater level data from a total of 18 observation wells have been analyzed. Based on the water table elevation follows the topography of the area and overall ground water flow direction is towards Yamuna River. Internal groundwater flow direction is different. In the western part of the study area flow direction is towards a trough near the landfill area and southern part groundwater flow direction is towards the north. Bhalaswa Lake acts as a divider regarding groundwater flow.

The electrical conductivity value of pre-monsoon ground water samples in the Bhalaswa study area has been found to vary from 330 to 8755  $\mu$ S/cm at 25°C and in post-monsoon, it varies from 680-10890  $\mu$ S/cm at 25°C. EC in excess of 3000  $\mu$ S/cm value has been observed in more

than 50% of the study area. Nitrate in excess of the maximum permissible limit has been reported from 24% of post-monsoon samples. In heavy metal analysis, two leachate samples have shown more than the permissible limit for Fe, Cr, As and Ni. Only one leachate sample has shown more than the permissible limit for U, Mn, Pb and Cd. In Basic analysis, Leachate samples have been shown to exceed the permissible limit for EC, Cl, Fluoride and Nitrate. And for Bacteriological analysis both the leachate samples have shown total and fecal coliform. In Basic analysis 37.5% of wells showing Chloride and 6.25% of wells are showing Fluoride beyond the permissible limit in pre-monsoon. And 18.42%, 13.15% and 26.31% of wells are showing beyond permissible of CL, F and No<sub>3</sub> respectively. Excess Fluoride has been reported from isolated pockets in the study area. Concentration of Iron (Fe) has been found to range from BDL to 6.7 mg/land exceeded the maximum permissible limit of 1 mg/l in 12.5% of the total analysed pre-monsoon groundwater samples. For post-monsoon, concentration of Iron (Fe) has been found to range from 0.075mg/l to 9.75mg/land exceeded the maximum permissible limit of 1 mg/l in 21%.

In pre-monsoon, the concentration of Arsenic (As) in groundwater has been found to vary from BDL to 0.038 mg/l. In post-monsoon, the concentration of As varies from Below the Detectable Limit to 0.129mg/l. 6.2% of pre-monsoon samples and 13% of post-monsoon samples exceed the maximum permissible limit of 0.01 mg/l prescribed by BIS in drinking water (IS-10500:2012). Lead (Pb) concentration has been reported to vary from BDL to 0.0016 mg/l in pre-monsoon and it varies from 0.001-0.011 mg/l in post-monsoon. Sporadic occurrence of Pb in excess of the maximum permissible limit of 0.01 mg/l (IS-10500:2012) has been reported in 2.6% of post-monsoon samples. Excess Pb in groundwater may be due to pollution from industries and landfill sites. The concentration of Uranium (U) has been found to vary from BDL to 0.01769 mg/l in pre-monsoon and it varies from 0.003 to 0.035 mg/l in post-monsoon. The concentration of Uranium 2.6% of post-monsoon samples exceeds the maximum permissible limit of 0.03 mg/l prescribed by BIS in drinking water (IS-10500:2012).

The bacteriological test carried out in eight groundwater samples and 2 leachate samples of the Bhalaswa study area- shows the presence of total coliform and faecal coliform in all eight groundwater samples and 2 leachate samples. All the available data as well as data generated during the course of the present study were integrated and aquifer disposition maps were prepared. Bhalaswa Study area covers five assessments i.e., Model Town, Alipur, Civil Lines, Saraswati Vihar, and Rohini. The annual extractable groundwater resource is 6374 ha. m. The total annual groundwater recharge has been estimated as 6957.85 ham. The total annual groundwater draft (as of 2023) has been estimated to be 4808.83 ha. M.

Out of 5 tehsils in the study area, 2 are 'Safe', 2 are 'Semi-Critical', and the remaining 1 tehsil is 'Critical'. In addition, most of the study areas are shallow water levels where ground water withdrawal is limited due to the presence of poor-quality water. Groundwater withdrawal is recommended for its use after blending. This will create void space in the aquifer, which would be recharged during subsequent monsoon and help in improving groundwater quality. In areas, where fresh groundwater is underlain by saline water, it is recommended that saline water occurring at deeper levels may be withdrawn and used after blending or may be used for uses

other than drinking and domestic Rainwater harvesting and artificial recharge measures are recommended in areas having water levels deeper than 8 mbgl.

Najafgarh Supplementary drain flowing through the study area, to avoid groundwater pollution along the drains, it is suggested that only treated waste water must be allowed to flow in the drains. Lining of drains is also recommended. Instances of pollution have also been reported around landfill sites. Necessary measures to protect ground water quality should be taken by the concerned State agencies by locating and designing landfill sites in a proper scientific manner.

#### कार्यकारी सारांश

एन. सी टी दिल्ली की सामान्य वार्षिक वर्षा 611.8 मिमी है। वर्षा दक्षिण-पश्चिम से उत्तर-पश्चिम की ओर बढ़ती है। वार्षिक वर्षा का लगभग 81% जुलाई, अगस्त और सितंबर के मानसून महीनों के दौरान प्राप्त होता है।वार्षिक वर्षा का शेष भाग शीतकालीन वर्षा के रूप में और मानसून से पहले और बाद के महीनों में गरज के साथ वर्षा के रूप में प्राप्त होता है।एन सी टी दिल्ली में दिल्ली सुपर ग्रुप (दिल्ली रिज) से संबंधित कार्टजाइट, मिका शिस्ट के साथ inter bedded पाई जाती हैं और इसके ऊपर कार्ट्नरी से लेकर Recent युग तक की असंगठित sediments पाए जाते हैं। रिज के पूर्वी और पश्चिमी किनारों पर ऊपरी जलोढ़ की मोटाई अत्यधिक परिवर्तनशील है। यह आम तौर पर रिज के पश्चिम में अधिक मोटा (>300 मीटर) है। अध्ययन क्षेत्र जलोढ़ निक्षेपों के अंतर्गत आता है।

भलस्वा में स्थित सैनिटरी लैंडफिल (एसएफएल) साइट दिल्ली की तीन प्रमुख लैंडफिल साइटों में से एक है और यह उत्तरी जिले की मॉडल टाउन तहसील में स्थित है। भलस्वा (SFL) का कुल क्षेत्रफल 52 एकर (21.06 हेक्टेयर) है। इस स्थल पर प्रतिदिन लगभग 2500 मीट्रिक टन ठोस कचरा डाला जाता है और इस स्थल को भरने का काम 1994 में शुरू किया गया था। साइट पर प्राप्त ठोस कचरे को हाइड्रोलिक बुलडोजर द्वारा समतल, पुनर्गठित और संकुचित किया जाता है। डंप की ऊंचाई आसपास के जमीनी स्तर से लगभग 60-65 मीटर ऊपर है जो आसपास के भूमि स्तर से अधिक है। क्षेत्र की ऊंचाई समुद्र स्तर से 206 - 221 मीटर ऊपर है।

यह क्षेत्र लगभग 200 मीटर मोटी quaternary alluvium द्वारा ढका हुआ है, जिसके नीचे अपक्षयित एवं खंडित कार्टजाइट पाया जाता है।लिथोलॉजी और भूभौतिकीय लॉग के आधार पर, एक सामान्यीकृत उप-सतह भूवैज्ञानिक क्रॉस-सेक्शन से पता चलता है कि यह क्षेत्र लगभग 40 एमबीजीएल की गहराई तक मोटे बजरी के साथ मिश्रित महीन से मध्यम रेत (यमुना रेत) से ढका हुआ है, जिसके नीचे मुख्य रूप से गाद और कंकर के साथ पुरानी जलोढ़ मिट्टी मौजूद है। क्षेत्रों में भूजल विकास मुख्य रूप से 30 से 40 मीटर गहराई के उथले हैंडपंपों और उथले ट्यूबवेलों के माध्यम से होता है। ट्यूबवेलों की yield 400 से 600 lpm तक होती है। क्षेत्र की hydraulic conductivity 9 मीटर/दिन है।

क्षेत्र में भूजल प्रदूषण के सीमांकन के उद्देश्य से, तीन बफर जोन तैयार किए गए हैं, यानी 1 किलोमीटर बफर जोन, 2 किलोमीटर बफर जोन और 5 किलोमीटर बफर जोन। नमूनाकरण और भूजल स्तर की निगरानी का घनत्व 1 किमी बफर जोन में अधिक है और धीरे-धीरे नमूना स्थानों को कम रखा गया है। जून 2023 में जलस्तर 3.56 से 12.88 मीटर के बीच था, और नवम्बर 2023 में यह 3.17 से 14.90 मीटर तक था।भलस्वा झील के पास जल स्तर उथला है, जून में 3.56 मीटर और नवम्बर में 3.17 मीटर गहराई, जबकि हैदरपुर में जल स्तर गहरा हैं, जून में 12.88 मीटर और नवम्बर में 14.90 मीटर। जून 2023 और नवम्बर 2023 के water table contour के विश्लेषण से यह संकेत मिलता है कि क्षेत्रीय भूजल प्रवाह पूर्व की ओर है, यानी यमुना नदी की ओर।क्षेत्र में water table contour 212 से 196 mamsl तक है जो कि स्थानीय भूजल प्रवाह पैटर्न भिन्न है। यह SLF के उत्तर में, ट्रांसपोर्ट नगर के पास स्थित JJ Cluster की ओर बहती है। दक्षिणी भाग यानी जहांगीरपुरी क्षेत्र में भूजल दक्षिण पूर्वी दिशा की ओर बहता है।

भलस्वा क्षेत्र में सामान्य भूजल खारा है। इस भूजल को पीने के लिए उपयोग में नहीं लाया जाता है। भूजल का मुख्य रूप से धोने और सफाई के उद्देश्यों के लिए उपयोग किया जाता है। प्री मॉनसून-भू जल गुणवत्ता परिणामों के आधार पर, अधिकांश भूजल नमूनों का pH 7 से अधिक है, अर्थात् यह हल्का क्षारीय है। लिचेट नमूनों का pH लगभग 8 है। लिचेट नमूनों की Electrical Conductivity 39000 μS/cm और 38845 μS/cm है। 10 भूजल नमूनों में से 7 नमूनो में EC अनुमत सीमा से अधिक (>3000 μS/cm) हैं। लिचेट नमूनों में फ्लोराइड और नाइट्रेट की मात्रा अनुमत सीमा से अधिक है। भारी धातुएं जैसे आयरन, आर्सेनिक, क्रोमियम और निकल 2 लिचेट नमूनों में अनुमत सीमा से अधिक पाई गई हैं। केवल 1 लिचेट नमूने में यूरेनियम, सीसा, और मैंगनीज की मात्रा अनुमत सीमा से अधिक पाई गई हैं। केवल 1 लिचेट नमूनों में मैंगनीज की मात्रा अनुमत सीमा (0.3mg/1) से अधिक पाई गई।

कुल 10 नमूने बैक्टीरियोलॉजिकल विश्लेषण के लिए एकत्रित किए गए थे और उन्हें CWC प्रयोगशाला से विश्लेषण कराया गया। लिचेट नमूनों में, फीकल कॉलिफॉर्म बैक्टीरिया की गणना 130000 और 390000 MPN/100 मि .ली. है।भू-जल नमूनों में यह 18 MPN/100 मि ली. से. 390000 MPN/100 मि ली. तक होती है। 10 नमूनों में से 9 नमूने फीकल कॉलिफॉर्म बैक्टीरिया की गणना अधिक दिखा रहे हैं, अर्थात 1000 MPN/100 मि ली. से अधिक। कुल. कॉलिफॉर्म बैक्टीरिया की सीमा 36 से 1,60,00,000 MPN/100 मि ली. तक.होती है। इस प्रकार, SLF स्थलों के आसपास का भूजल बैक्टीरियोलॉजिकल रूप से अत्यधिक प्रदूषितहै। क्षेत्र में 7 Stakeholder feedback forms एकत्रित किए गए थे। अधिकांश ट्यूबवेल्स की गहराई उथली है, जैसा कि feedback forms में उल्लेख किया गया है। अधिकांश ट्यूबवेल्सहैं/ड पंप केवल धोने और सफाई, निर्माण कार्य के लिए उपयोग किए जाते हैं। पीने के पानी लिए Stakeholder DJB पर निर्भर हैं, जो पानी आपूर्ति का कार्य करते हैं। कुछ हितधारकों ने सूचित किया कि पानी 2-3 घंटों के बाद पीला रंग में बदल जता है। क्षेत्र में स्थानीय लोगों से चर्चा करने पर यह पता चला कि वे पीने के लिए भूजल का उपयोग नहीं करते। इसलिए, भूजल से संबंधित स्वास्थ्य समस्याओं का निर्धारण नहीं किया जा सका।

भूजल प्रदूषित के सटीक निर्धारण के लिए कुल 41 नमूने एकत्रित किए गए। ये नमूने पहले रासायनिक प्रयोगशाला, NWR चंडीगढ़ में भेजे गए थे, और बाद में प्रमुख तत्वों के विश्लेषण के लिए WR, जयपुर में भेजे गए, तथा ट्रेस धातुओं के लिए नमूने NR, लखनऊ में भेजे गए। VES डेटा से यह संकेत मिलता है कि मीठे पानी की सतह के बाद खारे पानी की सतह है। प्रमुख अध्ययन क्षेत्रों में मीठे पानी की सतह की मोटाई पतली है। ताजे और खारे पानी की सीमा की गहराई 22 मीटर से 65 मीटर के बीच है। ताजे खारे पानी की सीमा के नीचे का भूजल की गुणवत्ता खारी है, जो bed rock तक है।

अध्ययन क्षेत्र में जून 2023 के दौरान जल स्तर की गहराई 3.56 मीटर से 12.88 मीटर के बीच रिकॉर्ड की गयी है। कुल14 अवलोकन कुओं से प्राप्त भूजल स्तर डेटा का विश्लेषण किया गया है। अध्ययन क्षेत्र में नवम्बर 2023 के दौरान जल स्तर की गहराई 2.86 मीटर से 14.90 मीटर के बीच थी। कुल 18 अवलोकन कुओं से प्राप्त भूजल स्तर डेटा का विश्लेषण किया गया है। water level की ऊंचाई क्षेत्र की भौगोलिक संरचना के अनुरूप है, और समग्र भूजल प्रवाह की दिशा यमुना नदी की ओर है। आंतरिक भूजल प्रवाह की दिशा अलग है। अध्ययन क्षेत्र के पश्चिमी भाग में प्रवाह दिशा लैंडफिल क्षेत्र के पास एक गर्त की ओर है, जबकि दक्षिणी भाग में भूजल प्रवाह की दिशा उत्तर की ओर है। भलस्वा झील water level के संदर्भ में एक विभाजक के रूप में कार्य करती है।

भलस्वा अध्ययन क्षेत्र में प्री-मानसून भूजल नमूनों की electrical conductivity 25°C पर 330 से 8755  $\mu$ S/cm तक पाई गयी है और मानसून के बाद, यह 25°C पर 680-10890  $\mu$ S/cm तक पाई गयी है। 3000  $\mu$ S/cm से अधिक EC,अध्ययन क्षेत्र के 50% से अधिक हिस्से में पाई गयी है। पोस्ट मॉनसून नमूनों में-24% में नाइट्रेट की मात्रा अधिक पाई गई है जो अनुमत सीमा से अधिक है। भारी धातु विश्लेषण में, दो लिचेट नमूनों में Fe, Cr, As और Ni की मात्रा अनुमत सीमा से अधिक पाई गई है। केवल एक लिचेट नमूने में U, Mn, Pb और Cd की मात्रा अनुमत सीमा से अधिक पाई गई। बेसिक विश्लेषण में, लिचेट नमूनों में EC, क्लोराइड, फ्लोराइड और नाइट्रेट की मात्रा अनुमत सीमा से अधिक पाई गई है। और बैक्टीरियोलॉजिकल विश्लेषण में दोनों लिचेट नमूनों में कुल और फीकल कॉलिफॉर्म पाया गया। प्रीमॉनसून में-, बेसिक विश्लेषण में, 37.5% कुओं में क्लोराइड और 6.25% कुओं में फ्लोराइड की मात्रा अनुमत सीमा से अधिक पाई गई है । और 18.42 %, 13.15 % और 26.31 % कुओं में क्रमशः क्लोराइड, फ्लोराइड और नाइट्रेट की मात्रा अनुमत सीमा से अधिक पाई गई अध्ययन क्षेत्र में अलग अलग स्थानों-पर फ्लोराइड की आवत्र पात्रा पाई गई है। आयरन(Fe) की सांद्रता 0 से 6.7 mg/l तक पाई गई है और यह 12.5% प्री मॉनसून विश्लेषित भूजल नमूनों में-1 mg/l की अनुमत सीमा से अधिक पाई गई है । पोस्ट मानसून में Fe की सांद्रता 0.075 mg/l से 9.75 mg/l तक पाई गई है और यह 21% नमूनों में 1 mg/l की अनुमत सीमा से अधिक पाई गई है।

प्रीमॉनसून में-, भूजल में आर्सेनिक (As) की सांद्रता BDL से 0.038 mg/1 तक पाई गई है। पोस्टमॉनसून में-, As की सांद्रता डिटेक्टेबल लिमिट से नीचे से लेकर 0.129 mg/1 तक पाई गई है। 6.2% प्री मॉनसून नमूनों और-13% पोस्ट मॉनसून नमूनों में-BIS द्वारा निर्धारित पीने के पानी के लिए 0.01 mg/1 की अधिकतम अनुमत सीमा से अधिक आर्सेनिक पाया गया है (IS-10500:2012) । सीसा (Pb) की सांद्रता प्री मॉनसून में-BDL से 0.0016 mg/1 के बीच पाई गई है और पोस्ट मॉनसून में यह-0.001 से 0.011 mg/1 के बीच पाई गई है। पोस्ट मॉनसून के-2.6% नमूनों में सीसे की सांद्रता अधिकतम अनुमत सीमा 0.01 mg/1 से अधिक पाई गई है। (IS-10500:2012)। भूजल में सीसे की अधिकता संभवतः उद्योगों और लैंडफिल साइटों से होने वाले प्रदूषण के कारण हो सकती है। यूरेनियम )U) की सांद्रता प्री मॉनसून में-BDL से 0.01769 mg/1 तक पाई गई है और पोस्ट मॉनसून में यह-0.003 से 0.035 mg/1 तक पाई गई है। पोस्ट मॉनसून के-2.6% नमूनों में यूरेनियम की सांद्रता 0.03 mg/1 की अधिकतम अनुमत सीमा से अधिक पाई गई है, जो BIS द्वारा पीने के पानी के लिए निर्धारित की गई है(IS-10500:2012)।

भालास्वा अध्ययन क्षेत्र में आठ भूजल नमूनों और 2 लीचेट नमूनों पर किए गए बैक्टीरियोलॉजिकल परीक्षण में सभी आठ भूजल नमूनों और 2 लीचेट नमूनों में कुल कोलिफॉर्म और फेकल कोलिफॉर्म बैक्टीरिया की उपस्थिति पाई गई। उपलब्ध सभी डेटा और वर्तमान अध्ययन के दौरान प्राप्त डेटा को एकीकृत किया गया और aquifer disposition maps तैयार किए गए। भालास्वा अध्ययन क्षेत्र में पाँच (assessment Unit) आकलन तहसील शामिल हैं, मॉडल टाउन, अलीपुर, सिविल लाइन्स, सरस्वती विहार, और रोहिणी। वार्षिक निकालने योग्य भूजल संसाधन 6374 हैक्टेयर मीटर (ham) है। कुल वार्षिक भूजल पुनर्भरण 6957.85 हैक्टेयर मीटर (ham) अनुमानित किया गया है। कुल वार्षिक भूजल ड्राफ्ट (2023) तक 4808.83 हैक्टेयर मीटर (ham) अनुमानित किया गया है।

अध्यान क्षेत्र के 5 तहसीलों में से 2 सुरक्षित', 2 सेमी क्रिटिकल' और-1 तहसील क्रिटिकल' है। इसके अलावा', अधिकांश अध्ययन क्षेत्रों में जल स्तर उथला है, जहां खराब गुणवत्ता वाले पानी की उपस्थिति के कारण भूजल का निष्कासन सीमित है।इन क्षेत्रों में भूजल निष्कासन के बाद इसे मिश्रण करके उपयोग में लाया जाए। इससे Aquifer में रिक्त स्थान बनेगा, जिसे आगामी मानसून के दौरान पुनः recharge किया जाएगा जिससे भूजल गुणवत्ता में सुधार होगा। उन क्षेत्रों में, जहां ताजे भूजल के नीचे खारा पानी मौजूद है, यह सुझाव दिया गया है कि गहरे स्तरों पर मौजूद खारी पानी को निष्कासित करके मिश्रण के बाद उपयोग किया जाए और इसे पीने और घरेलू उपयोगों के अलावा अन्य कार्यों के लिए इस्तेमाल किया जा सकता है। जिन क्षेत्रों में जल स्तर 8 मीटर से गहरा हे इन क्षेत्रों में वर्षा जल संचयन और कृत्रिम पुनर्भरण उपायों की सलाह दी जाती है।

अध्यान क्षेत्र से गुजरने वाली नजफगढ़ अनुपूरक नाली के माध्यम से भूजल प्रदूषण को रोकने के लिए, यह सुझाव दिया जाता है कि केवल उपचारित अपशिष्ट जल को ही नालियों में बहने दिया जाए। नालियों की लाइनिंग की भी सिफारिश की गई है। लैंडफिल स्थलों के आसपास प्रदूषण के मामले भी रिपोर्ट किए गए हैं।सभी संबंधित राज्य एजेंसियों भूजल गुणवत्ता की गुणबत्ता के लिए आवश्यक उपाय उठाया जाना चाहिए, और लैंडफिल स्थलों को उचित वैज्ञानिक तरीके से स्थानांतरित और डिज़ाइन किया जाना चाहिए।

#### Contents

| 1 | Iı   | ntroduction                                                |    |
|---|------|------------------------------------------------------------|----|
|   | 1.1  | General Remarks                                            |    |
|   | 1.2  | Sanitary Landfill Sites                                    |    |
|   | 1.3  | Solid Waste Generation in NCT, Delhi                       |    |
|   | 1.3. | 1 Physico-chemical characters of Solid Waste in NCT, Delhi | 24 |
|   | 1.4  | Leachate                                                   |    |
|   | 1.5  | Previous Work                                              |    |
|   | 1.6  | Objectives of the study                                    |    |
|   | 1.7  | Methodology                                                |    |
| 2 | C    | eology and Hydrogeology                                    |    |
|   | 2.1  | Study area and Geology                                     | 30 |
|   | 2.2  | Climate and Rainfall                                       |    |
|   | 2.2. | 1 Temperature                                              |    |
|   | 2.2. | 2 Rainfall Pattern                                         |    |
|   | 2.3  | Physiography & Drainage                                    | 35 |
|   | 2.4  | Geomorphology                                              |    |
|   | 2.5  | Hydrogeological Framework                                  |    |
|   | 2.6  | Ground Water Exploration                                   |    |
|   | 2.7  | Geophysical investigations                                 |    |
|   | 2.8  | Data Acquisition                                           |    |
|   | 2.9  | Aquifer Disposition Based on VES Data                      |    |
|   | 2.10 | Ground Water Levels                                        |    |
|   | 2.11 | Depth to water level during Pre-monsoon (June, 2023)       |    |
|   | 2.12 | Depth to water level during Post-monsoon (November, 2023)  |    |
|   | 2.13 | Seasonal water level fluctuation (June, 2023-Nov, 2023)    | 47 |
|   | 2.14 | Long Term Water Level Fluctuation                          |    |
|   | 2.15 | Ground water flow                                          | 50 |
|   | 2.16 | Aquifer Parameters and Yield Characteristics               | 52 |
|   | 2.17 | Leachate Generation from Bhalaswa Landfill                 | 52 |
| 3 | C    | bround Water Quality                                       | 54 |
|   | 3.1  | Basic Parameters                                           | 55 |
|   | 3.1. | 1 pH                                                       | 55 |

| 3.     | .1.2  | Electrical Conductivity (EC)                                                    |    |
|--------|-------|---------------------------------------------------------------------------------|----|
| 3.     | .1.3  | Total Hardness (TH)                                                             |    |
| 3.     | .1.4  | Major Anions ( $\overline{F}$ , $Cl^-$ , $HCO_3^-$ , $SO_4^{2-}$ and $NO_3^-$ ) |    |
| 3.     | .1.5  | Major Cations (Ca, Mg, Na, K)                                                   | 60 |
| 3.2    | Wat   | ter Type and Hydrochemical Facies                                               | 60 |
| 3.3    | Hea   | vy/Trace Metal Distribution                                                     | 62 |
| 3.4    | Bac   | teriological Contamination                                                      | 64 |
| 3.5    | Suit  | tability of Groundwater for Irrigation Purpose                                  | 64 |
| 3.     | .5.1  | Alkali Hazard                                                                   |    |
| 3.     | .5.2  | Residual Sodium Carbonate (RSC)                                                 |    |
| 3.     | .5.3  | Wilcox diagram                                                                  |    |
| 3.     | .5.4  | Sodium Percentage (Na%)                                                         |    |
| 3.     | .5.5  | Magnesium Hazard (MH)                                                           |    |
| 4      | Imple | mentable Management Plan                                                        | 68 |
| 4.1    | Gro   | ound water pollution remedial measures at Bhalaswa SLF Site                     | 68 |
| 4.2    | Rec   | commendations for Future development of SLF sites                               | 68 |
| 5      | Summ  | nary and Recommendations                                                        | 71 |
| 5.1    | Sun   | nmary                                                                           | 71 |
| 5.2    | Rec   | commendations                                                                   | 72 |
| Refere | ences |                                                                                 | 74 |

# List of Tables

| Table 1:Year-wise Daily Solid Waste Generation                                   | 23 |
|----------------------------------------------------------------------------------|----|
| Table 2: Physical Characters of solid waste                                      | 25 |
| Table 3: Chemical Characters of Solid Waste                                      | 25 |
| Table 4: Classification of leachate                                              | 28 |
| Table 5: Generalized Stratigraphic Units of NCT Delhi (compiled after GSI Study) | 30 |
| Table 6: Status of Bio-mining Legacy Waste at Bhalaswa (As on 29-02-2024)        | 31 |
| Table 7: Year-wise rainfall from 2014 to 2023                                    | 34 |
| Table 8: Details of piezometers                                                  | 37 |
| Table 9: Lithological Log                                                        | 37 |
| Table 10: Geophysical Log of Piezometer at Bhalaswa SLF, Delhi                   | 38 |
| Table 11: Details of VES locations                                               | 40 |
| Table 12: Summarized data of basic parameters                                    | 55 |
| Table 13: Hardness Classification of Water                                       | 57 |
| Table 14: Summary of Heavy Metal analysis data                                   | 62 |
| Table 15: Bacteriological Test in groundwater samples of NCT- Delhi              | 64 |
| Table 16: Water Classification based on Sodium Percent (Na%)                     | 67 |
| Table 17: Distance parameters for construction of landfill                       | 70 |

# List of Figures

| Figure 1 :Active Landfill sites location map, NCT Delhi                                  | 23   |
|------------------------------------------------------------------------------------------|------|
| Figure 2: Solid Waste                                                                    | 24   |
| Figure 3: Composition of Municipal Solid Waste (MSW)                                     | 26   |
| Figure 4: Solid Waste Generation zone wise in NCT Delhi                                  | 26   |
| Figure 5: Field photos while collecting Leachate                                         | 27   |
| Figure 6: Geology Map of NCT Delhi                                                       | 31   |
| Figure 7: Study area map with buffer zones                                               | 32   |
| Figure 8: Study area location map                                                        | 32   |
| Figure 9: Study Isohyetal Map of NCT Delhi                                               | 34   |
| Figure 10: Geological map of the study area.                                             | 36   |
| Figure 11: sub-surface geological cross-section                                          | 38   |
| Figure 12: VES Location map                                                              | 41   |
| Figure 13: Panal diagram of the Study area                                               | 42   |
| Figure 14: Panal diagram of the Study area                                               | 42   |
| Figure 15 : Panal diagram of the Study area                                              | 43   |
| Figure 16: VES Cross-sections at Study area                                              | 43   |
| Figure 17: VES Cross-sections AA'                                                        | 44   |
| Figure 18: VES Cross-sections BB'                                                        | 44   |
| Figure 19: VES Cross-sections CC'                                                        | 44   |
| Figure 20: Water level monitoring stations                                               | 45   |
| Figure 21: Depth to water level map, June 2023                                           | 46   |
| Figure 22: Depth to water level map, November 2023                                       | 47   |
| Figure 23: Water level fluctuation map, June-Nov, 2023                                   | 48   |
| Figure 24: Hydrograph of Haiderpur Pz                                                    | 49   |
| Figure 25: Hydrograph of Bhalaswa Lake Pz                                                | 49   |
| Figure 26: Hydrograph of Samaypur Badli Pz                                               | 50   |
| Figure 27: Water table fluctuation map, June-2023                                        | 51   |
| Figure 28: Water table fluctuation map, November-2023                                    | 51   |
| Figure 29: Leachate generation in 2023 by standard method                                | 53   |
| Figure 30: Ground water sample location map                                              | 54   |
| Figure 31: Electrical conductivity at Bhalaswa Study area for post-monsoon               | 56   |
| Figure 32: Distribution of Chloride concentration at Bhalaswa study area for post-monsoo | n 58 |

| Figure 33: Fluoride and Nitrate map                                        | . 59 |
|----------------------------------------------------------------------------|------|
| Figure 34: Hill and Piper plot showing water type and hydrochemical facies | . 61 |
| Figure 35: USSL Salinity Diagram                                           | . 67 |
| Figure 36: Schematic diagram of scientific landfill site                   | . 70 |

# **1** Introduction

#### **1.1 General Remarks**

The National Aquifer Mapping and Management programme (NAQUIM) was carried out by CGWB from 2012 to 2023 in which detailed mapping of aquifers of India were carried out in the entire country, covering a mappable area of ~25 Lakh km<sup>2</sup>. The findings of NAQUIM studies are being utilized by many agencies, especially the State government agencies involved in ground water management and water supply. Major areas where NAQUIM outputs have been used include

- Drinking water source finding and source sustainability
- Sites for Artificial Recharge
- Safe Drinking water sources in Arsenic affected areas
- Assured irrigation through ground water in areas that have adequate ground water potential.
- Implementation of water conservation and AR schemes
- Ground Water Regulation based on NAQUIM recommendation
- Rejuvenation of Hot springs
- Atal Bhujal Yojana Participatory Ground Water Management

Under NAQUIM programme, aquifer management plan for NCT, Delhi was prepared during 2016-17, which was circulated all the stakeholders for implementation. Though the NAQUIM outputs have been useful for sustainable ground water management in numerous ways as enumerated above, largescale implementation of its recommendations at ground level by the user agencies has been lacking. As per the feedback received from the agencies using the NAQUIM outputs, major limitations of the NAQUIM studies include i) non availability of printed maps at usable scales and ii) lack of sitespecific recommendations for implementation at Panchayat or village level. Keeping the above limitations in mind and considering the future requirements, broad objectives of NAQUIM 2.0 studies will be i) providing information in higher granularity with a focus on increasing density of dynamic data like ground water level, ground water quality etc. ii) providing issue based scientific inputs for ground water management up to Panchayat level, iii) providing printed maps to the users and iv) putting in place a strategy to ensure implementation of the recommended strategies. Involving state agencies in the studies for a sense of ownership. The present study "Groundwater contamination studies around Bhalaswa Landfill site, NCT, Delhi was carried out under NAQUIM 2.0 during AAP 2023-24.

#### **1.2 Sanitary Landfill Sites**

The rate of urbanization is very high in developing countries like India. The level of urbanization of the country is expected to rise to 38% by the year 2026. Provision for civic services like water supply and sanitation has become an uphill task as the state is unable to provide and augment the required resources, both natural and human resources, for the maintenance of the cities. In the past municipal garbage dumps (sanitary landfills are only a recent technology) were unlined and sited with little regard to local hydrogeology. The disposal of such huge volumes of solid waste by open dumping has

many environmental impacts. When solid waste is dumped in low-lying areas, it comes in contact with groundwater or rainwater along with run-off resulting the generation of leachate, a mineralized liquid with high dissolved organic matter, inorganic substances, and heavy metals. Open dumping of Municipal solid waste (MSW) leads to degradation of groundwater by generating leachate and its seepage into the ground. Management of domestic and industrial waste, which includes collection and scientific disposal of these waste materials, needs to be given top priority. Lack of proper collection and disposal of the waste is resulting into secondary problems like pollution of ground water, surface water, soil and air pollution. Ground water contamination is one of the major problems associated with improper waste disposal. Moreover, presence of dumping grounds in highly urbanized environments is directly resulting in health hazards for the people residing in the surrounding areas. Leaching of hazardous elements in the ground water in surrounding areas of landfill sites is reported from different sanitary landfill sites of all over the world. But areal depth demarcation and movement of pollutant plume is highly unpredictable and comprehensive studies of both hydrogeology and hydrogeochemistry is required to demonstrate and predict plume movement.

#### 1.3 Solid Waste Generation in NCT, Delhi

The Municipal Corporation of Delhi (MCD), New Delhi Municipal Council (NDMC) and Delhi Cantonment Board (DCB) manage waste collection and disposal in different parts of Delhi. Before the year 1994, the solid waste disposal in Delhi was not thoroughly systematic and the solid wastes were dumped into nearby low-lying areas. A few of the low-lying areas have been developed into major landfill, which cover almost entire municipal and industrial dumps. Though, these sites were not scientifically designed with proper linings precautions is being taken to properly maintain these sites through clay cover and the construction of drains to drain off the leachates generated in the landfills. These sites may be major point sources of pollution due to the absence of proper lining. At present, in Delhi, the estimated quantity of waste generated was 11352 TPD and disposal of solid waste was 3000 TPD. Year-wise daily solid waste generation is given in *Table No.1*.

The continuous generation of solid waste has developed several landfill areas and the land is retrieved for various purposes. There are four major categories of landfills in Delhi.

- 1. Landfills depleted and retrieved land is used for various purposes. The various landfill sites under this category with their areal extension and year of completion is given in **Annexure-I**.
- 2. Active landfills where the present filling is taking place. At present filling is being taking place in four sites (Fig.1). The sites are:
- i. Gazipur Near dairy farm. The total area of the site is 70 acres. About 2500 MT/day of solid waste is received here. Filling in this landfill site commenced in 1993 and the service zones for this landfill site is East Delhi, New Delhi, Central Delhi
- **ii. Bhalaswa -I & Bhalaswa-II**. The total area of the site is about 50 acres and about 2500 MT/day of solid waste is also dumped here. The dumping of solid waste started in 1984 and the service zone is Rohini, West Delhi, Najafgarh, Narela

- **iii. Okhla Phase-III.** The total area of the site is 32 acres. About 1000 MT per day solid waste is being dumped here. The filling of this site commenced in 1994 and the service zone for this site is South Delhi and parts of Central Delhi.
  - **iv.** Narela-Bawana-The first engineered landfill site in Delhi and is spread over 150 acres. In 2011, the Municipal Corporation of Delhi (MCD) has begun operations at this site. This Site will take handle from Rohini and Civil Lines zones and has an initial capacity to handle 1000 tonnes per day, with plans to expand that to 4000 tonnes per day.

| Year    | Solid waste generation (TPD) |
|---------|------------------------------|
| 2018-19 | 10614                        |
| 2019-20 | 10470.57                     |
| 2020-21 | 10990                        |
| 2021-22 | 11108                        |
| 2022-23 | 11352                        |

Table 1:Year-wise Daily Solid Waste Generation

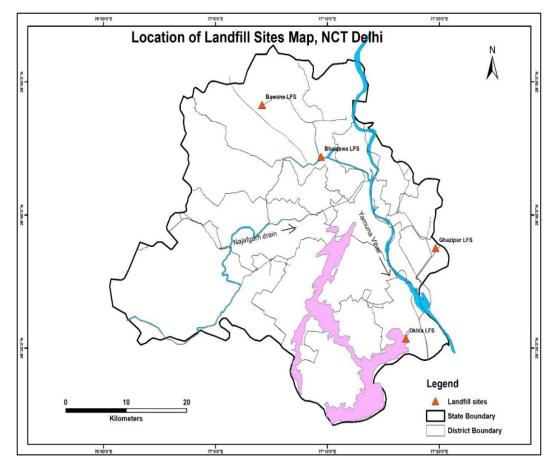
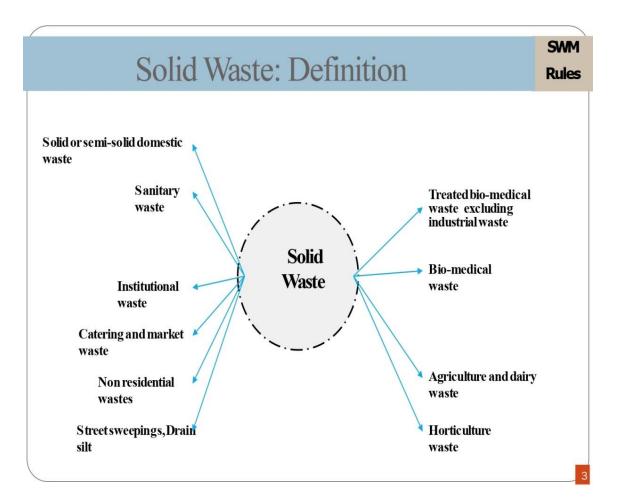




Figure 1: Active Landfill sites location map, NCT Delhi

#### 1.3.1 Physico-chemical characters of Solid Waste in NCT, Delhi

The solid waste Fig 2 disposal sites in Delhi receive both domestic and industrial solid waste, as there are no separate waste disposal sites for industries. The physical and chemical characters of solid wastes generated in Delhi are given in *Table 2* and *Table 3* respectively.

From the physical characters of the solid waste, it is observed the waste is being generated from domestic as well as other sectors like industries and constructional activities. The organic material is just 44.17% and the inorganic material is 55.83%. Chemically solid waste consists of high percentage of inorganic material, the calorific value is very low as compared to the global solid waste.



**Figure 2: Solid Waste** 

| Parameters                                  | Nature of Material | Average percentage |
|---------------------------------------------|--------------------|--------------------|
| Bio-degradable                              | Organic material   | 38.6%              |
| Paper                                       | _                  | 5.57%              |
| Plastic                                     |                    | 6.03%              |
| Metal                                       | _                  | 0.23%              |
| Glass & Crockery                            | Inorganic material | 0.99%              |
| Bio resistant (Leather, Rubber & Synthetic) | -                  | 13.89%             |
| Inert (stone, brick, ashes)                 | -                  | 34.7%              |

# Table 2: Physical Characters of solid waste

#### Table 3: Chemical Characters of Solid Waste

| Parameters          | Average Share in Percentage |
|---------------------|-----------------------------|
| Moisture            | 43.65%                      |
| Organic Carbon      | 20.47%                      |
| Nitrogen as N       | 0.85%                       |
| Phosphorous as P205 | 0.34%                       |
| Potassium as K20    | 0.69%                       |
| C/N Ratio           | 24.08%                      |
| Calorific Value     | 712.50 K Cal/kg             |

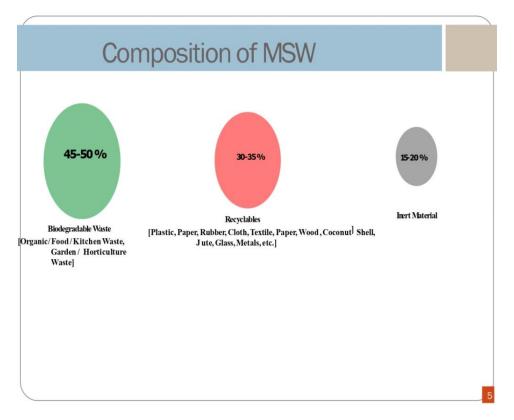



Figure 3: Composition of Municipal Solid Waste (MSW)

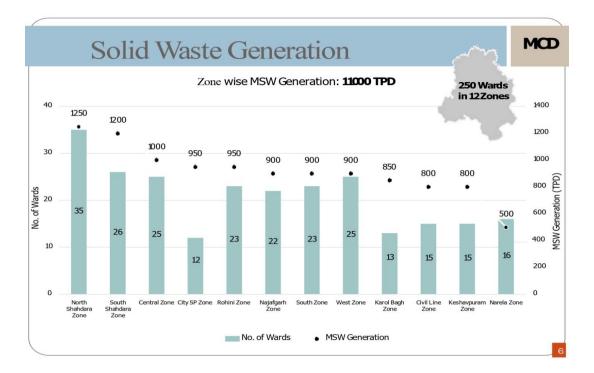



Figure 4: Solid Waste Generation zone wise in NCT Delhi



Figure 5: Field photos while collecting Leachate

#### 1.4 Leachate

Solid waste undergoes many physical chemical and biological changes on a landfill site, this process degrades the organic fraction of the waste along with the moisture content and suitable temperature. The percolating rainwater leads to the generation of a highly contaminated liquid called leachate, which contains large amounts of organic matter like Ammonia nitrogen, heavy metal, and chlorinated organic compounds with inorganic salt. The composition and characteristics of landfill leachate vary with age, precipitation, waste type and composition and weather variation. That can be classified into three types based on the landfill leachate: old, intermediate and young. The classification and characteristic of landfill leachate is given in the table-4. BOD and COD of young leachate is generally found high (4000-13000 mg/l) and (30000-60000 mg/l) respectively. BOD/ COD ratio ranging from 0.4 to 0.7, ammonium nitrogen varies 500 to 2,000 mg/l and the pH found to be very low up to 4. As the landfill age increases and the fatty acid decomposition by anaerobic bacteria is about a period of 10 years it changes the characteristics of the leachate with a low COD, less than 4000 mg per liter and pH range is 7.5 - 8.5 with low biodegradability.

| S.No | Type of Leachate        | Young      | Intermediate        | Old         |
|------|-------------------------|------------|---------------------|-------------|
| 1.   | Age (Year)              | <5         | 5-10                | >10         |
| 2.   | рН                      | <6.5       | 6.5-7.5             | >7.5        |
| 3.   | COD (mg/l)              | >10000     | 4000-10000          | <4000       |
| 4.   | Organic Compound        | 80% VFA    | 5% to 30% VFA +     | Humic &     |
|      |                         |            | Humic & Fluvic Acid | Fluvic Acid |
| 5.   | Ammonia Nitrogen (mg/l) | <400       | NA                  | >400        |
| 6.   | TOC/COD                 | <0.3       | 0.3-0.5             | >0.5        |
| 7.   | Heavy Metals (mg/l)     | Low to Med | Low                 | Low         |
| 8.   | Biodegradability        | Important  | Medium              | Low         |

 Table 4: Classification of leachate

If the **leachate** is not properly handled, the landfill from which it originates can become a highly serious source of groundwater pollution, due to the possibility of leachate penetration into the soil, surface water and groundwater.

#### **1.5 Previous Work**

Municipal as well as industrial waste dumped in low lying areas may be the potential source of ground water pollution. Central Ground Water Board (CGWB) carried out systematic hydrogeological surveys during 1976-77 & 1982-83. Groundwater samples were also collected from these sites during the survey and analyzed for major elements with a view to compare them against drinking water standards. CGWB published the status of groundwater quality around landfill sites based on these studies [6]. CGWB & CPCB collaborative study, 1999 has also showed poor groundwater quality near different landfill sites. CGWB has constructed shallow piezometers of 15 m depth on landfill sites during Field Season Programme during 1999-2000 and carried out the depth wise analysis for the chemical quality of groundwater. At the same time, detailed sampling of adjacent area has also been done to study the vertical and horizontal movement of ground water pollution plume. This study established unambiguously that ground water is being contaminated near landfill sites. Sunil Kumar & A.L. Ramanathan [7] carried out hydro-chemical analysis of ground water from the Bhalaswa SLF site from May, 2003 to June, 2005. BARC and CGWB joint collaborative study on Application of Isotope Techniques in Groundwater Contamination Studies in selected Sanitary Landfill Sites in Delhi during 2003-2005. Their findings of their study suggest that very high concentration of heavy metals and anions are present in the ground water of Bhalaswa Area. Bharat Jhamnani and SK Singh has carried out the simulation studies for the migration of Chloride from landfill sites which shows that the simulation results are in consonance with the observed concentration of Chloride in the vicinity of landfill facility. It is observed that leachates from Bhalaswa landfill was found to be having a high concentration of chloride as well as DOC and COD.

# **1.6** Objectives of the study

A sizable number of populations in NCT, Delhi depends on ground water for their domestic and in some areas for drinking purposes. The objective of this study is:

- Ground water conditions in the proposed study area including detailed quality analysis
- Ground water flow pattern mapping
- Decipher the Aquifer Geometry and Aquifer properties
- Identification of areal extent of ground water pollution due to pollution plume movement
- Conservation of aquifers from Landfill pollutions
- Identification of recharge sources and recharge zones near landfill sites.
- Preparation of suitable recharge plans for the proposed area to arrest the pollution plume movement and preparation of alternate water supply plan for the people living in the vicinity of SLF site.

# 1.7 Methodology

This study has been done to analyse the groundwater contamination in and around the Bhalaswa landfill site. The total area considered for the study around the Bhalaswa Land Fill site is about 20 Sq. Km. The total area of the Bhalaswa land fill (dumping area) is =52acre=0.21SqKm. The dumping yard is 60-65 m height from surrounding areas. Three buffer zones have been drawn for assessment of the contamination of ground water i.e., 1 Km Buffer Zone, 2 Km Buffer Zone and 5 Km Buffer Zone. The density of sampling and water level monitoring is high at 1 Km buffer zone and gradually reducing the sample locations. The available data was analysed for the demarcation of aquifer system and establishment of groundwater flows for collection of ground water samples as per the flow pattern in the area. 10 no. of VES have been done around landfill site to delineate 2D aquifer disposition of the study area in a larger scale. Pre-monsoon and postmonsoon Ground water sampling were done from hand pumps, shallow tube wells at around landfill site for chemical and bacteriological analysis. Pre-monsoon and post-monsoon Groundwater monitoring has done to know the ground water flow direction. Contamination flow movements were established based on the hydrochemistry and ground water flow pattern.

# 2 Geology and Hydrogeology

# 2.1 Study area and Geology

Bhalaswa is the second largest active landfill where filling of garbage is still going on. The sanitary landfill in this area is spread east and west of Grand Trunk (GT) Road and is located about 10 km west of river Yamuna. This landfill falls in topographical depression and filling has started taking in early 80's. The landfill, which is present at the crossing of G.T. Karnal Road and Outer Ring Road, has been abandoned and G.T. Road has been developed on that. Landfill operation at the present site has been started from 1992 to the eastern side of G.T. road and still continuing. Meanwhile, in 2000, the dumping was also started on western side of G.T. Karnal Road just south of Sanjay Gandhi Transport Nagar. The dumping of the garbage is limited to about 50 acres of land and the total area of landfill site is around 70 Acres.

The study area is underlain by newer alluvium which in turn is underlain by older alluvial formation followed by weathered and fractured quartzite of the Delhi super group. The generalized stratigraphy is presented in *Table 5*.

|             |                 | Unconsolidated, inter-bedded lenses of sand, silt   |  |  |
|-------------|-----------------|-----------------------------------------------------|--|--|
|             | Newer Alluvium  | gravel and clay confined to narrow flood plains of  |  |  |
|             |                 | Yamuna River and                                    |  |  |
| Alluvium    |                 | Aeolian deposit of South Delhi.                     |  |  |
| Alluviulli  |                 | Unconsolidated thickness varies up to 300m. Inter-  |  |  |
|             | Older Alluvium  | bedded, inter-fingering deposits of sand, clay and  |  |  |
|             |                 | Kankar, poor to                                     |  |  |
|             |                 | Moderately sorted.                                  |  |  |
| Delhi Super |                 | Well stratified, thick bedded, brown to buff color, |  |  |
| Group       | Alwar Quartzite | hard and compact, intruded locally by pegmatite and |  |  |
| Group       |                 | quartz veins inter-bedded with mica schist.         |  |  |

 Table 5: Generalized Stratigraphic Units of NCT Delhi (compiled after GSI Study)

The landfill is not scientifically lined as the pit is only used as a dump site. It has only got a layer of malba topped with soil, instead of having a layer of plastic or a special type of clay layer requi red for asecure landfill. About 2500 MT/day solid waste is being dumped at this site and the filling of this site commissioned in 1994. This landfill site is not designed as per the schedule 3 of MSWs rules which came into effect in year 2000. The solid waste received at the site is levelled, restructuring and compacted by the hydraulic bulldozers. The height of the dump is about 62 meters in 2019 from surrounding ground level. The elevation in the area is from 207-216 m above MSL. The landfill is owned by the Municipal Corporation of Delhi and as per MCD, the total legacy waste will be cleared by 2025. Status of bio-mining legacy waste at Bhalaswa is given *Table 6*.

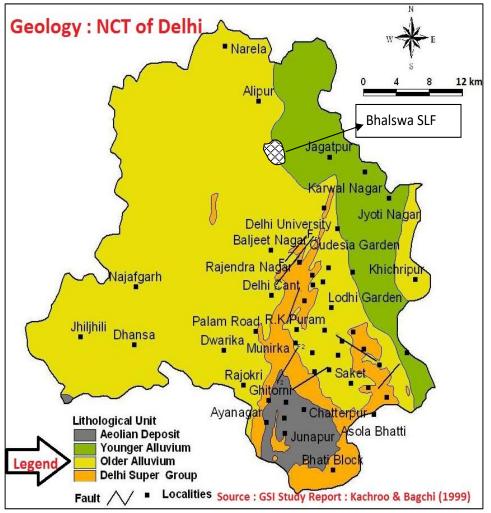



Figure 6: Geology Map of NCT Delhi

| Dump site | Quantity of  | Total         | Legacy Waste  | Quantity  | Total        | Balance  | Revised     |
|-----------|--------------|---------------|---------------|-----------|--------------|----------|-------------|
|           | Legacy       | Quantity of   | (Volumetric   | of Fresh  | Quantity of  | Quantity | time line   |
|           | Waste        | Legacy Waste  | assessment    | MSW       | Legacy       | of waste | for 100%    |
|           | Dumped       | Bio-mined     | through       | dumped    | Waste Bio-   | at Dump  | Remediati   |
|           | (July, 2019) | (SinceOct,201 | Drone         | from      | mined        | Site     | on (Earlier |
|           | (Lakh ton)   | 9-29-02-      | Survey, June- | July,2022 | From         | (Lakh    | Timeline-   |
|           |              | 2024)         | 2022) Above   | to 29-02- | July,2022 to | Ton)     | May,2024    |
|           |              | (Lakh Ton)    | Ground        | 2024      | 29-02-2024   |          | )           |
|           |              |               | (Lakh Ton)    | (Lakh     | (Lakh Ton)   |          |             |
|           |              |               |               | Ton)      |              |          |             |
| Bhalaswa  | 80           | 59.88         | 73            | 15.40     | 34.91        | 53.49    | 2025        |

Three buffer zones have been drawn for assessment of the contamination of ground water i.e., 1 Km Buffer Zone, 2 Km Buffer Zone & 5 Km Buffer Zone. The 5 Km buffer covers parts of 3 districts i.e., North, North West and Central *Fig.* 7.

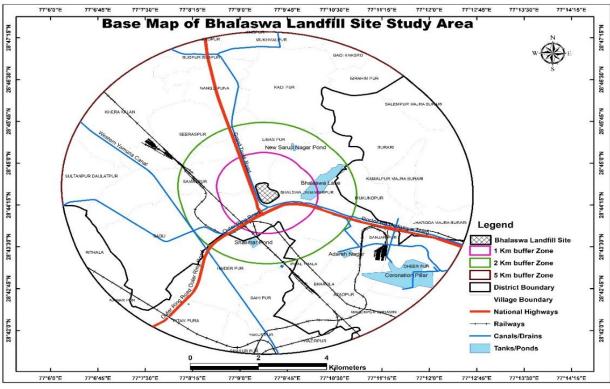



Figure 7: Study area map with buffer zones

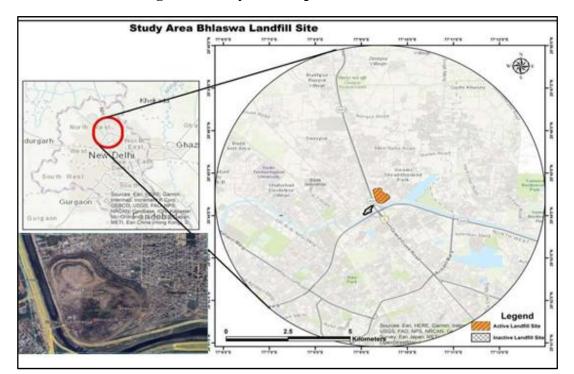



Figure 8: Study area location map

# 2.2 Climate and Rainfall

The climate of NCT, Delhi is mainly influenced by its inland position and the prevalence of air of the continental type during the major part of the year. Delhi has a humid sub-tropical climate with long and hot summers and cold winters. Only during the three-monsoon months July, August and September the air of oceanic origin penetrates to this region and causes increased humidity, cloudiness and precipitation. The year can broadly be divided into four seasons. The cold season starts in late November and extends to about the beginning of March. This is followed by the hot season, which lasts till about the end of June, the onset of monsoon. The monsoon continues till the last week of September. The end of monsoon marks the arrival of a transition season. The two post monsoon months October and November constitute a transition period, called autumn, from the monsoon to winter condition.

#### 2.2.1 Temperature

The cold season starts towards the latter half of November when both day and night temperatures drop rapidly with the advance of the season. January is the coldest month with the mean daily maximum temperature at 21.3°C and the mean daily minimum at 7.3°C. In the winter months during cold waves which affect the State in the wake of western disturbances passing across north India, minimum temperatures may sometimes go down to the freezing point of water. From about the middle of March, the temperature begins to rise fairly rapidly. May and June are the hottest months. While the day temperature is higher in May, the nights are warmer in June. From April the hot wind known locally as 'loo' blows and the weather is unpleasant. In May and June, maximum temperature may sometimes reach 46 or 47 °C. With the advance of the monsoon into the area towards the end of June or the beginning of July, day temperatures are as in the monsoon months but the nights are cooler.

#### 2.2.2 Rainfall Pattern

The normal annual rainfall in the State is 611.8 mm. About 81% of the annual rainfall is received during the monsoon months July, August and September. The rest of the annual rainfall is received as winter rain and as thunderstorm rain in the pre and post monsoon months. There is large variation of rainfall from year to year. During the 113-year period 1901-2013, 1933 was the year with the highest annual rainfall, which amounted to 251% of the normal. In 1951, the year with the lowest rainfall only 44% of the normal annual rainfall was received.

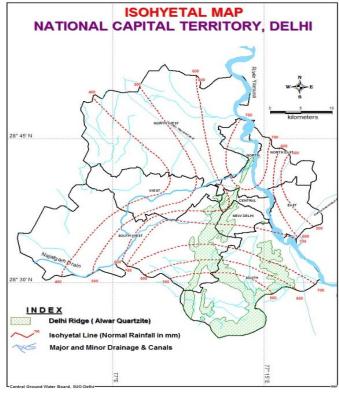



Figure 9: Study Isohyetal Map of NCT Delhi

On an average, rainfall intensity of 2.5 mm or more falls on 27 rainy days in a year. Of these, 19 days are during the monsoon months. Two to three days in June are rainy. In other months, except in November and in the first half of December when it is practically rainless, rain falls on a day or two only in each month. The heaviest rainfall in 24 hours recorded at any station in the State was 495.3 mm at Delhi (Safdarjung) on September 9, 1875. The rainfall in NCT Delhi increases from the Southwest to the Northwest *Fig 9*. However, a slight increase in rainfall is observed towards the Yamuna River. Rainfall in last ten years in NCT, Delhi is given in *Table 7*.

| Year | Rainfall (mm) |
|------|---------------|
| 2014 | 440.4         |
| 2015 | 547.5         |
| 2016 | 656.1         |
| 2017 | 512.49        |
| 2018 | 543.97        |
| 2019 | 499.44        |
| 2020 | 485.4         |
| 2021 | 972.34        |
| 2022 | 668.58        |
| 2023 | 746.58        |

Table 7: Year-wise rainfall from 2014 to 2023

# 2.3 Physiography & Drainage

The study area is around 6.5 km away from Yamuna River. Yamuna River flows across Delhi in a south-southeasterly direction with vast flood plain, marked by a bluff of 3 to 4 m on either bank. Surface elevation varies from 221 m above mean sea level at western side of Bhalaswa LFS to 206 m above mean sea level at eastern side of Bhalaswa LFS. The slope direction is south west to North East direction, towards Yamuna River. The river Yamuna passes through the eastern part of Delhi area. The river Yamuna is the only perennial river flowing in a southerly direction.

#### 2.4 Geomorphology

The ground water availability in NCT, Delhi is controlled by the hydrogeological situation characterized by the occurrence of different landforms developed on different geological formations. Entire area of NCT, Delhi can be grouped into three broad geomorphic units:

- Rocky surface
- Older Alluvial Plain
- Flood Plain of Yamuna River

Study area covers part of the older alluvial Plain and Flood Plain of Yamuna Fig.6 & Fig.10.

*Older Alluvial Plain*: Depending upon the morphological expressions/ features, the gently undulatory terrain is described as Older Alluvial Plain. Older Alluvial Plain occupying western and southwestern part of the of the study area.

*Flood Plain of river Yamuna:* The low-lying flat surface representing the Flood Plain of river Yamuna occupying northern, northeastern and eastern parts of the study area is an important geomorphic unit. This belt has good potential for ground water development. It forms the erosional terrace. The Yamuna Active Flood Plain represents the wide belt bounded on both the sides by Eastern and Western bunds and is naturally prone to annual/periodic floods being in the flood way and flood fringe zone of river Yamuna. It forms depositional terrace and is characterized by abandoned channels, cut-off meanders, meander scrolls, point bars and channel bars. Presence of number of cut- off meanders in the Yamuna Flood Plain suggests oscillatory shifting of river. The lake near Bhalaswa Landfill is one of the remnants of large meander channel.

#### 2.5 Hydrogeological Framework

NAQUIM 1.0 studies reveal that this area is characterized by unconsolidated Quaternary alluvial deposits. No basement has been encountered till the explored depth of 300m. Thick pile of alluvium over the basement rock is composed of sediment strata of varied nature in an alternate fashion of geological setting. Along the Yamuna flood plain alternations of sand and silt with kankar with thin lenses of clay are available down to the drilled depth of 250 m. In the western side of the study area, fine to medium sand and silt are occurred frequently down to depth of 50 - 65 m along with buff coloured clay admixed with coarse kankars. Below this depth thickness of clay formation increases. In the eastern part falling in Yamuna flood plain, sand is dominant aquifer, while clay is dominant in the western part giving rise to salinity due to improper flushing and long residence time of water in the formation. The semi-plastic and plastic clay beds are also

common at deeper depth i.e. 80 to 250 mbgl. The granular zones (fine sand and silt with kankar) at deeper depth are not as frequent as in the shallower depth. Thickness of sand lenses decreases away from the Yamuna flood plain towards the west. The fresh-saline water interface varies greatly in the study area.

All along the western Yamuna Canal and along Yamuna Flood Plain it is deeper (40 to 70 m), whereas in rest of the area it varies from 22 to 40 m in depth. It was also observed from the exploratory wells that salinity of water increases with depth and there is no fresh water aquifer at deeper levels.

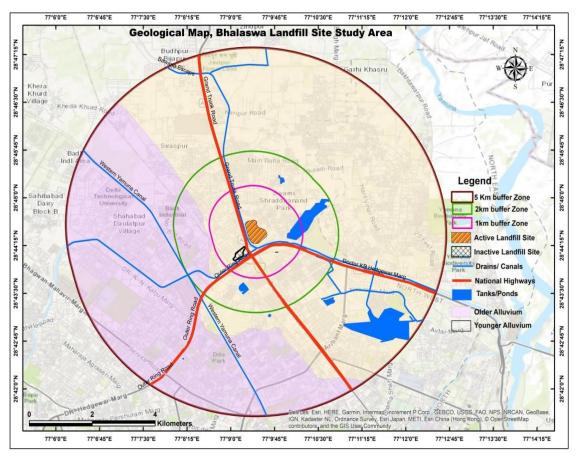



Figure 10: Geological map of the study area.

# 2.6 Ground Water Exploration

Central Ground Water Board has constructed a number of piezometers and exploratory tube wells around the Bhalaswa SLF to study the nature of aquifer material and its characters. Moreover, during 2000, CGWB has constructed three shallow piezometers of 15 m depth near landfill site.

| S.No. | Location                       | Granular Zones<br>encountered | Depth to<br>water levels | Lithology      |
|-------|--------------------------------|-------------------------------|--------------------------|----------------|
|       |                                | (mbgl) From -                 | (mbgl) in                |                |
|       |                                | to                            | May, 2000                |                |
| 1.    | About 50m south east of SLF in | 9.5-12.5                      | 3.2                      | Fine sand silt |
|       | the land of Flood Control      | 12.5-15                       |                          | with minor     |
|       | Department                     |                               |                          | Kankars        |
| 2.    | About 15m north-eastern        | 2-10.5                        | 0.8                      | Fine Sand      |
|       | boundary of SLF, near          | 10.2-15                       |                          | Silty Clay     |
|       | transformer                    |                               |                          |                |
| 3.    | Southeast of SG transport      | 2-10                          | 4.15                     | Sand with silt |
|       | Nagar and west of GT Karnal    | 12-15                         |                          | Silty Clay     |
|       | Road near SLF boundary         |                               |                          |                |

### Table 8: Details of piezometers

The details of these piezometers have been given in *Table 8* Clay horizon is present. A deep tube well in the vicinity of landfill site had been drilled with a purpose of getting lithological log *Table 9* and geophysical log *Table 10. Table 8* suggests that the SLF site is underlain by fine sand up to 12 m depth below which the silty.

Based on the lithologs and geo-physical logs, a generalized sub-surface geological cross section (Fig.9) shows that the area is underlain by fine to medium sand (Yamuna sand) mixed with coarse gravel up to a depth of about 40 mbgl below which older alluvium consisting of predominantly clay with silt and kankar is present. A well inventory of hand pumps, shallow tube wells and deep tube wells in and around SLF site has been carried out. The hydrogeological information is given in **Annexure-II**.

| Depth range in mbgl | Thickness(m) | Lithology                                          |
|---------------------|--------------|----------------------------------------------------|
| 0.00-14.45          | 14.85        | Light yellow clay with minor coarse to gravel size |
|                     |              | kankar                                             |
| 14.45-21.35         | 6.9          | Sand with clay silt admixed with fine sand and     |
|                     |              | kankars                                            |
| 21.35-24.13         | 2.78         | Gravel and kankars with minor silt and fine sand   |
| 24.13-34.10         | 9.97         | Silty clay with traces of kankar                   |
| 34.10-41.89         | 7.79         | Gravel with minor silt and fine sand               |
| 41.89-51.46         | 9.57         | Sand fine grained along with tracers of gravel     |
| 51.46-65.10         | 13.64        | Clay with Silt                                     |
| 65.10-131.55        | 66.45        | Sticky clay                                        |
| 131.55 -134.55      | 3.00         | Gravel with fie sand                               |

| Depth ranges in<br>mbgl |        |                                                   |  |  |
|-------------------------|--------|---------------------------------------------------|--|--|
| 6-10.00                 | 4.00 m |                                                   |  |  |
| 25.00-30.00             | 5.00   | The quality of ground<br>water is fresh up to the |  |  |
| 31.00-35.00             | 4.00   | depth of 45m                                      |  |  |
| 40.50-43.50             | 2.00   |                                                   |  |  |
| 87.00-89.00             | 2.00   | Below 45m quality of<br>water is marginally       |  |  |
| 92.5-96.00              | 3.50   | saline.                                           |  |  |
| 110.00 - 114.00         | 3.00   |                                                   |  |  |

#### Table 10: Geophysical Log of Piezometer at Bhalaswa SLF, Delhi

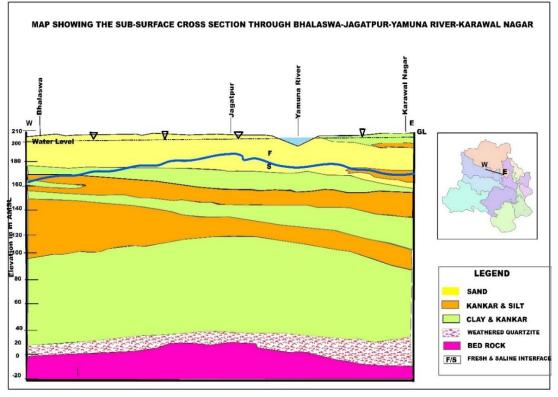



Figure 11: sub-surface geological cross-section

# 2.7 Geophysical investigations

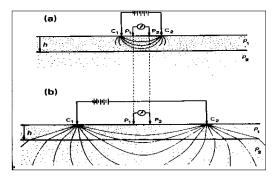
Surface geophysical methods provide a relatively quick and inexpensive means to characterize the sub-surface. Surface geophysical methods measure the physical properties of the sub-surface such as electrical conductivity or resistivity, magnetic permeability, density, or acoustic velocity etc. Electrical surface geophysical methods are used to detect changes in the electrical properties of the sub-surface. The electrical properties of soils and rocks are determined by water content,

mineralogical clay content, salt content, porosity and the presence of metallic minerals. However, typically the resistivity of the water has a larger effect on the bulk resistivity than the soil or rock type. Variations in these electrical properties of soils and rocks, either vertically or horizontally, produce variations in the electrical signature measured by surface geophysical instrument. Changes in the received signal can be related to changes in the composition, extent, and physical properties of the soils and rocks within the sub-surface. However, to effectively detect these differences there must be a contrast in their properties to be measured. The target to be detected or geologic feature to be defined must have properties significantly different from "background" conditions like that of ground water in sand, boulder background.

Surface geophysical resistivity surveys are usually designed to measure the electrical resistivity of sub-surface materials by making measurements at the earth surface. In Vertical Electrical Sounding (VES), the vertical (depth wise) variations in the resistivity of the sub-surface are measured. This is done by imposing an electrical field in the ground by a pair of electrodes at varying spacing expanding symmetrically from a central point, while measuring the surface expression of the resulting potential field with additional pair of electrodes at the appropriate spacing (Figure 2). For an array of current electrodes (C1 & C2) or A & B, and potential electrodes (P1 & P2) or M & N, the 'apparent resistivity', ' $\rho_a$ ' is expressed by the equation:

1

\* 
$$\left[ \frac{(AB/2) + (MN/2)}{(AB/2) - (MN/2)} \right]$$


Where  $R = resistance \{ R = \triangle V / I \},\$ 

 $\rho_a = \pi R$ 

I is the current introduced in the earth,

 $\triangle V$  is the potential difference between the potential electrodes,

AB = distance between the current electrodes A & B and MN= distance between the potential electrodes M & N.



(a) Electrodes position for shallow measurements.

(b) Electrodes position for deeper measurements, keeping observation points same.

The values of apparent resistivity ( $\rho_a$ :- product of resistance and geometric factor) in ohm-m are plotted against the related half-current electrode separation on double logarithmic scale paper of moduli 62.5 mm, for interpretation by curve matching technique and Resistivity Sounding Interpretation software. The interpreted result gives the resistivity of different layers and the depth of various interfaces underneath.

### 2.8 Data Acquisition

Attempts were made to gather maximum information about the sub-surface features using an appropriate mix of different techniques viz. hydrogeological reconnaissance, toposheet study, geophysical surveys etc. The integration of information, so collected, helped progressively to focus on the targeted zones.

A total of 10 Vertical Electrical Soundings (VES) with Schlumberger electrode configuration were carried out at Bhalaswa Landfill surrounding areas *Table 11 & Fig.12*. The prime objective of the survey was to find out the effect of landfill sites to the groundwater of those areas. To achieve the above objectives the VES were conducted using the SSR MP ATS resistivity meter, manufactured by Integrated Geo Instruments & Services Private Limited, Hyderabad. Most of VES were conducted with the current electrode separation (AB) ranging from 80 to 500 m. Current electrode separation was expanded in in accordance with the availability of area and with appropriate MN separation.

| VES<br>No. | Location                                     | Latitude   | Longitude   | Elevation<br>(mamsl) |
|------------|----------------------------------------------|------------|-------------|----------------------|
| 1100       |                                              |            |             | (1111151)            |
| 1          | Near Majlis Park Metro station, Jahangirpuri | 28.7290794 | 77.18154568 | 207                  |
| 2          | Mukundpur 1 near Bhalaswa                    | 28.7405429 | 77.1738813  | 212                  |
| 3          | Mukundpur 2 Along Bhalaswa lake              | 28.7419403 | 77.172471   | 208                  |
| 4          | Near Bhalaswa Golf Course                    | 28.7366835 | 77.1737749  | 211                  |
| 5          | DDA Park, Bhalaswa                           | 28.734531  | 77.161061   | 203                  |
| 6          | Near nala, Jahangirpuri                      | 28.733575  | 77.151769   | 214                  |
| 7          | Sector-19, DDA Park, Rohini                  | 28.732805  | 77.14719    | 215                  |
| 8          | Plain Land opposite Vasant Dada Nagar        | 28.744552  | 77.151669   | 213                  |
| 9          | Swaroop Nagar Park, Bhalaswa                 | 28.7512805 | 77.152479   | 212                  |
| 10         | Shradhanad Park, Near Bhalaswa Diary         | 28.749048  | 77.163617   | 207                  |

**Table 11: Details of VES locations** 

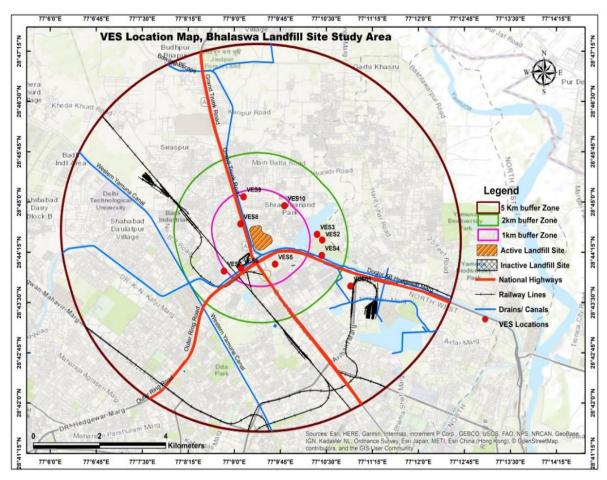



Figure 12: VES Location map

# 2.9 Aquifer Disposition Based on VES Data

The panel diagram *Fig.13* was prepared to know the distribution of fresh and saline aquifers. Four geological layers have been delineated on the basis of resistivity values. Top soil with silt occurs very thin and is distributed throughout the area investigated. Fine sand and Kankar is also very limited thickness. The thickness of fresh water zone is more in the south-western and southern sides of the area and is limited in the south-eastern, north-western and eastern parts. The thickness of fresh water zone varies from 22 to 65 m. No fresh water occurs below 65 m. No bedrock has been observed up to the depth of 250 m *Fig.14*.

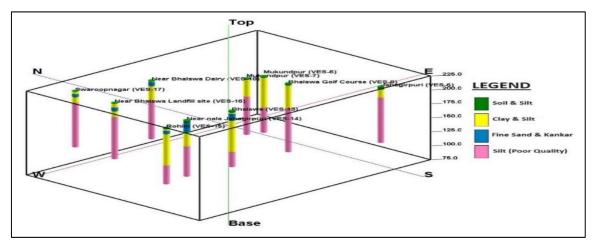



Figure 13: Panal diagram of the Study area.

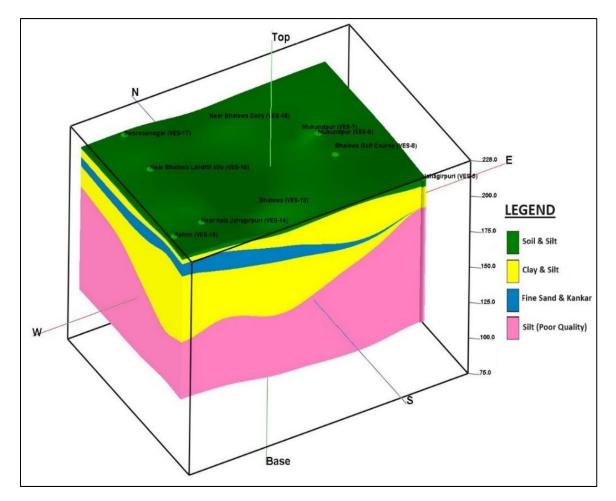



Figure 14: Panal diagram of the Study area.

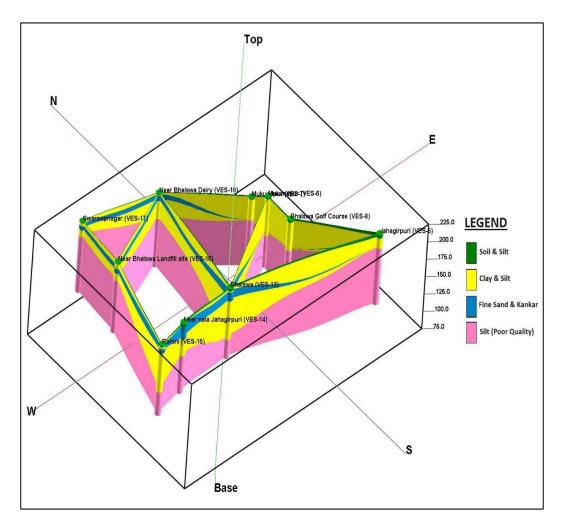



Figure 15 : Panal diagram of the Study area.

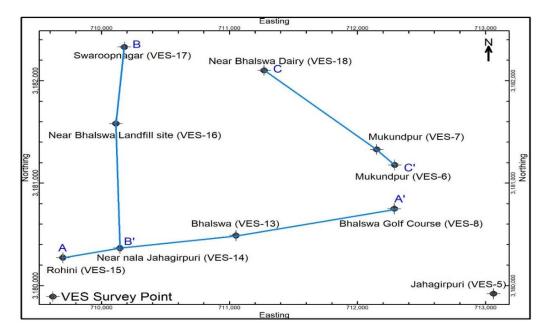



Figure 16: VES Cross-sections at Study area

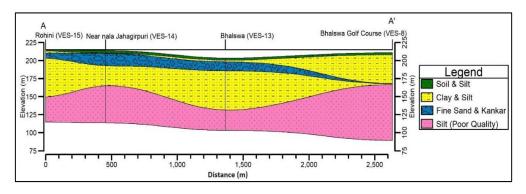



Figure 17: VES Cross-sections AA'

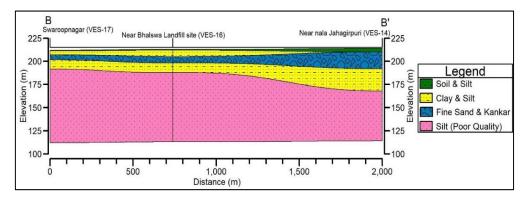



Figure 18: VES Cross-sections BB'

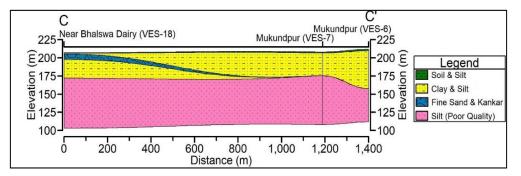



Figure 19: VES Cross-sections CC'

#### 2.10 Ground Water Levels

Water levels have been monitored through a network of 25 monitoring wells distributed throughout the study area. Water levels were monitored during Pre-monsoon (June) and Post-monsoon (November). Locations of monitoring wells are shown in *Fig 20*.

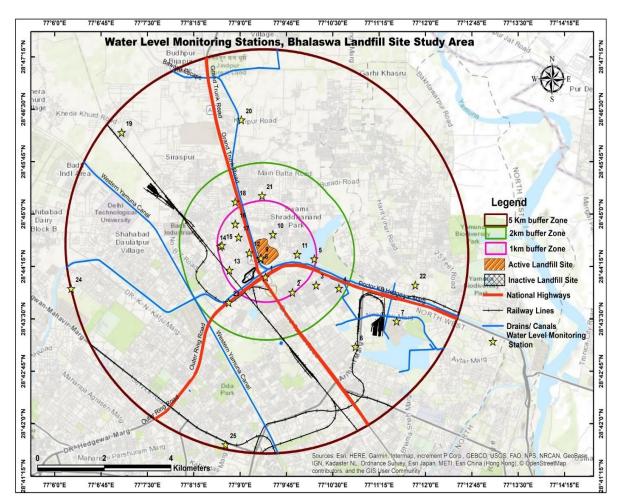



Figure 20: Water level monitoring stations

# 2.11 Depth to water level during Pre-monsoon (June, 2023)

The Depth to water level recorded in the study area during June, 2023 ranges from 3.56 (Bhalaswa lake Tw besides Lake) to 12.88meters below ground level (mbgl) at Haiderpur Pz. Ground water level data of a total of 14 monitoring wells have been analyzed. It is observed that 35% wells have shown water level less than 5mbgl and 35% wells had water level in the range of 5 to 10 mbgl. 30% wells have shown water level more than 10 mbgl *Fig.21*. Shallow water levels are observed in Bhalaswa Lake TW, Kewal Park Pz, Coronation Piller Pz, Burari DJB Ex. Engg Office Pz, Sandesh Vihar Pz, Rohini Sec-11 Pz and MCD Dispensary. Deeper water levels are observed in Toilets, CTC no. 154, SGTN TW, Khera Kalan Pz, JJ Cluster Toilets TW and Haiderpur Pz.

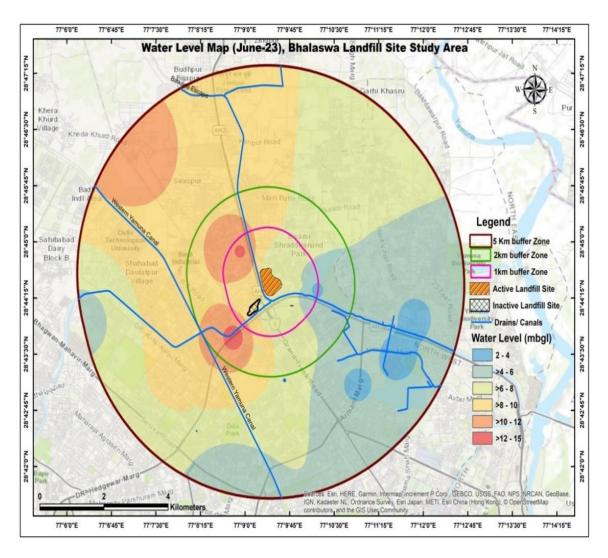



Figure 21: Depth to water level map, June 2023

#### 2.12 Depth to water level during Post-monsoon (November, 2023)

The Depth to water level recorded in the study area during November, 2023 ranges from 2.86 to 14.90 meters below ground level (mbgl). Ground water level data of a total of 18 monitoring wells have been analyzed. It is observed that 28% wells have shown water level less than 5 mbgl and 50% wells had water level in the range of 5 to 10 mbgl. 22% wells have shown water level more than 10 mbgl *Fig.22*.

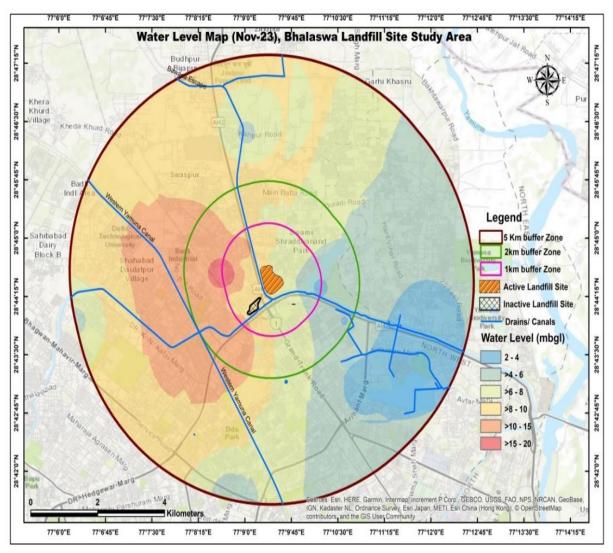



Figure 22: Depth to water level map, November 2023

# 2.13 Seasonal water level fluctuation (June, 2023-Nov, 2023)

The fluctuation of water levels between Pre-monsoon (June, 2023) and Post Monsoon (November, 2023) shows 0.02 to 2.02 m fall in 30% of the wells. Most parts of the study area have registered rise in water levels, which varies from 0.2 to 0.77 m *Fig.23*.

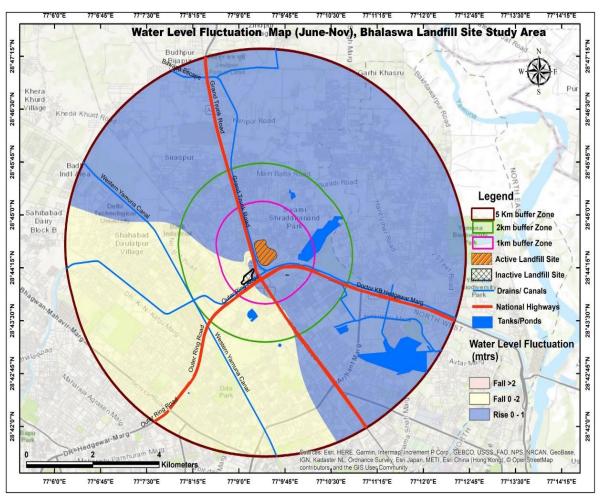



Figure 23: Water level fluctuation map, June-Nov, 2023

# 2.14 Long Term Water Level Fluctuation

Long term pre-monsoon data of two piezometers is available. The Haiderpur Piezometer Fig.24 which is present about 3 Km from Landfill site is showing declining trend with 0.27 m/annum and the Bhalaswa Lake Piezometer Fig.25 which is about 500 mt from landfill site is showing raising trend of 0.053 m/annum. Based on some existing piezometers within the study area, few hydrographs are given below.

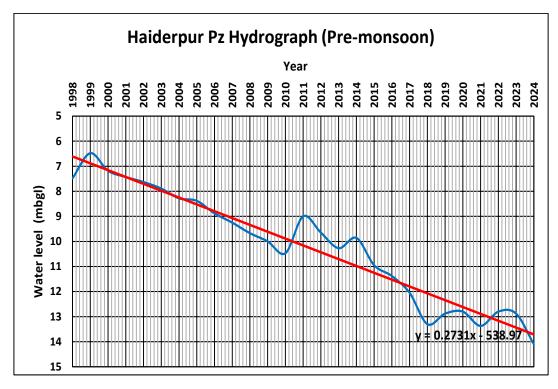



Figure 24: Hydrograph of Haiderpur Pz



Figure 25: Hydrograph of Bhalaswa Lake Pz

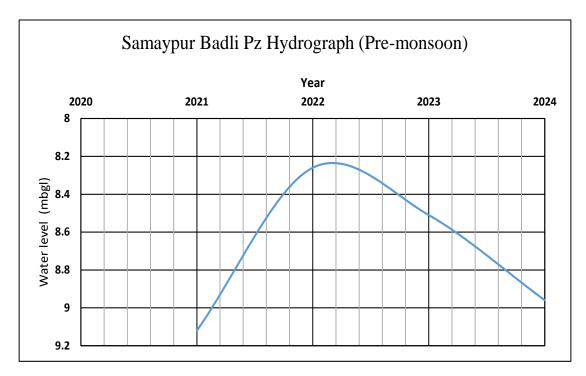
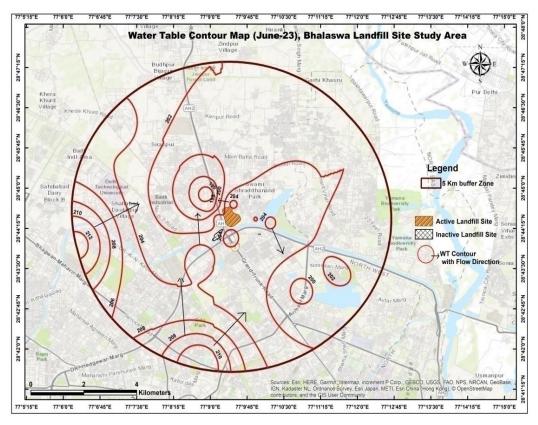




Figure 26: Hydrograph of Samaypur Badli Pz

#### 2.15 Ground water flow

Water table contour map of June, 2023 and November, 2023 is presented in *Fig. 27 & Fig.28*. The perusal of the map shows that the water table elevation follows the topography of the area and overall ground water flow direction is towards Yamuna River. Internal ground water flow direction is different. In the western part of the study area flow direction is towards a trough north of landfill area (JJ Cluster Toilets, Opp. Vashudev Transport) and in southern part the ground water flow direction is towards north i.e., from Sandesh Vihar area to Haiderpur area. Bhalaswa Lake acting as divider regarding ground water flow. Minor variations in flow pattern is observed during pre & post monsoon seasons.





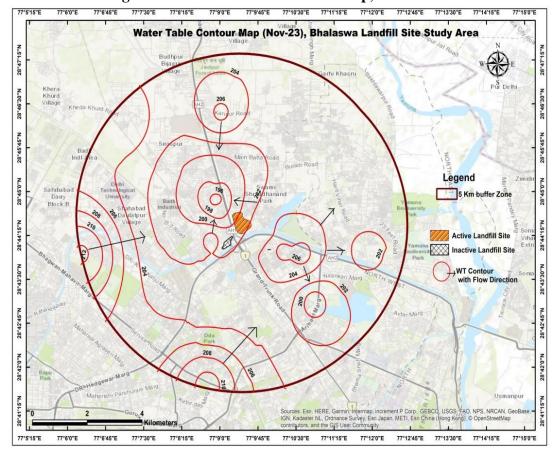



Figure 28: Water table fluctuation map, November-2023

# 2.16 Aquifer Parameters and Yield Characteristics

Detailed hydrogeological survey of the area has revealed that most of the tube wells present within the vicinity of SLF are tapping the aquifer in the depth range of 12 to 20 m except few tube wells, which are of 30 m depth tapping 20 to 30 m depth aquifer system. Thus both the shallow hand pumps and tube wells are tapping the same aquifer system. As per the exploratory drilling, the marginal water and saline water interface is about 40 m in Bhalaswa landfill area. The ground water in Bhalaswa and surrounding areas is brackish from the surface itself. This is mainly due to a discharge area where ground water stagnation is being taking place and no flushing is happening, to make the ground water fresh through recharge of fresh rain water. Long duration pumping test was conducted in this exploratory tube well (Singhu Village, near Bhalaswa) for calculation of aquifer parameters. It is calculated from the pumping test data, the transmissivity is 176 m<sup>2</sup>/day and hydraulic conductivity is 9 m/day.

#### 2.17 Leachate Generation from Bhalaswa Landfill

Leachate is highly polluted and complex wastewater containing high amounts of dissolved and suspended matter generated from percolated water through the waste in landfills. In Bhalaswa landfill site there is no leachate treatment plant.. Leachate treatment is very important as it could threaten the surrounding ecosystem when discharged and mixed with groundwater. The leachate generation mainly depends on the precipitation and the moisture contained by the waste. Various methods are implemented for quantifying the amount of leachate generated by a landfill such as the standard method, rational method, and many other conventional methods.

Here standard method has been used for calculation of leachate. A standard method is a simple mathematical model to estimate the amount of leachate generated from municipal solid waste (MSW). It is one of the most used methods or models to estimate the leachate generated in municipal landfills even these days. Many countries in the world adopted this method as it is simple and also has been used for a long time. The equation of standard method is given below

 $V = 0.15 \times R \times A$ 

Where; V is the volume of leachate discharge in a year (m3/year).

R is annual rainfall (m).

A is the surface area of the landfill (m2).

#### 0.15 is the coefficient

The leachate generated in the Bhalaswa landfill site using standard methodis 31356.36 m3/Year from the dumped waste area of 280000 m<sup>2</sup> with rainfall of 746.58 mm in the year 2023. Month wise Leachate generation was calculated using rainfall data for the year 2023.

The following are the main source for the production of leachate generation:

• Higher precipitation leads to higher leachate generation as we can see in *Fig.29* 

- When the moisture content of the waste is high it causes higher leachate production.
- Larger the landfill area higher the leachate generation.
- Directly proportional to waste generation and type of waste.
- The field capacity of the waste.
- Leachate generation over time increases as the waste generation increases.

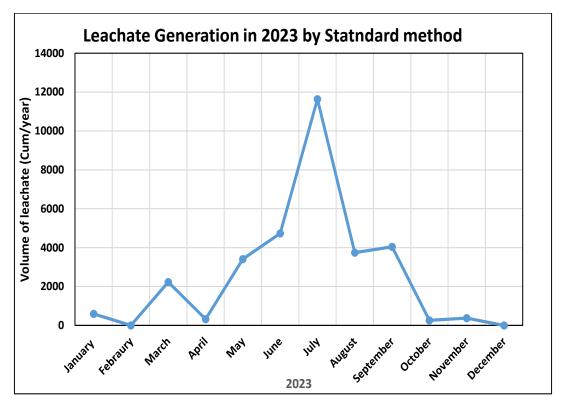



Figure 29: Leachate generation in 2023 by standard method

# **3** Ground Water Quality

The ground water quality samples were collected under NAQUIM 2.0 Programme from shallow depth tubewells, handpumps and leachate from landfill site. In the pre-monsoon, a total 16 ground water samples and 2 leachate samples were collected and in the post monsoon 38 ground water samples and 3 leachate samples were collected. Summarized data of basic parameters is furnished in *Table 12* 

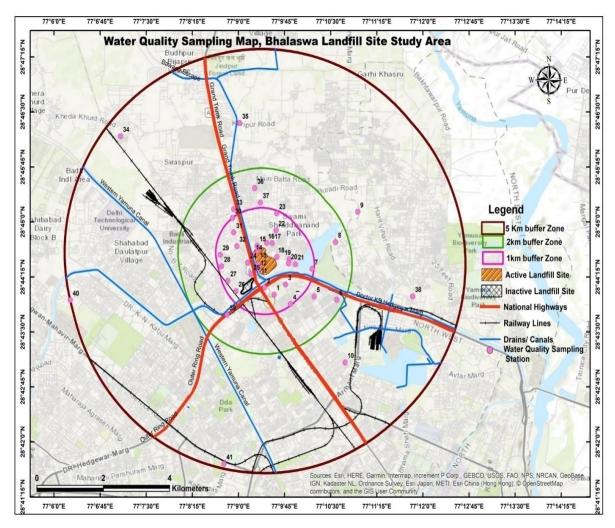
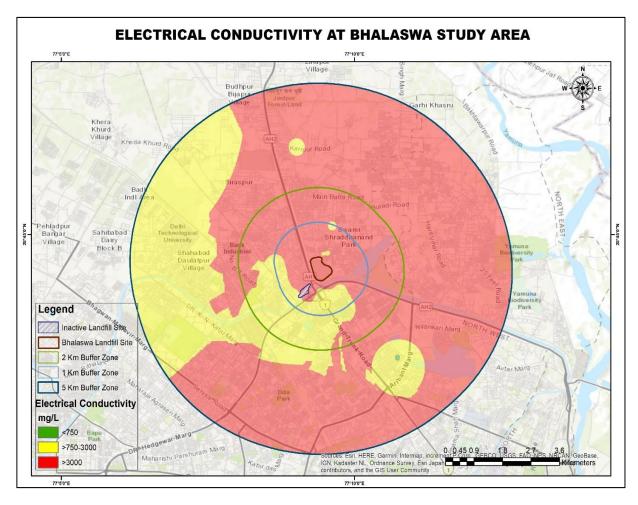



Figure 30: Ground water sample location map

# 3.1 Basic Parameters

| S. No | Parameters       |                                | Range     | Pre | Pre-Monsoon samples |          |     | Post-Monsoon<br>Samples |          |  |
|-------|------------------|--------------------------------|-----------|-----|---------------------|----------|-----|-------------------------|----------|--|
|       |                  |                                |           | No. | %                   | leachate | No. | %                       | Leachate |  |
| 1     | Electrical       | Fresh                          | < 750     | 2   | 12.5                |          | 1   | 2.64                    |          |  |
|       | Conductivity     | Moderate                       | 750-2250  | 1   | 6.5                 |          | 8   | 21.05                   |          |  |
|       | µs/cm at 25°C    | Slightly<br>mineralized        | 2251-3000 | 5   | 31.25               |          | 8   | 21.05                   |          |  |
|       |                  | Highly<br>mineralized          | > 3000    | 8   | 50                  | 2        | 21  | 55.27                   | 3        |  |
| 2     | Chloride<br>mg/L | Desirable<br>limit             | < 250     | 3   | 18.75               |          | 6   | 15.79                   |          |  |
|       |                  | Permissible<br>limit           | 251-1000  | 7   | 43.75               |          | 25  | 65.79                   |          |  |
|       |                  | Beyond<br>permissible<br>limit | > 1000    | 6   | 37.5                | 2        | 7   | 18.42                   | NA       |  |
| 3     | Fluoride mg/L    | Desirable<br>limit             | < 1.0     | 9   | 56.25               |          | 29  | 76.31                   | 1        |  |
|       |                  | Permissible<br>limit           | 1.0 - 1.5 | 6   | 37.5                |          | 4   | 10.53                   | 2        |  |
|       |                  | Beyond<br>permissible<br>limit | >1.5      | 1   | 6.25                | 2        | 5   | 13.15                   |          |  |
| 4     | Nitrate<br>mg/L  | Permissible<br>limit           | < 45      | 16  | 100                 |          | 28  | 73.69                   | 3        |  |
|       |                  | Beyond<br>permissible<br>limit | > 45      |     |                     | 2        | 10  | 26.31                   |          |  |

 Table 12: Summarized data of basic parameters


#### 3.1.1 pH

The pH of the analyzed samples varies from 7.19-8.95 in pre monsoon & 6.85 - 8.20 in post monsoon indicating mildly acidic to alkaline nature of the ground water. Only one ground water sample in the pre-monsoon has shown pH more than 8.5 (Khera Kalan). Leachate samples in pre-monsoon have shown pH values 8.11 & 8.53 and in the post-monsoon varies from 7.68-8.06. The pH values are of remaining wells within the safe limit of 6.5 - 8.5, prescribed by BIS for drinking water (IS 10500:2012).

#### **3.1.2 Electrical Conductivity (EC)**

Electrical conductivity is a measure of total mineral contents of dissolved solids in water. It depends upon the ionic strength of the solution. An increase in dissolved solids causes a proportional increase in electrical conductivity. The electrical conductivity value of ground water in study area in pre-monsoon has been found to vary from 330-8755  $\mu$ S/cm at 25°C and in the post monsoon vary from 680 -10890  $\mu$ S/cm at 25°C. In Pre-monsoon maximum concentration of 8755

 $\mu$ S/ cm has been reported from Mahashiv Car Washing Centre & in post-monsoon maximum concentration of 10890  $\mu$ S/ cm has been reported from MCD School, Jahangirpur. Leachate samples in pre-monsoon have shown 38845 & 39000 $\mu$ S/cm at 25°C and in post-monsoon EC varies from 28170-31400  $\mu$ S/cm at 25°C. The spatial variation of EC shows relatively higher value at some sites. EC in excess of 3000  $\mu$ S/cm value has been observed in 50% of the study area *Fig.31*. Because of finer sediments in the aquifer, flushing of ground water is not proper and longer residence time of water in the aquifer results in dissolution of salts from the aquifer material, which leads to higher TDS content and in turn higher EC.





#### **3.1.3** Total Hardness (TH)

Classification of ground water samples based on Total Hardness is given in *Table 13*. In premonsoon, TH has been found to vary from 130 mg/l (Khera Kalan) to 1790 mg/l (Mahashiv Car Washing Centre) and in post monsoon vary from 90 mg/l (Rohini Sec-11) to 1980 mg/l (MCD School, Jahangirpur), indicating hard to very hard types of ground water. High hardness may cause precipitation of calcium carbonate and encrustation on water supply distribution systems. Long term consumption of extremely hard water might lead to an increased incidence of urolithiasis, anencephaly, parental mortality and cardio-vascular disorders. In Study area, Total Hardness exceeds the recommended maximum permissible limit of 600 mg/l (IS-10500: 2012) in 50% of total analyzed ground water samples both in pre & post monsoon. Leachate samples have shown TH in pre-monsoon is 4500 mg/l & 5000 mg/l and in the post monsoon samples cannot be analyzed due to instrumental limitations.

| Hardness        | Water Class     | Pre-monsoon Sample | Post-monsoon |
|-----------------|-----------------|--------------------|--------------|
| ( <b>mg/l</b> ) |                 | (%)                | Sample (%)   |
| 0-75            | Soft            | 0                  | 0            |
| 75-150          | Moderately Hard | 625                | 5.27         |
| 150-300         | Hard            | 12.5               | 2.63         |
| >300            | Very Hard       | 81.25              | 92.10        |

Table 13: Hardness Classification of water

### 3.1.4 Major Anions (F<sup>-</sup>, Cl<sup>-</sup>, HCO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and NO<sub>3</sub><sup>-</sup>)

The anion chemistry of the analyzed samples shows that  $HCO_3^-$  and  $Cl^-$  are the dominant anions in shallow aquifer and follow the abundance order of  $Cl^->HCO_3^->SO_4^{2-}>NO_3^->F^-$  in majority of the groundwater samples.

In pre-monsoon, Chloride (Cl<sup>-</sup>) concentration varies from 28 mg/l (Haiderpur) to 2840 mg/l (Mahashiv Car Washing Centre) and in post-monsoon varies from 21 mg/l (Khera Kalan) to 2623 mg/l (Sandesh Vihar). The large lateral variation in the chloride concentration and observed high concentration in some samples indicate local recharge and may be attributed to contamination by landfill site. Higher concentration of Cl<sup>-</sup> in drinking water gives a salty taste and has a laxative effect in people not accustomed to it. In Pre-monsoon, concentration of Cl<sup>-</sup> exceeds the desirable limit of 250 mg/l (IS-10500: 2012) in 43.8% of analysed samples and maximum permissible limit of 1000 mg/l in 37.5% of analysed samples. In Post-monsoon, concentration of Cl<sup>-</sup> exceeds the desirable limit of 250 mg/l (IS-10500: 2012) in 65.8% of analysed samples and maximum permissible limit of 1000 mg/l in 18.4% of analysed samples *Fig.32*. Both the leachate samples have shown 5680 mg/l and 7810 mg/l in pre-monsoon. Leachate samples could not be monitored due to the limitations of instrument in post-monsoon.

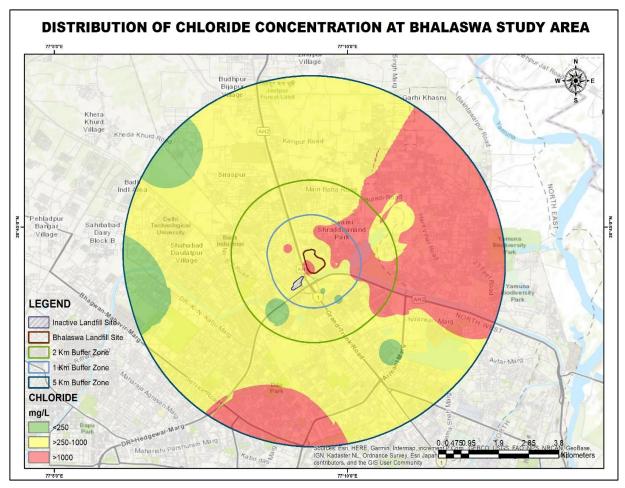



Figure 32: Distribution of Chloride concentration at Bhalaswa study area for postmonsoon

Bicarbonate (HCO<sub>3</sub><sup>-</sup>) is the most dominant anion. In pre-monsoon, Concentration of bicarbonate varies from 73 mg/l (Haiderpur) to 1318 mg/l (TW LFS Entry gate)) and in post-monsoon 85 mg/l (Cremation Ground) to 1013 mg/l (Field HP, Mukundpur Road). Bicarbonate concentrations of leachate samples are 7320 mg/l and 8845 mg/l in pre-monsoon. Bicarbonates are derived mainly from the soil zone CO<sub>2</sub> and at the time of weathering of parent minerals or from dissolution of carbonates and/or silicate minerals by the carbonic acid. Concentration of sulphate varies from 24 mg/l to 432 mg/l in pre-monsoon and 13 mg/l to 3118 mg/l in post-monsoon. Sulphate concentration exceeded the desirable and maximum permissible drinking water limits of 200 mg/l and 400 mg/l values respectively (per IS-10500:2012) in 37.5% and 6.25% (pre-monsoon), in 31.6% and 52.6% (post-monsoon) of total analyzed samples. Both the leachate samples have shown Sulphate concentration are within the desirable limit. The observed high concentration in some samples may be the effect of landfill site. High sulphate concentration may have a laxative effect with excess of Mg in water. Waters with 200 - 400 mg/l of sulphate have bitter taste and those with 1000 mg/lor more of sulphate may cause intestinal disorder and respiratory problems. Sulphate may also cause corrosion of metals in the distribution system, particularly in water having low alkalinity.

Concentration of nitrate has been found to vary from 2 mg/l to 28 mg/l (pre-monsoon) and 1 to 260 mg/l (post-monsoon). Nitrate concentration exceeds the maximum permissible limit of 45 mg/l in drinking water prescribed by BIS (IS-10500:2012) in around 24% (post-monsoon) of the total ground water samples. Nitrate concentration is within permissible limit in pre-monsoon water samples. Leachate samples have shown 156 mg/l & 204 mg/l in pre-monsoon. Nitrate in excess of maximum permissible limit has been reported from western side of the landfill site *Fig.33*. Higher nitrate concentration in ground water may be contamination from landfill site. Excess nitrate in drinking water can cause methaemoglobinaemia in infants, gastric cancer, goiter, birth malformations and hypertensions.

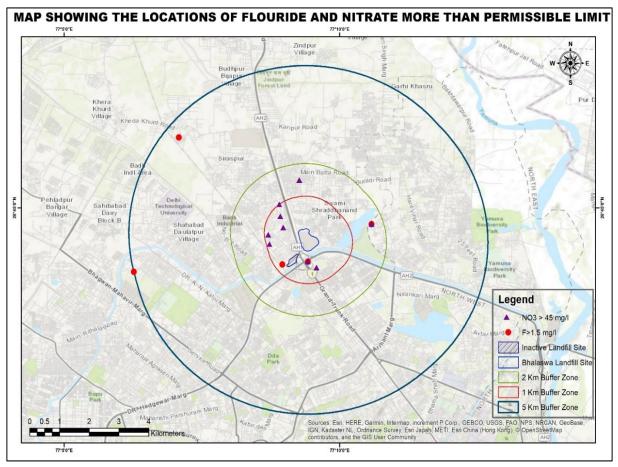



Figure 33: Fluoride and Nitrate map

Fluoride is an essential element for maintaining normal development of healthy teeth and bones. However, higher F<sup>-</sup> concentration causes dental and skeletal fluorosis such as mottling of teeth, deformation of ligaments and bending of spinal cord. Concentration of fluoride in ground water samples has been found to vary from 0.32to2.5 mg/l (pre-monsoon) and 0.05 to 5.2 mg/l (post-monsoon). Concentration of F<sup>-</sup> exceeds the maximum permissible limit of 1.5 mg/l (IS-10500: 2012) in 6.25% (pre-monsoon) and in 13.2% (post-monsoon) of the total analyzed samples. Excess Fluoride has been reported from isolated pockets of study area, those are Rohini Sec-11, PWD Electrical office, Khera Kalan, Field HP & Sulabh Comp Opp. Sewage Pump Stn). The fluoride contamination in ground water may be either due to landfill or due to excessive use of phosphatic fertilizers and fluoride containing insecticides and herbicides in agricultural fields.

#### 3.1.5 Major Cations (Ca, Mg, Na, K)

The major cations include Ca, Mg, Na and K. The water chemistry of the study area is marginally dominated by alkali (Na + K) metals over the alkaline earths (Ca +Mg). The cation chemistry indicates that in general ground water belongs to Na>Ca>Mg>K water type. The weathering and cation exchange processes normally control the levels of these cations in the ground water.

Sodium (Na<sup>+</sup>) is the most dominant cation in ground water in study area. Concentration of sodium has been found to vary from 5 to 1297 mg/l (pre-monsoon) and 42 to 1760 mg/l (post-monsoon). Leachate samples have shown 4200mg/l and 4670 mg/l in pre-monsoon. Sodium is the most important ion for human health. A higher sodium intake may cause hypertension, congenial heart diseases, and nervous disorder and kidney problems. Contamination of ground water by Na and Cl is common in growing urban areas. Sources of these ions are related to mainly leachate from Bhalaswa landfill.

Concentration of potassium ranges from 2.1 mg/l to 196 mg/l (pre-monsoon) and 3.6 mg/l to 270 mg/l (post-monsoon). Leachate samples have shown potassium concentration is 3250 mg/l and 3872 mg/l in pre-monsoon. Potassium is accounting for very less percentage of the total cationic mass balance.

Calcium (Ca) is an essential element for bone, nervous system and cell development. Ca<sup>2+</sup> and Mg<sup>2+</sup> are the main contributors towards hardness. Possible adverse effect from ingesting high concentration of Ca for long periods may be an increased risk of kidney stones. Concentrations of Ca<sup>2+</sup> and Mg<sup>2+</sup> are exceeding the drinking water desirable levels (IS-10500:2012) of 75 mg/l and 30 mg/l respectively in about 37.5 % and 18.8% of the analyzed pre-monsoon samples and for post-monsoon samples in about 58% and 55%. However, concentrations of both these ions are exceeding the maximum permissible levels of 200 and 100 mg/l respectively in 12.5% and 50% of the pre-monsoon samples and for post-monsoon 13.2% & 31.6%. Concentration of Ca in ground water varied from 20 mg/l to 352 mg/l in pre-monsoon and in post-monsoon it varies from 16 mg/l to 270 mg/l in pre-monsoon and in post-monsoon varies from 7 mg/l to 258 mg/l. Leachate samples of Mg is 730mg/l and 608 mg/l.

#### 3.2 Water Type and Hydrochemical Facies

The Hill and Piper plot is very useful in determining relationships of different dissolved constituents and classification of water on the basis of its chemical characters. The triangular cationic field of Piper diagram reveals that the groundwater samples fall into no dominant and Na + K class, whereas in anionic triangle majority of the samples fall into bicarbonate, chloride and no dominant fields *Fig. 34.* The plot of chemical data on diamond shaped central field, which relates the cation and anion triangles revealed that the major water types in Bhalaswa study area were Na-K-Cl, Ca-Mg-HCO<sub>3</sub>, and of mixed chemical character i.e. Ca-Mg-Cl-SO<sub>4</sub>, Na-K-HCO<sub>3</sub>-

Cl. In majority of the ground water samples, alkali metal cations  $(Na^++K^+)$  are slightly exceeding the alkaline earth metals  $(Ca^{2+}+Mg^{2+})$ . In general, the groundwater exhibits the dominance of  $SO_4^{2-}+Cl^-$  (strong acid) over weak  $(HCO_3^-)$  acid. The facies mapping approach applied to the present study shows that Ca-Mg-HCO<sub>3</sub>, Na-K-Cl, Ca-Mg-Cl-SO<sub>4</sub> and Na-K-HCO<sub>3</sub>-Cl are the dominant hydrogeochemical facies in the groundwater.

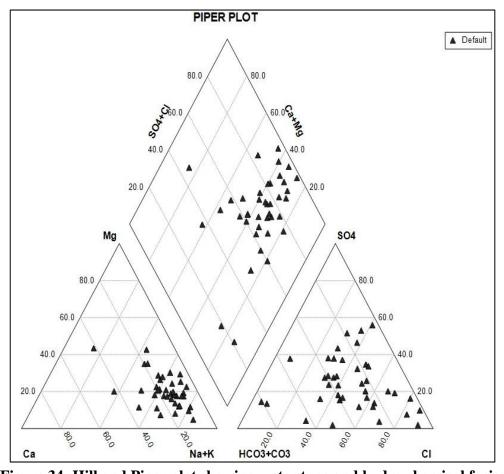



Figure 34: Hill and Piper plot showing water type and hydro chemical facies

### 3.3 Heavy/Trace Metal Distribution

Summarized data of chemical analysis results in respect of heavy metals is furnished in Table 14.

| (Units<br>in<br>mg/l) | in              |            | RangeMaximumPermissible Limit as<br>prescribed by BIS<br>(IS-10500:2012) |             | Samples having heavy<br>metals in excess of<br>Maximum Permissible<br>Limit (%) |  |  |
|-----------------------|-----------------|------------|--------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------|--|--|
|                       | Pre-monsoon     | Post-      | ( <b>Mg/l</b> )                                                          | Pre-monsoon | Post-                                                                           |  |  |
|                       |                 | monsoon    |                                                                          |             | monsoon                                                                         |  |  |
| Fe                    | *BDL-6.714      | 0.075-     | 1.0                                                                      | 12.5        | 21                                                                              |  |  |
|                       |                 | 9.753      |                                                                          |             |                                                                                 |  |  |
| Mn                    | BDL-0.904       | BDL-       | 0.3                                                                      | 31          | 45                                                                              |  |  |
|                       |                 | 2.324      |                                                                          |             |                                                                                 |  |  |
| Zn                    | BDL-2.835       | 0.054-2.74 | 15                                                                       | Nil         | Nil                                                                             |  |  |
| Cu                    | BDL-0.008       | BDL        | 1.5                                                                      | Nil         | Nil                                                                             |  |  |
| Cr                    | BDL-0.003       | 0.001-     | 0.05                                                                     | Nil         | Nil                                                                             |  |  |
|                       |                 | 0.005      |                                                                          |             |                                                                                 |  |  |
| Ni                    | 0.000-0.012     |            | 0.02                                                                     | Nil         |                                                                                 |  |  |
| Cd                    | 0.000073-0.0006 |            | 0.003                                                                    | Nil         |                                                                                 |  |  |
| As                    | BDL-0.055       | BDL-       | 0.01                                                                     | 6.2         | 13                                                                              |  |  |
|                       |                 | 0.129      |                                                                          |             |                                                                                 |  |  |
| Se                    | 0.0000028-      |            | 0.01                                                                     | Nil         |                                                                                 |  |  |
|                       | 0.000063        |            |                                                                          |             |                                                                                 |  |  |
| Pb                    | BDL-0.0016      | 0.001-     | 0.01                                                                     | Nil         | 2.6                                                                             |  |  |
|                       |                 | 0.011      |                                                                          |             |                                                                                 |  |  |
| U                     | BDL-0.03        | 0.003-     | 0.03                                                                     | Nil         | 2.6                                                                             |  |  |
|                       |                 | 0.035      |                                                                          |             |                                                                                 |  |  |

Table 14: Summary of Heavy Metal analysis data

Two leachate samples have shown more than permissible limit for Fe, Cr, As and Ni. Only one leachate sample has shown more than permissible limit for U, Mn, Pb and Cd. Leachate samples analyzed only in pre-monsoon.

\*BDL=Below Detective Level

Concentration of Iron (Fe) has been found to range from BDL to 6.7mg/land exceeded the maximum permissible limit of 1 mg/l in 12.5% of the total analysed pre-monsoon groundwater samples. For post-monsoon, concentration of Iron (Fe) has been found to range from 0.075mg/l to 9.75mg/l and exceeded the maximum permissible limit of 1 mg/l in 21%. The concentration of iron in natural water is controlled by both physico chemical and microbiological factors.

For pre-monsoon, Manganese (Mn) concentration in groundwater was found to vary from BDL to 0.904 mg/l and concentration of Mn exceeds the prescribed maximum permissible limit

of 0.3 mg/l(IS-10500:2012) in 31% groundwater samples. For post-monsoon, Manganese (Mn) concentration in groundwater was found to vary from BDL to 2.324 mg/l and cconcentration of Mn exceeds the prescribed maximum permissible limit of 0.3 mg/l (IS-10500:2012) in 45% groundwater samples. Most common sources of iron and manganese in groundwater are naturally occurring, for example from weathering of iron and manganese bearing minerals and rocks. Industrial effluent, sewage and landfill leachate may also contribute iron and manganese to local groundwater.

Zinc (Zn) concentration in ground water varies from BDL to 2.835 mg/l in pre-monsoon and in post monsoon it varies from 0.054 mg/l to 2.74mg/l, which is well within the maximum permissible limit of 15 mg/l as prescribed by BIS Drinking Water Standards (IS-10500:2012).

In pre-monsoon, concentrations of Copper (Cu) and Chromium (Cr) varied from BDL to 0.008 mg/land BDL to 0.003 mg/l respectively in the analyzed groundwater samples. In post-monsoon, concentrations of Copper (Cu) is below detectable limit and concentration of Chromium (Cr) varied from BDL to 0.005mg/l in the analyzed groundwater samples. Concentration of both Cu and Cr have been found to be well within the maximum permissible limit of 1.5 mg/l and 0.05 mg/l (IS-10500:2012) respectively.

In Pre-monsoon, concentrations of Nickel (Ni) varied from 0.000 mg/l to 0.012 mg/l in the analyzed groundwater samples. Concentration of Ni has been found to be well within the maximum permissible limit 0.02 mg/l (IS-10500:2012). In post-monsoon samples could not be analysed for this element.

Concentration of Cadmium (Cd) in the analysed samples in pre-monsoon has been found to vary from 0.000073 to 0.0006 mg/l. Cd concentration has been found to be well within the maximum permissible limit of 0.003 mg/l. In post-monsoon samples could not be analysed for this element.

In pre-monsoon, concentration of Arsenic (As) in ground water has been found to vary from BDL to 0.038 mg/l. In post-monsoon, concentration of As varies from Below Detection Limit to 0.129mg/l. 6.2% of pre-monsoon samples and 13% of post-monsoon samples exceeds the maximum permissible limit of 0.01 mg/l prescribed by BIS in drinking water (IS-10500:2012).

Concentration of Selenium (Se) has been found to range between 0.0000028 to 0.000063 mg/l in pre-monsoon ground water samples. Se concentration has been found to be well within maximum permissible limit of 0.01 mg/l (IS-10500:2012).

Lead (Pb) concentration has been reported to vary from BDL to 0.0016 mg/l in pre-monsoon and it varies from 0.001-0.011 mg/l in post-monsoon. Sporadic occurrence of Pb in excess of the maximum permissible limit of 0.01 mg/l (IS-10500:2012) has been reported in 2.6% of post-monsoon samples. Excess Lead in ground water may be due pollution from industries and landfill sites.

Concentration of Uranium (U) has been found to varies from BDL to 0.01769 mg/l in premonsoon and it varies from 0.003 to 0.035 mg/l in post-monsoon. Concentration of Uranium 2.6% of post-monsoon samples exceeds the maximum permissible limit of 0.03 mg/l prescribed by BIS in drinking water (IS-10500:2012).

# 3.4 Bacteriological Contamination

The bacteriological test carried out in eight groundwater samples and 2 leachate samples of Bhalaswa study area- shows presence of total coliform and fecal coliform in all eight ground water samples and 2 leachate samples *Table 15*. As per BIS (IS-10500:2012), coliforms should not be detectable in any 100 ml sample. Groundwater contamination from fecal-coliform bacteria is generally caused by water percolation into the aquifer from a contamination source like domestic sewage, drains, waste from Dairy farms and septic tanks. The poor sanitation around the source water also causes bacteriological contamination. Shallow wells are particularly susceptible to such contamination. In Bhalaswa landfill site, the bacteriological contamination is due to leakage of leachate into groundwater and contamination due to Bhalaswa Dairy which is present adjacent to SLF site.

| S.<br>No. | Site Name                    | Latitude | Longitude | Source<br>(TW/D<br>W) | 1st time sampling                              |                                                | Repeated sampling                              |                                                |
|-----------|------------------------------|----------|-----------|-----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
|           |                              |          |           |                       | Total<br>Coliform<br>Bacteria<br>MPN/<br>100ml | Fecal<br>Coliform<br>Bacteria<br>MPN/100<br>ml | Total<br>Coliform<br>Bacteria<br>MPN/100<br>ml | Fecal<br>Coliform<br>Bacteria<br>MPN/100<br>ml |
| 1         | LFS Entry<br>Gate            | 28.73931 | 77.155504 | TW                    | 36                                             | 18                                             | 40                                             | 20                                             |
| 2         | Leachate 01<br>(Khata)       | 28.74034 | 77.155314 |                       | 330000                                         | 130000                                         | 1700000                                        | 1300000                                        |
| 3         | Leachate 02                  | 28.74349 | 77.155231 |                       | 16000000                                       | 390000                                         | 2300000                                        | 1300000                                        |
| 4         | R.S.Poultries                | 28.74456 | 77.15506  | TW                    | 200000                                         | 78000                                          | 11000                                          | 4500                                           |
| 5         | Ambuja<br>Cement             | 28.74158 | 77.15768  | TW                    | 3500000                                        | 390000                                         | 2200000                                        | 170000                                         |
| 6         | Bhagat<br>Properties         | 28.74516 | 77.15915  | HP                    | 2800000                                        | 170000                                         | 1100000                                        | 780000                                         |
| 7         | NBM Toilets                  | 28.742   | 77.16042  | TW                    | 460000                                         | 170000                                         | 40000                                          | 20000                                          |
| 8         | Balaji<br>Coaching<br>Centre | 28.74147 | 77.16379  | HP                    | 94000                                          | 200000                                         | 220000                                         | 110000                                         |
| 9         | Prachin Shiv<br>Mandir       | 28.74054 | 77.163569 | HP                    | 68000                                          | 4000                                           | 49000                                          | 22000                                          |
| 10        | Cremation<br>Ground          | 28.73929 | 77.17     | HP                    | 45000                                          | 20000                                          | 17000                                          | 6800                                           |

Table 15: Bacteriological Test in groundwater samples of NCT- Delhi

TW=Tubewell, HP=Handpump

# 3.5 Suitability of Groundwater for Irrigation Purpose

The chemical quality of water is an important factor to be considered in evaluating its usefulness for irrigation purposes. Plants grown by irrigation absorb and transpire water but leave nearly all the salts behind in the soil, where they accumulate and eventually prevent plant growth. Excessive

concentrations of solute interfere with the osmotic process by which plant root membranes are able to assimilate water and nutrients. In areas where natural drainage is inadequate, the irrigation water infiltrating the root zone will cause water table to rise excessively. In addition to problems caused by excessive concentration of dissolved solids, certain constituents in irrigation water are especially undesirable and some may be damaging even when present in small concentrations. Irrigation indices viz. Sodium Adsorption Ratio (SAR) and Residual Sodium Carbonate (RSC) have been evaluated to assess the suitability of ground water for irrigation purposes.

#### 3.5.1 Alkali Hazard

In the irrigation water, it is characterized by absolute and relative concentrations of cations. If the sodium concentrations are high, the alkali hazard is high and if the calcium & magnesium levels are high, this hazard is low. The alkali soils are formed by the accumulation of exchangeable sodium and are characterized by poor tilt and low permeability. The U.S. Salinity laboratory has recommended the use of sodium adsorption ratio (SAR) as it is closely related to adsorption of sodium by the soil.

SAR is derived by the following equation:

$$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{2+}Mg^{2+}}{2}}}$$

\_ \_

The water with regard to SAR is classified into four categories

#### $\succ$ S<sub>1</sub> – Low Sodium Water (SAR <10)

Such waters can be used on practically all kinds of soils without any risk or increase in exchangeable sodium.

#### ➢ S₂ – Medium Sodium Water (SAR 10-18)

Such waters may produce an appreciable sodium hazard in fine textured soil having high cation exchange capacity under low leaching.

#### **S**<sub>3</sub> – High Sodium Water (SAR >18-26)

Such waters indicate harmful concentrations of exchangeable sodium in most of the soil and would require special management, good drainage, high leaching and addition of organic matter to the soil. If such waters are used on gypsiferrous soils the exchangeable sodium could not produce harmful effects.

#### ➢ S₄ – Very High Sodium Waters (SAR >26)

Generally, such waters are unsatisfactory for irrigation purposes except at low or perhaps at medium salinity where the solution of calcium from the soil or addition of gypsum or other amendments makes the use of such waters feasible.

The computed SAR values range from 0.17 to 17.12 in pre-monsoon and 0.79 to 19.85 in post-monsoon. The maximum SAR value has been found at HP Balaji Coaching Centre in pre-monsoon and Toilets, CTCN0.154, S.G.T.N. 68.8% samples in pre-monsoon and 57.9% in post-monsoon belong to excellent category ( $S_1$ ) and none of the water samples are associated with very high sodium category ( $S_4$ ). Leachate samples have shown SAR >25.

It was found that total 31.25% (pre-monsoon) & 39.5% (post-monsoon) sample fall in S2 category, while 2.6% samples in post-monsoon fall in S3 category.

#### 3.5.2 Residual Sodium Carbonate (RSC)

If the enriched carbonate (residual) concentration becomes relatively high, carbonates get together with calcium and magnesium to form precipitates. The relative abundance of sodium in comparison to alkaline earths and the quantity of bicarbonate and carbonate in excess of alkaline earths also influences the suitability of water for irrigation. This excess is represented in terms of "Residual Sodium Carbonate" (RSC). The highly soluble sodium carbonate known as residual Sodium carbonate (RSC) is defined as;

## $RSC = (HCO_3^- + CO_3^-) - (Ca^{2+} + Mg^{2+})$

Waters with high RSC produces harmful effects on plant development and is not suitable for irrigation. Waters associated with RSC < 1.25 are of excellent irrigation quality and can be safely applied for irrigation for almost all crops without the risks associated with residual sodium carbonate (Wilcox et al., 1954). If the RSC values lie between 1.25 and 2.5, the water is of an acceptable quality for irrigation. Waters associated with RSC values higher than 2.5 are not acceptable for irrigation. 81.3% (pre-monsoon) & 81.6% (post-monsoon) collected water samples are associated with RSC values less than 1.25 and are safe for use in irrigation practices. Only 18.7% (pre-monsoon) & 13.2% (post-monsoon) water samples are associated with RSC values if applied for irrigation causes soil to become infertile owing to deposition of sodium.

#### 3.5.3 Wilcox diagram

EC and sodium concentration are very important in classifying irrigation water. The Wilcox diagram (Wilcox 1948) relating EC and SAR shows *Fig. 35* that most of the samples are plotted in C4S2, C4S3 and C3S2 showing high to very high salinity and medium to high alkali hazard and not suitable for irrigation.

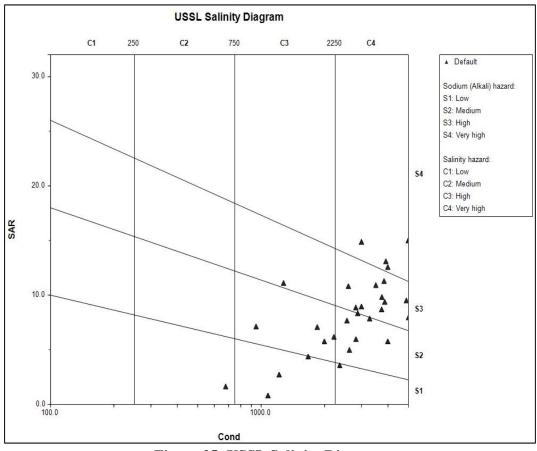



Figure 35: USSL Salinity Diagram

#### 3.5.4 Sodium Percentage (Na %)

The sodium percentage (Na% =Na+K/ (Ca+Mg+Na+K)  $\times$ 100) in the pre-monsoon groundwater of Bhalaswa study area varies from 7.47% to 80.23% and in post-monsoon it varies from 15.43% to 85.41%. Classification of ground water samples based on Na % is given in below *Table16*.

| Na %      | Water Class | % Pre-monsoon samples | % Post-monsoon samples |
|-----------|-------------|-----------------------|------------------------|
| <20 %     | Excellent   | 12.5                  | 2.63                   |
| 20 - 40 % | Good        | 0                     | 2.63                   |
| 40 - 60%  | Medium      | 37.5                  | 26.3                   |
| 60 - 80%  | Bad         | 43.75                 | 60.5                   |
| >80%      | Very Bad    | 6.25                  | 7.9                    |

Table 16: Water Classification based on Sodium Percent (Na %)

#### **3.5.5** Magnesium Hazard (MH)

The magnesium hazard (MH=Mg/ (Ca + Mg)  $\times 100$ ) in the pre-monsoon ground water of Bhalaswa study area varies from 21.96% to 88.10% and in post-monsoon 10% to 87.5%. Water is not used for irrigation if MH values exceeded the 50%. The long term application of high MH value water may reduce the crop yields and affect the agricultural productivity in the area.

## 4 Implementable Management Plan

### 4.1 Ground water pollution remedial measures at Bhalaswa SLF Site

- It is observed that the ground water in surrounding areas of Bhalaswa SLF site is highly contaminated, it is recommended to take proper precautions to arrest further deterioration of ground water quality in the area. Total 7 Stakeholder feedback forms were collected from stakeholders during the field. Most of the Tubewells are at shallow depth as they mentioned in the stakeholder forms. Most of the tubewells/Hand Pumps are used for washing & Cleaning, Construction purposes only. For drinking purpose, they are depending on DJB supply water. Some Stake holders informed that the water colour gets transformed to yellow colour after 2-3 hours. As discussed in the field with the locals, it has been learnt that the locals does not consume the ground water for drinking purpose. Hence the health issues related due to the ground water could not be ascertained.
- 2. To prevent mixing of the leachate at bottom of the SLF site, number of borewells should be drilled vertically over the entire dumping yard and at the boundary of dumping yard to pump out the contaminated ground water as wells as leachate from the dumping yard. This pumped water and leachate mix shall be treated properly by putting up the ETP adjacent to the dumping yard and after proper treatment may be released to the surface water drains flowing adjacent to the dumping yard.
- 3. Horizontal collector wells/pipes with slotted pipes may be installed within the dumping yard and the leachate may be collected properly in the pipes and be treated in ETPs.
- 4. One deep trench of depth about 2 m may be constructed around the dumping yard so that the leachate is collected in the drain and transported to the ETP plant. To prevent the accumulation of storm water and rainwater over the landfill, connecting drains may be constructed criss crossing the dumping yard and connected to peripheral drain.
- 5. Sub-surface vertical cut-off walls may be constructed to prevent the movement of contaminated water to fresh water areas.
- 6. It is recommended to operate landfills appropriately at low level with restricting the height of the landfill dumping.
- 7. Waste Water from Bhalaswa dairy may also be collected properly and treated before releasing into the surface water drains.
- 8. Awareness may be created regarding contamination of ground water by putting the boarders at different locations highlighting the health risk of using contaminated ground water.

## 4.2 Recommendations for Future development of SLF sites

A conventional landfill is a man-made system for storing trash in specially constructed and protected cells on the ground's surface or in underground excavations. Despite the fact that more rubbish is being reused, repurposed, or energetically valorised, landfills remain an important aspect of waste management. During the degradation of waste in landfills, leachate and gases are created. These emissions have the potential to threaten human health as well as the quality of the environment. The most common greenhouse gases found in landfill gas are methane and CO2

(carbon dioxide). Landfills account approximately 20% of all anthropogenic methane emissions worldwide.

The migration of gas and leachate from the landfill body into the environment is a serious environmental concern, posing a threat to groundwater, air quality, and climate change via methane emissions, as well as significant health risks.

### Scientific Landfills

A Scientific Landfill is so titled because it was built using a scientific design and approach. The seepage of solid waste leachate into the underlying soil and water, contaminating both, is one of the most critical problems with traditional landfills. Because the base layer of clay in scientific landfills successfully eliminates any seepage or leaking within the landfill, there is no possibility of garbage seeping underground. A soil drainage layer and a vegetative layer are placed on top of the base layer to avoid soil erosion. Leachate is collected before it seeps underground due to the presence of these layers *Fig 36*.

Scientific landfills act as degassing systems by reducing methane production. Methane is produced at a slower rate than in typical landfills because the layers soak up the majority of the contaminants in the rubbish. In scientific landfills, vertical wells aid in the regular extraction of methane, which can then be used to generate energy and heat.

### **Components of Scientific Landfill**

The following are the seven fundamental components of an MSW landfill:

- **1.** A liner system that prevents leachate or gas from seeping into the surrounding soil at the landfill's base and sidewalls.
- **2.** A leachate collection and control facility that collects and removes leachate from the inside and outside of the landfill before treating it.
- **3.** A gas collection and control facility (optional for small landfills) that collects and eliminates gas from within and on top of waste before treating or recycling it.
- **4.** A final cover system that improves surface drainage, prevents infiltration, and maintains surface vegetation at the top of the landfill.
- **5.** A drainage system for surface water that collects and transfers all surface runoff away from the landfill.
- **6.** An environmental monitoring system based on a landfill that collects and analyses air, surface water, soil gas, and groundwater samples on a regular basis.
- 7. A closure and post-closure plan that includes the methods for closing and securing a landfill once it has been filled, as well as the activities for long-term monitoring, management, and maintenance of the closed landfill.

### Site selection criteria

- Responsibility of Development authorities to identify landfill sites and handover to concerned ULBs
- Nearby waste processing facility.
- Soil conditions and topography.

| Place        | Distance Parameters                                                     |
|--------------|-------------------------------------------------------------------------|
| Lake or Pond | Maximum distance 200 m                                                  |
|              | • A water monitoring system should be installed if the landfill site is |
|              | less than 200 m from the lake/ pond                                     |
|              | • Sites falling within wetlands are avoided                             |
| River        | • Maximum distance 100 m                                                |
|              | • The distance may be reduced in some instances for non-meandering      |
|              | rivers but a minimum of 30m should be maintained                        |
| Flood Plains | • No landfill should be constructed within a 100 m year- flood plain    |
| Highway      | Maximum distance 200 m                                                  |
| Habilitation | • Maximum distance 200 m of noticed habituated area                     |
|              | • Site falling within forest area and national parks are avoided        |
|              | • A distance of 100 m must be maintained from the residential areas     |
| Public Parks | Maximum distance 200 m                                                  |
| Ground Water | • No landfill should be constructed in the area where water table is    |
| Table        | less than 2 m below ground surface                                      |
| Airport      | • A distance of 20 km the nearby airport must be maintained             |
|              | • Can be set up between 10-20 km by obtaining NOC from the civil        |
|              | aviation authority / Air Force                                          |

 Table 17: Distance parameters for construction of landfill

- Large enough to last for 20-25 years
- No development zone around landfill area
- Temporary storage facility for solid waste shall be established in each landfill

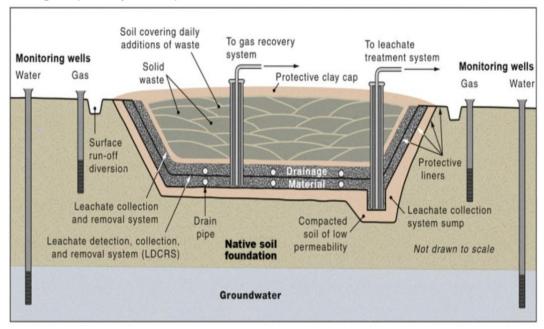



Figure 36: Schematic diagram of scientific landfill site

## **5** Summary and Recommendations

## 5.1 Summary

- 1. The study area covering an area is about 20 Sq. km is occupied by unconsolidated sediments of Quaternary to Recent age.
- 2. The landfill is not scientifically lined as the pit is only used as a dump site. It has only got a layer of malba topped with soil, instead of having a layer of plastic or a special type of clay layer required for a secure landfill. About 2500 MT/day solid waste is being dumped at this site and the filling of this site is commissioned in 1994. This landfill site is not designed as per the schedule 3 of MSWs rules which came into effect in year 2000. The solid waste received at the site is levelled, restructuring and compacted by the hydraulic bulldozers. The height of the dump is about 62 metres in 2019 from surrounding ground level. The landfill is owned by the Municipal Corporation of Delhi.
- 3. The ground water in the area around the Bhalaswa landfill is being contaminated due to leachate from the landfill and there is no leachate treatment in this site. Most of the people in the area are depends on Delhi Jal Board supply water for drinking purpose. Ground water is being used for domestic use such as bathing, washing utensils and clothes which has led to skin diseases of the people.
- VES data indicates that fresh water sediments are followed by the saline water sediments. The thickness of fresh water sediments is bare minimal in Bhalaswa Study area. The depth to fresh saline water interface varies from 22 mbgl to 65mbgl. Ground water quality below fresh saline water interface is saline all through up to the bedrock.
- 5. As per hydrographs of Haiderpur Piezometer Pre-monsoon water level during (1998 2015) indicates declining trend of ground water level, near to landfill site and Bhalaswa lake water level is rising.
- 6. Electrical conductivity value of pre-monsoon ground water samples in Bhalaswa study area has been found to vary from 330 to 8755  $\mu$ S/cm at 25°C and in post-monsoon it varies from 680-10890  $\mu$ S/cm at 25°C. Electrical Conductivity in excess of 3000  $\mu$ S/cm value has been observed more than 50% of study area. Nitrate in excess of maximum permissible limit has been reported from 24% of post-monsoon samples.
- 7. All the available data as well as data generated during the course of present study were integrated and aquifer disposition maps were prepared. Fine to medium sand layer is present below the landfill site and Clay with silt also abundant in study area. In alluvium, sand and silt with kankar form the potential aquifer zones.
- 8. Southern and South Eastern parts of the study area shows shallow water level and western, north western parts of study area shows deep water levels.
- 9. In heavy metal analysis, two leachate samples have shown more than permissible limit for Fe, Cr, As and Ni. Only one leachate sample has shown more than permissible limit for Uranium, Manganese, Lead and Cadmium. In Basic analysis, Leachate samples have shown exceed the permissible limit for EC, Cl, Fluoride and Nitrate. For Bacteriological analysis both the leachate samples have shown total and fecal coliform.

- 10. In Basic analysis 37.5% of wells showing Chloride and 6.25% of wells are showing Fluoride beyond the permissible limit in pre-monsoon. And 18.42%, 13.15% and 26.31% of wells are showing Cl, F & No<sub>3</sub> beyond permissible limits. Excess Fluoride has been reported from isolated pockets in the study area.
- 11. Water table elevation follows the topography of the area and overall ground water flow direction is towards Yamuna River. Internal ground water flow direction is different. In the western part of the study area flow direction is towards a trough near landfill area and southern part ground water flow direction is towards north. Bhalaswa Lake acting as divider regarding ground water flow.

### 5.2 Recommendations

- 1. The study revealed that the landfill site is close to water bodies, highway. The development of new landfills should be sited not too close to natural features, residential areas and institutions in order to have minimal negative impact on them.
- 2. Encourage households, businesses, and industries to segregate waste at the source into recyclables, organic waste, and non-recyclables. Provide separate bins or containers for different types of waste.
- 3. The waste should be minimized at the source. Proper segregation would lead to better options and opportunities for scientific disposal of waste. The recyclable materials should be recovered from the wastes. Invest in research and development of innovative technologies and practices for waste management, such as waste-to-energy technologies, sustainable materials recovery, and improved recycling processes.
- 4. Use appropriate treatment methods for different types of waste, such as landfilling for non-recyclable and non-compostable waste, composting for organic waste, and advanced treatment technologies for hazardous waste.
- 5. The Bhalaswa landfill is nearing its closure date, develop a closure and aftercare plan to rehabilitate the landfill site once it reaches capacity. This includes covering the site, landscaping, and ongoing monitoring to ensure environmental protection.
- 6. CPCB and DPCC should take responsibility to implement the rules and policies given by Ministry of Environment, Forests and Climate Change (MoEFCC). Implement and enforce solid waste management policies and regulations at local levels. Establish incentives and penalties to encourage compliance with waste management guidelines and promote responsible waste handling practices.
- 7. Foster collaboration among government agencies, private sector stakeholders, NGOs, and the community to address solid waste management challenges collectively. The involvement of people and private sector through NGOs could improve the efficiency of SWM.
- 8. Public awareness should be created among masses to inculcate the health hazards of the wastes. Conduct public awareness campaigns to educate communities about the importance of proper waste management practices, including recycling, composting, and waste segregation. Provide clear guidelines and information on how residents can participate in waste reduction efforts.

- 9. Bhalswa landfill site influenced the groundwater quality of the shallow aquifers close to the site. To control/or minimize the impact of leachate on groundwater resources around the landfill sites, construction of lined engineered dumping site and leachate collection ponds are the best way to protect the movement of the leachate into the shallow groundwater of the study area. A new site for dumping should be selected as an alternative away from any residential settlement, river and agricultural field to minimize the environmental impact.
- 10. Ground water is highly polluted and is not fit for drinking and irrigation purposes around landfill site. It is recommended that ground water should be used only after proper treatment. Site selection and design of landfill sites should be based on sound scientific considerations. There should be strict monitoring of waste disposal in industrial belts.
- 11. Construct a scientific/Engineered landfill for future newly constructed landfills for better solid waste management as well as leachate management.
- 12. A thick column of fresh water aquifer system exists down to depth of 50 m in the vicinity of Western Yamuna Canal and its thickness decreases away from the canal. The existence of thick column of fresh ground water aquifers beneath Western Yamuna Canal is due to infiltration of fresh water from the canal and flushing of entrapped saline water from theses aquifers. These aquifers can be used by constructing tubewells of depth 40 to 50 m all along the canal. The contaminated plume may be restricted and not allowed to pollute the fresh water present under western Yamuna Canal. Pumping of fresh water present along the western Yamuna Canal may be regularized to avoid ground water contamination due to SLF site.
- 13. In Study area, fresh ground water is underlain by saline/ brackish water and clay is dominant in the western part giving rise to salinity due to improper flushing and long residence time of water in the formation. Over-exploitation of ground water has not only resulted in depletion of fresh ground water resources but has also led to gradual upconing of saline water. This saline water can be used after blending for uses other than drinking.

## References

- 1. Annual Report (2023), Delhi Pollution Control Board
- 2. Arif Ahamad, N. Janardhana Raju and Sughosh Madhav (2018), Impact of non-engineered Bhalaswa landfill on groundwater from Quaternary alluvium in Yamuna flood plain and potential human health risk, New Delhi, India
- 3. CGWB, SUO, Delhi-Aquifer Mapping and Ground Water Management Plan of NCT Delhi-2016.
- 4. Central Ground Water Board and Baba Atomic Research Centre report on Application of Isotope Techniques in Ground water Contamination studies in selected Sanitary Landfill Sites in New Delhi.
- 5. Ground Water Contamination at Solid Waste Landfill, Mohiddin, S.K.
- 6. Ground Water Resource Estimation Report 2023 By Central Ground Water Board, SUO, Delhi.
- 7. Ground Water Year Book, CGWB, SUO, Delhi.
- 8. Lokesh Kumar and SK Singh (2019)- Leachate Characters and Impact at Bhalaswa Landfill Site in Delhi, India
- 9. Master Plan for Delhi—With the Perspective for the Year 2021 by Ministry of Urban Development.
- 10. Mufeed Sharholy, Kafeel Ahmad, Gauhar Mahmood and R.C. Trivedi (2024)-Analysis of Municipal Solid Waste Management Systems in Delhi A Review.
- 11. Nakul Sardana, Climate Centre for cities, NIUA-Scientific Landfill Availability and Operations Training Manual.
- 12. Nakul Sardana, Climate Centre for cities, NIUA-Scientific Landfill Availability and Operations Training Manual.

## Annexure

| Annexure-I: Existing Landfill sites for Waste Management in NCT Delhi | <b>Annexure-I: Existing</b> | Landfill sites for | Waste Management | in NCT Delhi |
|-----------------------------------------------------------------------|-----------------------------|--------------------|------------------|--------------|
|-----------------------------------------------------------------------|-----------------------------|--------------------|------------------|--------------|

| S.No. | Location                          | Area (in ha.) | Remarks      |
|-------|-----------------------------------|---------------|--------------|
| 1     | Kailash Nagar, East Delhi         | 1.8           | Filled up    |
| 2     | Tilak Nagar, West Delhi           | 16            | Filled up    |
| 3     | Subroto Park                      |               | Filled up    |
| 4     | PuranaQila/Bharion Road           | 2.7           | Filled up    |
| 5     | Timarpur                          | 16            | Filled up    |
| 6     | Sarai Kale Khan                   | 24            | Filled up    |
| 7     | Gopal Pur                         | 4             | Filled up    |
| 8     | Chhaterpur                        | 1.7           | Filled up    |
| 9     | S.G.T Nagar                       | 14.4          | Filled up    |
| 10    | I.P. Depot                        | 1.8           | Filled up    |
| 11    | Sunder Nagar                      | 2.8           | Filled up    |
| 12    | Tuglakabad Extn.                  | 2.4           | Filled up    |
| 13    | HaiderPur                         | 1.6           | Filled up    |
| 14    | MandawaliFazilpur                 | 2.8           | Filled up    |
| 15    | RohiniPh-III                      | 4.8           | Filled up    |
| 16    | Near Hastal Village in West Delhi | 9.6           | Filled up    |
| 17    | Site Near Ghazipur Dairy Farm     | 28            | In Operation |
| 18    | Site Near Jhangirpur/ Bhalaswa    | 16            | In Operation |
| 19    | Okhla Phase-I                     | 12.8          | In Operation |
| 20    | Crossing on G.T. Karnal Road      | 3.2           | In Operation |
| 21    | Jaitpur/Tajpur                    | 9.84          | New          |
| 22    | Near Puthkhurd                    | 55            | New          |
| 23    | Bawana to Narela Road             | 28            | New          |
| 24    | Sultanpur Dabas (Bawana)          | 16            | New          |

| Use                                              | Horticulture | Washing &<br>Cleaning                 | Construction<br>& Cleaning    | Washing &<br>Cleaning      | Horticulture     | Monitoring                      | Monitoring                      | Horticulture                    | Not in use                      | Washing &<br>Cleaning | Washing &<br>Cleaning | Monitoring                                     | Cleaning                        | Delhi Jal<br>Board Supply<br>Water TW | Cleaning                                  | Cleaning                                          | Cleaning                        |
|--------------------------------------------------|--------------|---------------------------------------|-------------------------------|----------------------------|------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|------------------------------------------------|---------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------------------|---------------------------------|
| Depth to<br>Water<br>Level,<br>Nov-23<br>(mbgl)  | 6.95 F       | 6.93 V                                | 5.03 6                        | 3.94 0                     | 3.17 F           | 3.25 N                          | 2.86 N                          | 10.28 F                         | 9.07 N                          | 6.04 V                | 5.95 V<br>0           | 8.53 N                                         | 9.46 0                          | 19.07 I                               | 17.68 0                                   | 12.22 0                                           | 10.65 0                         |
| Depth to<br>Water<br>Level,<br>June-23<br>(mbgl) | 7.15         |                                       |                               |                            | 3.56             | 3.68                            | 3.63                            |                                 |                                 |                       | 6.05                  | 8.51                                           |                                 |                                       |                                           | 12.53                                             | 10.98                           |
| M.P<br>(mbgl)                                    | 0.5          | 0.3                                   | 0.48                          | 0.58                       | 0.8              | 0.8                             | 6.0                             | 0.2                             | 0.55                            | 0.3                   | 0.27                  | 0.84                                           | 0.2                             | 0.4                                   | 0.1                                       | 0.15                                              | 0.32                            |
| Depth<br>Zones<br>Tapped<br>(mbgl)               |              |                                       |                               |                            | 20-29            | 41-59 &<br>65-71                |                                 |                                 |                                 |                       |                       | 15-21,39-<br>45,60-66                          |                                 |                                       |                                           |                                                   |                                 |
| Aquifer<br>tapped<br>(reported)                  | Silty Sand   | Sand &<br>Gravel                      | Silty sand                    | Sand &<br>Gravel           | Silty Sand       | Silty Sand,<br>Sand &<br>Gravel | Silty Sand,<br>Sand &<br>Gravel | Silty Sand,<br>Sand &<br>Gravel | Silty Sand,<br>Sand &<br>Gravel | Silty Sand            | Silty Sand            | Fine Sand,<br>Sand &<br>Gravel,<br>Clayey Sand | Silty Sand                      | Silty Sand,<br>Sand &<br>Gravel       | Silty Sand                                | Silty Sand,<br>Sand &<br>Gravel                   | Silty Sand,<br>Sand &           |
| Diameter<br>in mm                                | 102          | 102                                   | 102                           | 204                        | 153              | 153                             | 153                             | 153                             | 153                             | 102                   | 153                   | 153                                            | 153                             | 304                                   | 102                                       | 153                                               | 153                             |
| Depth<br>of the<br>well<br>(m)                   | 25           | 40                                    | 30                            | 50                         | 15               | LL                              | 56                              | 50                              | 50                              | 30                    | 25                    | 69                                             | 40                              | 50                                    | 25                                        | 50                                                | 50                              |
| Nature of<br>well                                | Tubewell     | Tubewell                              | Tubewell                      | Tubewell                   | Tubewell         | Piezometer                      | Piezometer                      | Tubewell                        | Tubewell                        | Tubewell              | Tubewell              | Piezometer                                     | Tubewell                        | Tubewell                              | Tubewell                                  | Tubewell                                          | Tubewell                        |
| Longitude                                        | 77.156849    | 77.164136                             | 77.170516                     | 77.176645                  | 77.17            | 77.18111111                     | 77.19222222                     | 77.155504                       | 77.155622                       | 77.158856             | 77.165435             | 77.1525009                                     | 77.147134                       | 77.144652                             | 77.145077                                 | 77.148713                                         | 77.149616                       |
| S.No. Location Latitude Longitude Na             | 28.734954    | 28.731316                             | 28.733024                     | 28.732299                  | 28.73929         | 28.71833333                     | 28.7244444                      | 28.739311                       | 28.739486                       | 28.745124             | 28.74037              | 28.7407347                                     | 28.736624                       | 28.742225                             | 28.742526                                 | 28.747596                                         | 28.744468                       |
| Location                                         | MakbaraChowk | MCPS Co-Ed, J-<br>Block, Jahangirpuri | ITI , K-Block,<br>Jahangirpur | MCD School,<br>Jahangirpur | TW Bhalaswa lake | KewalparkPz                     | Coronation Pillar Pz            | TW at LFS Entry<br>Gate         | TW-2 at LFS Entry<br>Gate       | Shree Cements         | MCD Dispensary        | Sanjaygandhi<br>Transport Nagar                | MCD Toilets, Near<br>T-Junction | MCD allopathic<br>Dispensary          | Shiv Mandir, MCD<br>Office, MCD<br>Colony | JJ Cluster Toilets,<br>Opp. Vashudev<br>Transport | Toilets, CTC No<br>154, S.G.T.N |
| S.No.                                            | 1            | 2                                     | 3                             | 4                          | 5                | 9                               | 7                               | 8                               | 6                               | 10                    | 11                    | 12                                             | 13                              | 14                                    | 15                                        | 16                                                | 17                              |

| 18 | Adarsh Sen. Sec.<br>School Boys, G.T.<br>Road | 28.752877   | 77.148719   | Tubewell   | 30 | 102 | Silty Sand                      |                                 | 76.0 |       | 9.91  | R.O plant                             |
|----|-----------------------------------------------|-------------|-------------|------------|----|-----|---------------------------------|---------------------------------|------|-------|-------|---------------------------------------|
| 19 | Khera Kalan Pz                                | 28.76944444 | 77.11805556 | Piezometer | 50 | 153 | Silty Sand,<br>Sand &<br>Gravel | 28-46                           | 0.7  | 11.48 | 10.75 | Monitoring                            |
| 20 | DJB Office,<br>Kadipur                        | 28.77246    | 77.150343   | Tubewell   | 60 | 304 | Silty Sand,<br>Sand &<br>Gravel | 18-24, 28-<br>32, 33.5-<br>44   | 0.45 |       | 5.62  | Delhi Jal<br>Board Supply<br>Water TW |
| 21 | Sawaria Traders,<br>Azad Place                | 28.754397   | 77.155944   | Tubewell   | 30 | 104 | Silty Sand                      |                                 | 0.15 |       | 86.9  | Washing &<br>Cleaning                 |
| 22 | Burari DJB Ex.Engg<br>Office Pz               | 28.73305556 | 77.19722222 | Piezometer | 46 | 153 | Silty Sand,<br>Sand &<br>Gravel | 10-16,22-<br>28,31-<br>37,40-43 | 0.7  | 3.73  | 3.45  | Monitoring                            |
| 23 | Haiderpur                                     | 28.7288889  | 77.14694444 | Piezometer | 51 | 153 | Silty Sand,<br>Sand &<br>Gravel |                                 | 0.75 | 12.88 | 14.9  | Monitoring                            |
| 24 | Rohini Sec 11                                 | 28.7322222  | 77.10444444 | Piezometer | 24 | 104 | Silty Sand,<br>Sand &<br>Gravel | 12-16,20-<br>24                 | 0.58 | 5.26  | 5.7   | Monitoring                            |
| 25 | SandeshVihar                                  | 28.695      | 77.14611111 | Piezometer | 42 | 153 | Fine Sand,<br>Sand &<br>Gravel  | 16-18,21-<br>27 & 36-<br>40     | 0.8  | 4.12  | 5.36  | Monitoring                            |

| Annexu | <b>Ire-III: Hydi</b> | rogeological | Annexure-III: Hydrogeological Data of water Quality sampling po | ints (post-n | nonsoon) arc | ound Bh | points (post-monsoon) around Bhalaswa Landfill Site |                         |
|--------|----------------------|--------------|-----------------------------------------------------------------|--------------|--------------|---------|-----------------------------------------------------|-------------------------|
| Sample | Latitude             | Longitude    | Location                                                        | Nature of    | Depth of     | Dia in  | Aquifer tapped (reported)                           | Use                     |
| No.    |                      |              |                                                                 | well         | the well (m) | mm      |                                                     |                         |
| 1      | 28.733446            | 77.159666    | Chat Ghat Jheel Wala Park                                       | ML           | 30           | 153     | Silty Sand & Fine Sand                              | Horticulture            |
| 2      | 28.735062            | 77.157056    | PWD Electrical Office                                           | TW           | 15           | 51      | Silty Sand                                          | Cleaning                |
| 3      | 28.735745            | 77.16277     | HP Besides Jheel Park Gate                                      | НР           | 15           | 51      |                                                     | Public Use              |
| 4      | 28.731316            | 77.164136    | MCPS Co-Ed, J-Block, Jahangirpuri                               | TW           | 30           | 102     |                                                     | Cleaning & Washing      |
| 5      | 28.733024            | 77.170516    | ITI, K-Block, Jahangirpur                                       | TW           | 35           | 102     |                                                     | Cleaning & Washing,     |
| 9      | 28.732299            | 77.176645    | MCD School, Jahangirpur                                         | TW           | 50           | 204     | Sand & Gravel                                       | Cleaning & Washing      |
| 7      | 28.73929             | 77.17        | HP Cremation Ground                                             | HP           | 15           | 153     |                                                     | Not bin daily use       |
| 8      | 28.745399            | 77.176327    | Fields Handpump                                                 | НР           | 15           | 51      | Silty Sand                                          | washing                 |
| 6      | 28.752271            | 77.182345    | TW Mukundpur, Jheemar Village                                   | TW           | 25           | 102     |                                                     | construction & Cleaning |
| 10     | 28.718035            | 77.178927    | Majlis Park, Azadpur, Opp. Kewalpark                            | НР           | 15           | 51      |                                                     | Public Use              |
| 11     | 28.739311            | 77.155504    | TW at LFS Entry Gate                                            | TW           | 50           | 153     | Silty Sand, Sand & Gravel                           | Horticulture            |
| 12     | 28.740337            | 77.155314    | Leachate-1                                                      |              |              |         |                                                     |                         |
| 13     | 28.743491            | 77.155231    | Leachate-2                                                      |              |              |         |                                                     |                         |
| 14     | 28.742611            | 77.15409     | Leachate-3                                                      |              |              |         |                                                     |                         |
| 15     | 28.74456             | 77.15506     | R.S Poultries & Trading                                         | TW           | 30           | 102     | Silty Sand                                          | Cleaning & Washing      |
| 16     | 28.74518             | 77.15768     | Ambuja Cement                                                   | TW           | 20           | 102     | Silty Sand                                          | Cleaning & Washing      |
| 17     | 28.74516             | 77.15915     | Bhagat Properties                                               | HP           | 15           | 51      |                                                     | Public Use              |
| 18     | 28.742               | 77.16042     | NBM Toilets                                                     | TW           | 40           | 153     | Silty Sand, Sand & Gravel                           | Cleaning                |
| 19     | 28.74147             | 77.16379     | Balaji Coaching Centre                                          | НР           | 15           | 153     | Silty Sand                                          | Cleaning & Washing      |
| 20     | 28.740535            | 77.163569    | Prachin Shiv Mandir                                             | НР           | 15           | 153     |                                                     | Cleaning & Washing      |
| 21     | 28.74037             | 77.165435    | MCD Dispensary                                                  | TW           | 25           | 153     | Silty Sand                                          | Cleaning & Washing      |
| 22     | 28.74806             | 77.16022     | Mahashiv Car Servicing Centre                                   | TW           | 20           | 102     | Silty Sand                                          | Cleaning & Washing      |
| 23     | 28.75191             | 77.16039     | Kavya Furniture                                                 | TW           | 15           | 51      | Silty Sand                                          | Cleaning                |
| 24     | 28.7407347           | 77.1525009   | Sanjaygandhi Transport Nagar toilets                            | ML           | 50           | 153     | Fine Sand, Sand & Gravel,<br>Clayey Sand            | Cleaning                |
| 25     | 28.738097            | 77.153429    | Shibu Da Dhaba                                                  | TW           | 35           | 102     |                                                     | Cleaning                |

Afill Sit. ľ ÷ 1:1 Ć 4 ſ

| Sample | Latitude    | Longitude   | Location                                        | Nature of | Depth of     | Dia in | Aquifer tapped (reported) | Use                |
|--------|-------------|-------------|-------------------------------------------------|-----------|--------------|--------|---------------------------|--------------------|
| No.    |             |             |                                                 | well      | the well (m) | mm     |                           |                    |
| 26     | 28.73425    | 77.149364   | Sulabh Complex, Opp. Sewage Pumping             | WT        | 40           | 153    | Silty Sand, Sand & Gravel | Cleaning           |
|        |             |             | Stn.,                                           |           |              |        |                           |                    |
| 27     | 28.736624   | 77.147134   | MCD Toilets, Near T-Junction                    | ΤW        | 40           | 153    | Silty Sand, Sand & Gravel | Cleaning           |
| 28     | 28.739918   | 77.145435   | Mother Dairy House, Opp. Great Vishal           | TW        | 20           | 102    |                           | Cleaning & Washing |
|        |             |             | Band                                            |           |              |        |                           |                    |
| 29     | 28.742526   | 77.145077   | Shiv Mandir, MCD Office, MCD                    | TW        | 25           | 102    | Silty Sand                | Horticulture       |
|        |             |             | Colony                                          |           |              |        |                           |                    |
| 30     | 28.750881   | 77.148404   | Toilets, Sanjay Colony, Opp. Shakti<br>Builders | WT        | 40           | 153    |                           | Cleaning           |
| 31     | 28.747596   | 77.148713   | JJ Cluster Toilets, Opp. Vashudev               | TW        | 50           | 153    | Silty Sand, Sand & Gravel | Cleaning           |
|        |             |             | Transport                                       |           |              |        |                           |                    |
| 32     | 28.744468   | 77.149616   | Toilets, CTC No154, S.G.T.N                     | TW        | 50           | 153    | Silty Sand, Sand & Gravel | Cleaning           |
| 33     | 28.752877   | 77.148719   | Adarsh Sen. Sec. School Boys, G.T.              | TW        | 30           | 102    | Silty Sand                | R.O Plant          |
|        |             |             | Road                                            |           |              |        |                           |                    |
| 34     | 28.76944444 | 77.11805556 | Khera Kalan Cremation ground                    | ΤW        | 35           | 102    | Silty Sand                | Cleaning           |
| 35     | 28.77246    | 77.150343   | DJB Office, Kadipur                             | TW        | 25           | 102    | Silty Sand                | Cleaning & Washing |
| 36     | 28.757651   | 77.154436   | Vedanshi Properties                             | TW        | 20           | 102    | Silty Sand                | Cleaning & Washing |
| 37     | 28.754397   | 77.155944   | Sawaria Traders, Azad Place                     | TW        | 30           | 102    | Silty Sand                | Cleaning           |
| 38     | 28.73305556 | 77.19722222 | Burari DJB Ex.Engg Office                       | TW        | 15           | 102    | Sand &kankar              | Cleaning           |
| 39     | 28.72888889 | 77.14694444 | Haiderpur                                       | TW        | 50           | 153    | Silty Sand, Sand & Gravel | Horticulture       |
| 40     | 28.73222222 | 77.10444444 | Rohini Sec 11                                   | TW        | 45           | 203    | Silty Sand, Sand & Gravel | Horticulture       |
| 41     | 28.695      | 77.14611111 | SandeshVihar                                    | TW        | 50           | 203    | Silty Sand, Sand & Gravel | Horticulture       |

| S.No. | Tehsil        | Latitude | Longitude  | Site Name            | μd   | EC in             | $CO_3$ | HCO <sub>3</sub> | CI   | $SO_4$ | NO <sub>3</sub> | F    | Ca   | Mg   | Na   | K        | TH as             |
|-------|---------------|----------|------------|----------------------|------|-------------------|--------|------------------|------|--------|-----------------|------|------|------|------|----------|-------------------|
|       | Name          |          |            |                      |      | μS/cm at          |        |                  |      |        |                 |      |      |      |      |          | CaCO <sub>3</sub> |
|       |               |          |            |                      |      | 25 <sup>0</sup> C | mg/L   | mg/L             | mg/L | mg/L   | mg/L            | mg/L | mg/L | mg/L | mg/L | mg/<br>L | mg/L              |
| 1     | Alipur        | 28.74516 | 77.15915   | HP Bhagat Properties | 7.34 | 2560              | nil    | 561              | 391  | 192    | 26              | 0.93 | 128  | 22   | 356  | 64       | 410               |
| 2     | Alipur        | 28.74200 | 77.16042   | TW SBM Toilets       | 7.45 | 3000              | nil    | 891              | 490  | 24     | 27              | 1.20 | 104  | 29   | 400  | 196      | 380               |
| ŝ     | Alipur        | 28.74496 | 77.15774   | TW-4 Gayatri Gnan    | 7.37 | 2824              | nil    | 671              | 419  | 240    | 27              | 0.85 | 132  | 63   | 332  | 104      | 590               |
|       |               |          |            | Mandir               |      |                   |        |                  |      |        |                 |      |      |      |      | ,        |                   |
| 4     | Alipur        | 28.72889 | 77.146944  | Haiderpur            | 8.12 | 330               | nil    | 73               | 28   | 77     | 4.0             | 0.36 | 36   | 19   | 5.0  | 2.2      | 170               |
| S     | Alipur        | 28.73936 | 77.15547   | Tubewell-1 (LFS-     | 7.19 | 8256              | nil    | 1318             | 2109 | 144    | 28              | 1.00 | 260  | 163  | 1295 | 78       | 1320              |
| 'n    |               |          |            | Entrance)            |      |                   |        |                  |      |        |                 |      |      |      |      |          |                   |
| 9     | Alipur        | 28.74806 | 77.16022   | TW Mahashiv Car      | 7.61 | 8755              | nil    | 366              | 2840 | 72     | 4               | 0.58 | 352  | 221  | 1197 | 18       | 1790              |
| D     |               |          |            | Washing Centre       |      |                   |        |                  |      |        |                 |      |      |      |      |          |                   |
| 7     | Rohini        | 28.73222 | 77.1044444 | Rohini Sec 11        | 8.19 | 350               | nil    | 98               | 50   | 34     | 4               | 0.32 | 32   | 24   | 5.8  | 2.1      | 180               |
| 8     | Alipur        | 28.74261 | 77.15413   | Leachate-2           | 8.53 | 38845             | 2400   | 8845             | 5680 | 120    | 156             | 3.00 | 800  | 608  | 4670 | 3872     | 4500              |
| 6     | Alipur        | 28.74039 | 77.15512   | Leachate-1           | 8.11 | 39000             | nil    | 7320             | 7810 | 192    | 204             | 2.20 | 800  | 730  | 4200 | 3250     | 5000              |
| 10    | Alipur        | 28.76944 | 77.1180556 | Khera Kalan          | 8.95 | 1177              | 30     | 488              | 71   | 86     | 0               | 2.50 | 20   | 19   | 239  | 5.9      | 130               |
| 11    | Alipur        | 28.73306 | 77.1972222 | Burari DJB Ex.Engg   | 7.79 | 2800              | nil    | 293              | 682  | 125    | 3.4             | 1.20 | 84   | 90   | 364  | 9.2      | 580               |
| 11    |               |          |            | Office               |      |                   |        |                  |      |        |                 |      |      |      |      |          |                   |
| c 1   | Model         | 28.73929 | 77.17000   | HP Cremation         | 7.39 | 5628              | nil    | 122              | 1598 | 432    | 0               | 0.46 | 180  | 199  | 725  | 16       | 1270              |
| 12    | Town          |          |            | Ground               |      |                   |        |                  |      |        |                 |      |      |      |      |          |                   |
| 13    | Model<br>Town | 28.74093 | 77.16397   | TW Buffalo Shelter   | 7.46 | 5017              | nil    | 756              | 1122 | 278    | 27              | 0.69 | 144  | 175  | 600  | 163      | 1080              |
| 14    | Alipur        | 28.74456 | 77.15506   | TW-3 Poultry         | 7.73 | 3916              | nil    | 964              | 625  | 288    | 11              | 1.10 | 68   | 85   | 685  | 12       | 520               |
| 15    | Alipur        | 28.75191 | 77.16039   | Tw Kavya Furniture   | 7.62 | 2365              | nil    | 708              | 284  | 178    | 25              | 0.65 | 72   | 126  | 216  | 41       | 700               |
| 16    | Rohini        | 28.74073 | 77.1525009 | SamaipurBadli        | 7.99 | 3722              | nil    | 500              | 781  | 264    | 22              | 1.20 | 56   | 114  | 565  | 9.7      | 610               |
| 17    | Model         | 28.74147 | 77.16379   | HP Balaji Coaching   | 7.61 | 7470              | nil    | 85               | 2272 | 336    | 2               | 0.32 | 64   | 202  | 1238 | 22       | 066               |
| / 1   | Town          |          |            | centre               |      |                   |        |                  |      |        |                 |      |      |      |      |          |                   |
| 19    | Saraswat      | 28.695   | 77.1461111 | SandeshVihar         | 7.83 | 8380              | nil    | 525              | 2343 | 288    | 11              | 1.20 | 60   | 270  | 1297 | 28.5     | 1260              |
| 10    | iVihar        |          | _          |                      |      |                   |        |                  |      |        |                 |      |      |      |      |          |                   |

| esults         |
|----------------|
| 2              |
| sis            |
| È              |
| nal            |
| $\blacksquare$ |
| al             |
| ij             |
| em             |
| Ch             |
| $\bigcirc$     |
| <u>.</u> 2     |
| <b>JS</b>      |
| ã              |
|                |
| 5              |
| 00             |
| ñ              |
| 10             |
| Σ              |
| 5              |
| Ĩ.             |
|                |
| 5              |
| N              |
| ę              |
| Ш              |
| X              |
| ne             |
| I              |
|                |
|                |

|          |                 |             |                            | 1                 |                                 |                               |                              |                          |                 |                |                     |                                               |                     |                                 |                            |                                                   | Τ         | 1              |                                                  |                                  |                     |                                 |                     |                                 |               |                                |
|----------|-----------------|-------------|----------------------------|-------------------|---------------------------------|-------------------------------|------------------------------|--------------------------|-----------------|----------------|---------------------|-----------------------------------------------|---------------------|---------------------------------|----------------------------|---------------------------------------------------|-----------|----------------|--------------------------------------------------|----------------------------------|---------------------|---------------------------------|---------------------|---------------------------------|---------------|--------------------------------|
| SQT      | (mg/l)          | 1918        | 1089                       | 1710              | 3348                            | 442                           | 832                          | 1710                     | 1739            | 616            | 4271                | 3250                                          | 2516                | 3731                            | 7079                       | 2132                                              | 702       | 3185           | 1443                                             | 5051                             | 5233                | 1833                            | 1872                | 2496                            | 1950          | 2353                           |
| Potassiu | m (mg/l)        | 128         | 33                         | 41.42             | 17.9                            | 9.5                           | 3.6                          | 45.86                    | 36              | 4.7            | 15.6                | 8.9                                           | 11.8                | 8.9                             | 20.45                      | 13.1                                              | 4.2       | 39.27          | 7.34                                             | 10.65                            | 12.9                | 33.5                            | 11.4                | 7.81                            | 4.86          | 8.6                            |
| Sodiu    | m<br>(mg/l)     | 390         | 200                        | 360               | 780                             | 55                            | 240                          | 295                      | 255             | 200            | 1120                | 870                                           | 570                 | 1070                            | 1760                       | 480                                               | 42        | 710            | 320                                              | 1000                             | 1300                | 460                             | 460                 | 650                             | 610           | 570                            |
| Magne    | sium<br>(mg/l)  | 12          | 24                         | 34                | 71                              | 17                            | 7                            | 68                       | 83              | 17             | 112                 | 75                                            | 83                  | 66                              | 243                        | 88                                                | 66        | 136            | 66                                               | 258                              | 204                 | 71                              | 80                  | 90                              | 46            | 75                             |
| Calciu   | m<br>(mg/l)     | 180         | 120                        | 164               | 272                             | 60                            | 24                           | 156                      | 188             | 32             | 200                 | 132                                           | 144                 | 112                             | 392                        | 140                                               | 104       | 200            | 96                                               | 360                              | 264                 | 88                              | 100                 | 104                             | 52            | 84                             |
| TH       | (mg/l)          | 500         | 400                        | 550               | 970                             | 220                           | 06                           | 670                      | 810             | 150            | 960                 | 640                                           | 700                 | 550                             | 1980                       | 710                                               | 530       | 1060           | 510                                              | 1960                             | 1500                | 510                             | 580                 | 630                             | 320           | 520                            |
| Fluori   | de<br>(mg/l)    | 0.54        | 0.48                       | 0.43              | 0.45                            | 0.30                          | 5.2                          | 4.42                     | 0.22            | 2.2            | 0.42                | 0.79                                          | 1.3                 | 1.35                            | 0.62                       | 0.15                                              | 0.78      | 0.63           | 06.0                                             | 0.44                             | 0.37                | 0.68                            | 0.4                 | 1.00                            | 0.80          | 0.41                           |
| Phospha  | te (mg/l)       | 0.50        | 5.52                       | 0.30              | 0.11                            | 0.01                          | 0.52                         | 0.01                     | 0.01            | 0.20           | 0.40                | 0.45                                          | 0.12                | 0.62                            | 0.01                       | 0.25                                              | 0.13      | 0.01           | 0.01                                             | 0.01                             | 0.01                | 0.01                            | 0.11                | 0.01                            | 0.31          | 0.32                           |
| Nitrat   | e<br>(mg/l)     | 16          | 128                        | 10                | 4                               | 20                            | 11                           | 95                       | 17              | 1              | 30                  | 4.6                                           | 170                 | 95                              | 1                          | 125                                               | 16.8      | 23             | 100                                              | 3                                | 4                   | 24                              | 2.8                 | 23                              | 2             | 3                              |
| Sulpha   | te<br>(mg/l)    | 140         | 174                        | 341               | 490                             | 13                            | 75                           | 346                      | 552             | 80             | 1716                | 620                                           | 201                 | 365                             | 3118                       | 069                                               | 220       | 1298           | 298                                              | 2450                             | 1820                | 557                             | 305                 | 652                             | 448           | 280                            |
| Chlori   | de<br>(mg/l)    | 432         | 191                        | 383               | 1347                            | 78                            | 35                           | 333                      | 277             | 21             | 886                 | 950                                           | 723                 | 1250                            | 1702                       | 350                                               | 35        | 567            | 284                                              | 922                              | 1524                | 298                             | 624                 | 723                             | 376           | 723                            |
| Bicarb   | onate<br>(mg/L) | 903         | 390                        | 586               | 329                             | 256                           | 561                          | 549                      | 525             | 573            | 427                 | 650                                           | 708                 | 790                             | 220                        | 549                                               | 403       | 586            | 512                                              | 354                              | 354                 | 647                             | 476                 | 403                             | 793           | 549                            |
| Carbon   | ate<br>(mg/L)   | Nil         | Nil                        | Nil               | Nil                             | Nil                           | Nil                          | Nil                      | Nil             | Nil            | Nil                 | Nil                                           | Nil                 | Nil                             | Nil                        | Nil                                               | Nil       | Nil            | Nil                                              | Nil                              | Nil                 | Nil                             | Nil                 | Nil                             | Nil           | Nil                            |
| EC       | (us/c<br>m)     | 2950        | 1676                       | 2630              | 5150                            | 680                           | 1280                         | 2630                     | 2675            | 947.9          | 6570                | 5000                                          | 3870                | 5740                            | $1089 \\ 0$                | 3280                                              | 1080      | 4900           | 2220                                             | 7770                             | 8050                | 2820                            | 2880                | 3840                            | 3000          | 3510                           |
| Ηd       |                 | 7.07        | 6.96                       | 7.01              | 7.46                            | 7.35                          | 8.18                         | 6.85                     | 7.53            | 7.96           | 7.55                | 7.7                                           | 7.41                | 7.3                             | 7.56                       | 7.62                                              | 7.84      | 7.37           | 7.00                                             | 7.37                             | 7.32                | 7.20                            | 7.77                | 7.62                            | 7.42          | 7.8                            |
| Long.    |                 | 77.16042    | 77.15967                   | 77.15915          | 77.19722                        | 77.17893                      | 77.10444                     | 77.15706                 | 77.16039        | 77.11806       | 77.16357            | 77.14872                                      | 77.15444            | 77.14962                        | 77.17665                   | 77.14871                                          | 77.14694  | 77.16544       | 77.14544                                         | 77.16022                         | 77.16379            | 77.14713                        | 77.15034            | 77.1525                         | 77.15768      | 77.15594                       |
| Lat.     |                 | 28.742      | 28.73345                   | 28.74516          | 28.73306                        | 28.71804                      | 28.73222                     | 28.73506                 | 28.75191        | 28.76944       | 28.74054            | 28.75288                                      | 28.75765            | 28.74447                        | 28.7323                    | 28.7476                                           | 28.72889  | 28.74037       | 28.73992                                         | 28.74806                         | 28.74147            | 28.73662                        | 28.77246            | 28.74073                        | 28.74158      | 28.7544                        |
| f        | Wells           | WT          | ΜL                         | HP                | TW                              | НЪ                            | ML                           | TW                       | TW              | WT             | HP                  | ML                                            | TW                  | TW                              | TW                         | MT                                                | TW        | WT             | TW                                               | TW                               | HP                  | TW                              | TW                  | WT                              | TW            | WT                             |
| Location |                 | NBM Toilets | Chat GhatJheelWala<br>Park | Bhagat Properties | Burari DJB Ex.Engg<br>Office Pz | Majlis Park,<br>Azadpur, Opp. | KewalparkPz<br>Rohini Sec 11 | PWD Electrical<br>Office | Kavya Furniture | Khera Kalan Pz | Prachin Shiv Mandir | Adarsh Sen. Sec.<br>School Boys, G.T.<br>Road | Vedanshi Properties | Toilets, CTC No<br>154, S.G.T.N | MCD School,<br>Jahangirpur | JJ Cluster Toilets,<br>Opp. Vashudev<br>Transport | Haiderpur | MCD Dispensary | Mother Dairy House,<br>Opp. Great Vishal<br>Band | Mahashiv Car<br>Servicing Centre | Balaji Coaching Ctr | MCD Toilets, Near<br>T-Junction | DJB Office, Kadipur | Sanjaygandhi<br>Transport Nagar | Ambuja Cement | Sawaria Traders,<br>Azad Place |
| S.N      | ö               | 1           | 5                          | 3                 | 4                               | 5                             | 9                            | 7                        | 8               | 6              | 10                  | 11                                            | 12                  | 13                              | 14                         | 15                                                | 16        | 17             | 18                                               | 19                               | 20                  | 21                              | 22                  | 23                              | 24            | 25                             |
| L        |                 |             |                            |                   |                                 |                               |                              |                          | -               |                | i                   |                                               | ·                   | ·                               |                            |                                                   | -         | <u>ا</u>       |                                                  | ·                                | 1                   |                                 |                     |                                 | ·             | ·                              |

Annexure-V: Post Monsoon Basic Chemical Analysis Result

| 26 | SandeshVihar                                       | ΤW  | 28.695   | 77.14611 | 7.66 | 8610        | Nil | 525  | 2623 | 320  | 4     | 0.13 | 1.1  | 1440 | 224 | 214 | 1380 | 22.9  | 5597  |
|----|----------------------------------------------------|-----|----------|----------|------|-------------|-----|------|------|------|-------|------|------|------|-----|-----|------|-------|-------|
| 27 | Shiv Mandir, MCD<br>Office, MCD Colony             | ML  | 28.74253 | 77.14508 | 7.58 | 2000        | Nil | 427  | 269  | 212  | 140   | 0.01 | 0.70 | 450  | 68  | 68  | 280  | 7.23  | 1300  |
| 28 | TW at LFS Entry<br>Gate                            | ML  | 28.73931 | 77.1555  | 7.09 | 7500        | Nil | 915  | 1028 | 1708 | 85    | 0.01 | 0.76 | 1340 | 200 | 204 | 1220 | 45.42 | 4875  |
| 29 | MCPS Co-Ed, J-<br>Block, Jahangirpuri              | ML  | 28.73132 | 77.16414 | 7.83 | 1220        | Nil | 329  | 142  | 170  | 16    | 0.01 | 0.18 | 360  | 52  | 56  | 118  | 35.2  | 793   |
| 30 | TW Mukundpur,<br>Jheemar Village                   | ΜL  | 28.75227 | 77.18235 | 7.72 | 4000        | Nil | 317  | 950  | 384  | 18    | 0.01 | 0.05 | 540  | 76  | 85  | 670  | 15.42 | 3107  |
| 31 | Shibu Da Dhaba                                     | ΤW  | 28.7381  | 77.15343 | 7.55 | 4000        | Nil | 378  | 532  | 876  | 38    | 0.20 | 06.0 | 1060 | 144 | 170 | 430  | 9.23  | 3315  |
| 32 | HP Cremation<br>Ground                             | НР  | 28.73929 | 77.17    | 7.32 | 5620        | Nil | 85   | 1574 | 683  | 1     | 0.01 | 0.41 | 1320 | 176 | 214 | 770  | 6     | 3653  |
| 33 | ITI, K-Block,<br>Jahangirpur                       | ΤW  | 28.73302 | 77.17052 | 7.21 | 3750        | Nil | 598  | 737  | 468  | 10    | 0.01 | 0.56 | 710  | 88  | 119 | 600  | 11.8  | 2438  |
| 34 | Sulabh Complex,<br>Opp. Sewage<br>Pumping Stn.,    | ML  | 28.73425 | 77.14936 | 7.86 | 2600        | Nil | 561  | 312  | 523  | 15    | 0.01 | 1.70 | 390  | 44  | 68  | 490  | 5.6   | 1690  |
| 35 | Toilets, Sanjay<br>Colony, Opp. Shakti<br>Builders | ML  | 28.75088 | 77.1484  | 7.95 | 3740        | Nil | 378  | 624  | 602  | 260   | 0.01 | 0.20 | 062  | 72  | 148 | 560  | 17    | 2431  |
| 36 | Fields Handpump                                    | HP  | 28.7454  | 77.17633 | 7.46 | 5770        | Nil | 1013 | 744  | 1058 | 45    | 0.01 | 1.60 | 940  | 72  | 185 | 800  | 270   | 3751  |
| 37 | R.S Poultries &<br>Trading                         | ΤW  | 28.74456 | 77.15506 | 7.60 | 3750        | Nil | 903  | 596  | 426  | 12    | 0.42 | 0.40 | 440  | 28  | 06  | 730  | 7.4   | 2438  |
| 38 | HP Besides Jheel<br>Park Gate                      | НР  | 28.73575 | 77.16277 | 8.20 | 1850        | Nil | 262  | 305  | 293  | 5     | 0.23 | 0.83 | 320  | 16  | 68  | 290  | 6.31  | 1203  |
| 39 | Leachate-1                                         | LFS | 28.74034 | 77.15531 | 7.68 | 2817<br>0   | NA  | NA   | NA   | NA   | 35.00 | NA   | 0.70 | ΝA   | NA  | NA  | NA   | NA    | 18311 |
| 40 | Leachate-2                                         | LFS | 28.74349 | 77.15523 | 8.15 | 2900<br>0   | NA  | NA   | NA   | NA   | 40.50 | NA   | 1.30 | NA   | NA  | NA  | NA   | NA    | 18850 |
| 41 | Leachate-3                                         | LFS | 28.74261 | 77.15409 | 8.06 | $3140 \\ 0$ | NA  | NA   | NA   | NA   | 42.60 | NA   | 1.42 | ΝA   | NA  | NA  | NA   | NA    | 20410 |
|    | *NIA NICE Anolined                                 |     |          |          |      |             |     |      |      |      |       |      |      |      |     |     |      |       |       |

\*NA- Not Analysed

|       |                |          |           |                                   | Cr    | $\mathbf{Mn}$ | Fe     | ïZ         | Cu    | Zn    | $\mathbf{As}$ | Se   | Cd   | $\mathbf{P}\mathbf{b}$ | Ŋ      |
|-------|----------------|----------|-----------|-----------------------------------|-------|---------------|--------|------------|-------|-------|---------------|------|------|------------------------|--------|
| S.No. | Tehsil Name    | Latitude | Longitude | Site Name                         |       |               | (mdd)  | <b>n</b> ) |       |       |               |      | qdd  |                        |        |
| 1     | Alipur         | 28.74039 | 77.15512  | Leachate-1                        | 2.565 | 0.132         | 6.882  | 0.409      | 0.079 | 0.368 | 565.85        | 0.76 | 1.48 | 8.08                   | 6.40   |
| 5     | Alipur         | 28.73936 | 77.15547  | Tubewell-1 (LFS-<br>Entrance)     | 0.003 | 0.203         | 0.095  | 0.012      | 0.005 | 0.031 | 2.06          | 0.02 | 0.07 | 0.12                   | 12.64  |
| ю     | Alipur         | 28.74261 | 77.15413  | Leachate-2                        | 1.558 | 0.568         | 21.518 | 0.580      | 0.733 | 0.749 | 103.12        | 0.37 | 4.46 | 122.13                 | 37.67  |
| 4     | Alipur         | 28.74456 | 77.15506  | TW-3 Poultry                      | 0.001 | 0.250         | 0.045  | 0.007      | 0.007 | 0.042 | 0.57          | 0.02 | 0.28 | 0.20                   | 17.69  |
| 5     | Alipur         | 28.74496 | 77.15774  | TW-4<br>GayatriGnanMandir         | 0.001 | 0.277         | 0.067  | 0.003      | 0.008 | 0.064 | 0.57          | 0.06 | 0.34 | 0.43                   | 5.19   |
| 9     | Alipur         | 28.74516 | 77.15915  | HP Bhagat Properties              | 0.001 | 0.342         | 0.221  | 0.002      | 0.004 | 0.058 | 0.97          | 0.02 | 0.43 | 0.39                   | 5.63   |
| 7     | Model Town     | 28.73929 | 77.17     | HP Cremation Ground               | BDL   | 0.325         | 6.714  | 0.000      | 0.001 | 1.493 | 0.13          | 0.00 | 0.30 | 0.10                   | 0.54   |
| 8     | Model Town     | 28.74093 | 77.16397  | TW Buffalo Shelter                | 0.000 | 0.904         | 0.070  | 0.002      | 0.003 | 0.057 | 0.39          | 0.03 | 0.24 | 0.20                   | 6.26   |
| 6     | Model Town     | 28.74147 | 77.16379  | HP Balaji Coaching<br>centre      | 0.000 | 0.154         | 0.294  | 0.000      | 0.001 | 0.530 | 0.07          | 0.01 | 0.25 | 1.05                   | 0.14   |
| 10    | Alipur         | 28.742   | 77.16042  | TW SBM Toilets                    | 0.001 | 0.650         | 3.162  | 0.002      | 0.002 | 0.569 | 55.00         | 0.01 | 0.32 | 1.45                   | 4.04   |
| 11    | Alipur         | 28.74806 | 77.16022  | TW Mahashiv Car<br>Washing Centre | 0.000 | 0.117         | 0.180  | 0.000      | 0.003 | 0.087 | 0.30          | 0.01 | 0.14 | 0.29                   | 4.13   |
| 12    | Alipur         | 28.75191 | 77.16039  | Tw Kavya Furniture                | 0.000 | 0.666         | 0.097  | 0.002      | 0.003 | 0.615 | 0.42          | 0.03 | 0.59 | 1.59                   | 4.27   |
| 13    | Civil Lines    | 28.73306 | 77.197222 | Burari DJB Ex.Engg<br>Office Pz   | BDL   | 1.149         | 0.074  |            | BDL   | 0.218 | 5.861         | 0    | 0    | 3.891                  | BDL    |
| 14    | Alipur         | 28.72889 | 77.146944 | HaiderpurPz                       | BDL   | BDL           | 0.195  |            | BDL   | 2.623 | BDL           | 0    | 0    | 7.818                  | BDL    |
| 15    | Alipur         | 28.76944 | 77.118056 | Khera Kalan Pz                    | BDL   | BDL           | BDL    |            | BDL   | 0.263 | 1.823         | 0    | 0    | 4.167                  | 29.687 |
| 16    | Rohini         | 28.73222 | 77.104444 | Rohini Sec 11 Pz                  | BDL   | BDL           | 0.213  |            | BDL   | 2.835 | 1.197         | 0    | 0    | 9.809                  | BDL    |
| 17    | Rohini         | 28.74056 | 77.1525   | SamaypurBadliPz                   | BDL   | 0.055         | 0.063  |            | BDL   | 0.310 | BDL           | 0    | 0    | 1.473                  | 7.571  |
| 18    | SaraswatiVihar | 28.695   | 77.146111 | SandeshViharPz                    | BDL   | BDL           | BDL    |            | BDL   | BDL   | BDL           | 0    | 0    | BDL                    | 11.521 |

| <b>Analysis Results</b> |
|-------------------------|
| Heavy metal             |
| Pre Monsoon             |
| Annexure-VI:            |

| S.  | Location                                     | Source | Latitude   | Longitude  | $\mathbf{Cr}$ | Fe        | Мn                              | Cu   | ЛЛ    | $\mathbf{As}$ | $\mathbf{P}\mathbf{b}$ | U     |
|-----|----------------------------------------------|--------|------------|------------|---------------|-----------|---------------------------------|------|-------|---------------|------------------------|-------|
| No. |                                              |        |            |            | mg/l          | l/gm      | l/gm                            | mg/l | mg/l  | l/gm          | mg/l                   | mg/l  |
| 1   | Chat GhatJheelWala Park                      | ML     | 28.733446  | 77.159666  | 0.001         | 0.107     | 0.125                           | BDL  | 0.232 | 0.004         | 0.003                  | 0.005 |
| 7   | PWD Electrical Office                        | TW     | 28.735062  | 77.157056  | BDL           | 0.154     | 0.459                           | BDL  | 0.096 | BDL           | 0.001                  | 0.007 |
| ю   | HP Besides Jheel Park Gate                   | HP     | 28.735745  | 77.16277   | BDL           | 4.677     | 0.121                           | BDL  | 0.597 | BDL           | 0.001                  | 0.007 |
| 4   | MCPS Co-Ed, J-Block, Jahangirpuri            | TW     | 28.731316  | 77.164136  | BDL           | 2.545     | 0.713                           | BDL  | 0.305 | 0.008         | 0.003                  | BDL   |
| S   | ITI, K-Block, Jahangirpur                    | TW     | 28.733024  | 77.170516  | BDL           | 0.107     | 0.907                           | BDL  | 1.640 | BDL           | 0.009                  | 0.015 |
| 9   | MCD School, Jahangirpur                      | TW     | 28.732299  | 77.176645  | BDL           | 0.795     | 0.122                           | BDL  | 0.647 | BDL           | 0.003                  | BDL   |
| 7   | HP Cremation Ground                          | HP     | 28.73929   | 77.17      | BDL           | 3.220     | 0.369                           | BDL  | 2.740 | BDL           | 0.011                  | BDL   |
| 8   | Fields Handpump                              | HP     | 28.745399  | 77.176327  | BDL           | 0.454     | 0.979                           | BDL  | 0.891 | 0.004         | 0.005                  | 0.003 |
| 6   | TW Mukundpur, Jheemar Village                | TW     | 28.752271  | 77.182345  | BDL           | 7.247     | 2.324                           | BDL  | 1.164 | 0.027         | 0.007                  | BDL   |
| 10  | Majlis Park, Azadpur, Opp. KewalparkPz       | HP     | 28.718035  | 77.178927  | BDL           | 0.958     | 0.848                           | BDL  | 0.261 | 0.015         | 0.003                  | BDL   |
| 11  | TW at LFS Entry Gate                         | TW     | 28.739311  | 77.155504  | 0.002         | 0.351     | 0.328                           | BDL  | 0.268 | 0.004         | 0.002                  | 0.017 |
| 12  | Leachate-1                                   | LFS    | 28.740337  | 77.155314  | Colored       | sample an | Colored sample and not analyzed | zed  |       |               |                        |       |
| 13  | Leachate-2                                   | LFS    | 28.743491  | 77.155231  | Colored       | sample an | Colored sample and not analyzed | zed  |       |               |                        |       |
| 14  | Leachate-3                                   | LFS    | 28.742611  | 77.15409   | Colored       | sample an | Colored sample and not analyzed | zed  |       |               |                        |       |
| 15  | R.S Poultries & Trading                      | TW     | 28.74456   | 77.15506   | 0.002         | 0.127     | 0.310                           | BDL  | 0.739 | BDL           | 0.005                  | 0.020 |
| 16  | Ambuja Cement                                | TW     | 28.74158   | 77.15768   | BDL           | 0.757     | BDL                             | BDL  | 0.872 | BDL           | 0.006                  | 0.012 |
| 17  | Bhagat Properties                            | HP     | 28.74516   | 77.15915   | 0.001         | 2.203     | 1.259                           | BDL  | 0.323 | BDL           | 0.002                  | 0.007 |
| 18  | NBM Toilets                                  | ML     | 28.742     | 77.16042   | 0.003         | 5.620     | 0.941                           | BDL  | 0.504 | 0.083         | 0.002                  | 0.004 |
| 19  | Balaji Coaching Centre                       | dH     | 28.74147   | 77.16379   | BDL           | 9.753     | 0.396                           | BDL  | 1.429 | BDL           | 0.003                  | BDL   |
| 20  | Prachin Shiv Mandir                          | HP     | 28.740535  | 77.163569  | BDL           | 0.478     | 0.158                           | BDL  | 1.218 | BDL           | 0.005                  | 0.005 |
| 21  | MCD Dispensary                               | ML     | 28.74037   | 77.165435  | BDL           | 0.584     | 0.937                           | BDL  | 0.834 | 0.014         | 0.003                  | BDL   |
| 22  | Mahashiv Car Servicing Centre                | TW     | 28.74806   | 77.16022   | BDL           | 0.437     | 0.208                           | BDL  | 0.176 | BDL           | 0.001                  | 0.005 |
| 23  | Kavya Furniture                              | TW     | 28.75191   | 77.16039   | BDL           | BDL       | 0.994                           | BDL  | 0.251 | BDL           | 0.002                  | 0.007 |
| 24  | Sanjaygandhi Transport Nagar                 | WT     | 28.7407347 | 77.1525009 | BDL           | 0.075     | 0.075                           | BDL  | 0.206 | BDL           | 0.002                  | 0.007 |
| 25  | Shibu Da Dhaba                               | ML     | 28.738097  | 77.153429  | BDL           | 0.139     | 0.769                           | BDL  | 0.133 | BDL           | 0.001                  | 0.010 |
| 26  | Sulabh Complex, Opp. Sewage Pumping<br>Stn., | ΤW     | 28.73425   | 77.149364  | BDL           | 0.176     | 0.079                           | BDL  | 0.173 | BDL           | 0.002                  | 0.011 |

Annexure-VI: Post Monsoon Heavy Metal Analysis Results

| s.  | Location                                        | Source | Latitude    | Longitude   | Cr    | Fe    | Чn    | Cu   | Zn    | $\mathbf{As}$ | Pb    | U     |
|-----|-------------------------------------------------|--------|-------------|-------------|-------|-------|-------|------|-------|---------------|-------|-------|
| No. |                                                 |        |             |             | mg/l  | mg/l  | mg/l  | mg/l | mg/l  | mg/l          | mg/l  | mg/l  |
| 27  | MCD Toilets, Near T-Junction                    | TW     | 28.736624   | 77.147134   | BDL   | 0.087 | 0.096 | BDL  | 0.191 | BDL           | 0.002 | 0.035 |
| 28  | Mother Dairy House, Opp. Great Vishal<br>Band   | ML     | 28.739918   | 77.145435   | BDL   | 0.125 | 0.114 | BDL  | 0.196 | BDL           | 0.002 | 0.014 |
| 29  | Shiv Mandir, MCD Office, MCD Colony             | ΤW     | 28.742526   | 77.145077   | BDL   | 0.153 | BDL   | BDL  | 0.871 | BDL           | 0.006 | 0.015 |
| 30  | Toilets, Sanjay Colony, Opp. Shakti<br>Builders | ΜT     | 28.750881   | 77.148404   | BDL   | 0.092 | 0.079 | BDL  | 0.205 | BDL           | 0.002 | 0.016 |
| 31  | JJ Cluster Toilets, Opp. Vashudev Transport     | TW     | 28.747596   | 77.148713   | BDL   | 0.116 | 0.263 | BDL  | 0.189 | BDL           | 0.002 | 0.020 |
| 32  | Toilets, CTC No154, S.G.T.N                     | ΤW     | 28.744468   | 77.149616   | 0.005 | 1.186 | 0.649 | BDL  | 0.630 | 0.129         | 0.004 | 0.022 |
| 33  | Adarsh Sen. Sec. School Boys, G.T. Road         | ΤW     | 28.752877   | 77.148719   | BDL   | 0.290 | 0.064 | BDL  | 0.226 | BDL           | 0.002 | 0.007 |
| 34  | Khera Kalan Pz                                  | ΤW     | 28.76944444 | 77.11805556 | BDL   | 0.154 | BDL   | BDL  | 1.257 | 0.002         | 0.009 | 0.019 |
| 35  | DJB Office, Kadipur                             | TW     | 28.77246    | 77.150343   | BDL   | 0.249 | BDL   | BDL  | 1.056 | BDL           | 0.007 | 0.024 |
| 36  | Vedanshi Properties                             | TW     | 28.757651   | 77.154436   | BDL   | 0.127 | BDL   | BDL  | 0.839 | BDL           | 0.006 | 0.016 |
| 37  | Sawaria Traders, Azad Place                     | TW     | 28.754397   | 77.155944   | BDL   | 0.196 | 0.056 | BDL  | 0.367 | BDL           | 0.003 | 0.014 |
| 38  | Burari DJB Ex.Engg Office Piezometer            | ΤW     | 28.73305556 | 77.19722222 | BDL   | 0.920 | 0.841 | BDL  | 0.357 | 0.004         | 0.003 | BDL   |
| 39  | Haiderpur                                       | TW     | 28.72888889 | 77.14694444 | BDL   | 0.156 | BDL   | BDL  | 0.271 | BDL           | 0.003 | 0.012 |
| 40  | Rohini Sec 11                                   | TW     | 28.7322222  | 77.10444444 | BDL   | 0.084 | BDL   | BDL  | 0.054 | 0.003         | 0.001 | 0.009 |
| 41  | SandeshVihar                                    | TW     | 28.695      | 77.14611111 | BDL   | 0.119 | BDL   | BDL  | BDL   | BDL           | BDL   | 0.008 |
|     |                                                 |        |             |             |       |       |       |      |       |               |       |       |

| Data       |
|------------|
| unding     |
| S0         |
| Electrical |
| Vertical   |
| VII:       |
| Annexure-1 |

| VES-   | 01, Near | VES-01, Near Majlis Park metro |            | station, Jahangirpuri, |          | U SHX       | Participation C | ann 1 maan Dhalaanna               |             |
|--------|----------|--------------------------------|------------|------------------------|----------|-------------|-----------------|------------------------------------|-------------|
|        |          |                                | Delhi      |                        |          |             |                 | V E.S-UZ, MUKUMUUL I MEAF DHAIASWA |             |
| S. No. | AB/2     | <b>MN/2</b>                    | Resistance | Resistivity            | S. No.   | <b>AB/2</b> | <b>MN/2</b>     | Resistance                         | Resistivity |
| 1      | 1.25     | 0.5                            | 3.076      | 12.6888                | 1        | 1.25        | 0.5             | 1.58935                            | 6.55609     |
| 2      | 2        | 0.5                            | 0.06069    | 12.5009                | <i>د</i> | ¢           | 0.5             | 0 70289                            | 8 28412     |
| ю      | 2.5      | 0.5                            | 0.69731    | 13.1494                | 1 0      | u<br>1 C    | 0.5             | 0.51115                            | 0 62005     |
| 4      | б        | 0.5                            | 0.47919    | 13.1779                | C        | C.7         | C.U             | C111C.U                            | 00000.6     |
| S      | 4        | 0.5                            | 0.2551     | 12.6279                | 4        | ю           | 0.5             | 0.39735                            | 10.9271     |
| 6      | 5        | 0.5                            | 0.1636     | 12.7261                | 5        | 4           | 0.5             | 0.26251                            | 12.9907     |
| 7      | 6        | 0.5                            | 0.10896    | 12.2431                | 9        | 5           | 0.5             | 0.18503                            | 14.3927     |
| 8      | 8        | 0.5                            | 0.06455    | 12.9335                | 7        | 6           | 0.5             | 0.13305                            | 14.9471     |
| 6      | 10       | 0.5                            | 0.3665     | 11.4926                | . 0      | , o         | 20              | 0.07430                            | 14 0047     |
| 10     | 12       | 0.5                            | 0.02295    | 10.3722                | 0        | 0           | C.D             | 0.014.07                           | 14.704/     |
| 11     | 16       | 0.5                            | 0.01116    | 8.97397                | 6        | 10          | 0.5             | 0.04502                            | 14.3666     |
| 12     | 18       | 0.5                            | 0.00878    | 8.93322                | 10       | 12          | 0.5             | 0.03006                            | 13.5813     |
| 13     | 20       | 0.5                            | 0.00717    | 9.00885                | 11       | 16          | 0.5             | 0.0143                             | 11.4941     |
| 14     | 25       | 0.5                            | 0.00445    | 8.7562                 | 12       | 20          | 0.5             | 0.00814                            | 10.2281     |
| 15     | 25       | 5                              | 0.03818    | 7.20031                | 13       | 25          | 5 0             | 0.008                              | 9 81801     |
| 16     | 30       | 5                              | 0.02375    | 6.533217               | 01       | n c         |                 | 0.000                              | 7.01005     |
| 17     | 35       | 5                              | 0.02378    | 8.9701                 | 14       | 3           | n               | 0.004185                           | C/888.1     |
| 18     | 40       | 5                              | 0.01068    | 5.28785                | 15       | 30          | 5               | 0.02837                            | 7.78755     |
| 19     | 45       | 5                              | 0.00771    | 4.84979                | 16       | 40          | 5               | 0.01484                            | 7.34997     |
| 20     | 50       | 5                              | 0.00594    | 4.62396                | 17       | 50          | 5               | 0.00889                            | 6.91586     |
| 21     | 60       | 5                              | 0.00368    | 4.13714                | 18       | 60          | 5               | 0.00589                            | 6.6198      |
| 22     | 80       | 5                              | 0.00184    | 3.69048                | 10       | 00          | v               | 0.00381                            | 6 0137      |
| 23     | 100      | 5                              | 0.00118    | 3.70036                | 1        | 00          | יי              | 10000                              | 70400       |
| 24     | 120      | 5                              | 0.00081    | 3.69345                | 20       | 100         | n               | 0.00164                            | 3.14        |
| 25     | 150      | 5                              | 0.00046    | 3.30887                | 21       | 120         | 5               | 0.02825                            |             |
| 26     | 180      | 5                              | 0.00028    | 2.66752                | 22       | 150         | 5               | 0.00059                            | 4.17057     |
| 27     | 200      | 5                              | 0.00028    | 3.5839                 | 23       | 200         | 5               | 0.00032                            | 4.14186     |
| 28     | 230      | 5                              | 0.00021    | 3.55551                |          | -           |                 |                                    |             |

|        | Ves-03 | 3, Mukundr | Ves-03, Mukundpur2 along Bhalswa lake | lake        |
|--------|--------|------------|---------------------------------------|-------------|
| S. No. | AB/2   | MN/2       | Resistance                            | Resistivity |
| 1      | 1.25   | 0.5        | 2.0065                                | 8.27681     |
| 2      | 2      | 0.5        | 0.95724                               | 11.2771     |
| 3      | 2.5    | 0.5        | 0.67225                               | 12.6774     |
| 4      | 3      | 0.5        | 0.49432                               | 13.594      |
| 5      | 4      | 0.5        | 0.27453                               | 13.5895     |
| 6      | 5      | 0.5        | 0.16588                               | 12.9009     |
| 7      | 6      | 0.5        | 0.10788                               | 12.1213     |
| 8      | 8      | 0.5        | 0.05363                               | 10.7464     |
| 9      | 10     | 0.5        | 0.03551                               | 11.1325     |
| 10     | 12     | 0.5        | 0.01984                               | 8.96854     |
| 11     | 16     | 0.5        | 0.00825                               | 6.63478     |
| 12     | 20     | 0.5        | 0.00473                               | 5.9503      |
| 13     | 25     | 0.5        | 0.0029                                | 5.69902     |
| 14     | 25     | 5          | 0.0277                                | 5.22364     |
| 15     | 30     | 5          | 0.01839                               | 5.05808     |
| 16     | 40     | 5          | 0.01172                               | 5.80209     |
| 17     | 50     | 5          | 0.00562                               | 4.77683     |
| 18     | 60     | 5          | 0.00345                               | 3.88422     |
| 19     | 80     | 5          | 0.00139                               | 2.76569     |
| 20     | 100    | 5          | 0.00091                               | 2.869       |
| 21     | 100    | 10         | 0.00331                               | 3.16347     |
| 22     | 120    | 10         | 0.0021                                | 4.74121     |
| 23     | 150    | 10         | 0.00123                               | 4.34223     |
| 24     | 180    | 10         | 0.00082                               | 4.1815      |

|        | Ve   | s-04, Near ] | Ves-04, Near Bhalaswa Golf Course | se          |
|--------|------|--------------|-----------------------------------|-------------|
| S. No. | AB/2 | MN/2         | Resistance                        | Resistivity |
| 1      | 1.25 | 0.5          | 15.996                            | 64.7661     |
| 2      | 2    | 0.5          | 11.926                            | 25.2419     |
| 3      | 2.5  | 0.5          | 4.10592                           | 77.426      |
| 4      | 3    | 0.5          | 3.00029                           | 82.5081     |
| 5      | 4    | 0.5          | 1.5777                            | 78.0965     |
| 6      | 5    | 0.5          | 1.02796                           | 79.3892     |
| 7      | 9    | 0.5          | 0.64898                           | 72.9181     |
| 8      | 8    | 0.5          | 0.22633                           | 45.3477     |
| 6      | 10   | 0.5          | 0.0948                            | 29.6274     |
| 10     | 12   | 0.5          | 0.04941                           | 22.3237     |
| 11     | 16   | 0.5          | 0.01647                           | 13.2447     |
| 12     | 20   | 0.5          | 0.00769                           | 9.67257     |
| 13     | 25   | 0.5          | 0.00444                           | 8.73288     |
| 14     | 25   | 5            | 0.354                             | 6.67619     |
| 15     | 30   | 5            | 0.02243                           | 6.17419     |
| 16     | 40   | 5            | 0.01157                           | 5.72793     |
| 17     | 60   | 5            | 0.0439                            | 4.93601     |
| 18     | 80   | 5            | 0.00229                           | 4.6021      |
| 19     | 100  | 5            | 0.00135                           | 4.25713     |
| 20     | 100  | 10           | 0.0029                            | 4.518       |
| 21     | 120  | 10           | 0.00177                           | 3.99869     |
| 22     | 150  | 10           | 0.00106                           | 3.74275     |
| 23     | 180  | 10           | 0.00069                           | 3.508       |
| 24     | 200  | 10           | 0.00053                           | 3.3709      |
| 25     | 200  | 20           | 0.00105                           | 3.28661     |
| 26     | 250  | 20           | 0.00069                           | 3.3835      |
| 27     | 300  | 20           | 0.00044                           | 3.09782     |
| 28     | 300  | 40           | 0.00091                           | 3.18561     |
| 29     | 350  | 40           | 0.00076                           | 3.64494     |
| 30     | 400  | 40           | 0.00056                           | 3.54008     |
| 31     | 400  | 50           | 0.00045                           | 3.60068     |
| 32     | 500  | 50           | 0.00026                           | 2.54015     |

|        |             | <b>Ves-05, DI</b> | Ves-05, DDA Park, Bhalaswa |             |
|--------|-------------|-------------------|----------------------------|-------------|
| S. No. | <b>AB/2</b> | MN/2              | Resistance                 | Resistivity |
| 1      | 1.25        | 0.5               | 41.9116                    | 172.885     |
| 2      | 2           | 0.5               | 15.0808                    | 177.739     |
| 3      | 2.5         | 0.5               | 9.33225                    | 175.979     |
| 4      | 3           | 0.5               | 6.41255                    | 176.345     |
| 5      | 4           | 0.5               | 3.3599                     | 166.315     |
| 9      | 5           | 0.5               | 2.56107                    | 199.214     |
| 7      | 9           | 0.5               | 1.9397                     | 217.633     |
| 8      | 8           | 0.5               | 1.07987                    | 216.36      |
| 6      | 10          | 0.5               | 0.70507                    | 221.039     |
| 10     | 12          | 0.5               | 0.49307                    | 222.763     |
| 11     | 16          | 0.5               | 0.19882                    | 159.809     |
| 12     | 20          | 0.5               | 0.07979                    | 100.248     |
| 13     | 25          | 0.5               | 0.0456                     | 89.5525     |
| 14     | 25          | 5                 | 0.43021                    | 81.1261     |
| 15     | 30          | 5                 | 0.23685                    | 65.1346     |
| 16     | 35          | 5                 | 0.13381                    | 50.4659     |
| 17     | 40          | 5                 | 0.07566                    | 37.4558     |
| 18     | 45          | 5                 | 0.04113                    | 25.8587     |
| 19     | 50          | 5                 | 0.0303                     | 23.574      |
| 20     | 60          | 5                 | 0.0132                     | 14.835      |
| 21     | 70          | 5                 | 0.00652                    | 9.99973     |
| 22     | 80          | 5                 | 0.00393                    | 7.88977     |
| 23     | 90          | 5                 | 0.00266                    | 6.75193     |
| 24     | 100         | 5                 | 0.00203                    | 6.19459     |
| 25     | 100         | 10                | 0.00413                    | 6.42567     |
| 26     | 120         | 10                | 0.0021                     | 4.73008     |
| 27     | 150         | 10                | 0.00072                    | 2.54608     |
| 28     | 180         | 10                | 0.00029                    | 1.5062      |
| 29     | 200         | 10                | 0.00018                    | 1.16385     |

|        | Ve          | es-06, Near | Ves-06, Near Nala, Jahangirpuri | ·E          |
|--------|-------------|-------------|---------------------------------|-------------|
| S. No. | <b>AB/2</b> | MN/2        | Resistance                      | Resistivity |
| 1      | 1.25        | 0.5         | 3.08596                         | 12.7295     |
| 2      | 2           | 0.5         | 1.59006                         | 18.74       |
| 3      | 2.5         | 0.5         | 1.07699                         | 20.3091     |
| 4      | 3           | 0.5         | 0.79238                         | 21.7905     |
| 5      | 4           | 0.5         | 0.49571                         | 24.5379     |
| 6      | 5           | 0.5         | 0.33851                         | 26.3316     |
| 7      | 9           | 0.5         | 0.23679                         | 26.6053     |
| 8      | 8           | 0.5         | 0.12215                         | 24.4746     |
| 6      | 10          | 0.5         | 0.08107                         | 25.418      |
| 10     | 12          | 0.5         | 0.05521                         | 24.9464     |
| 11     | 16          | 0.5         | 0.03123                         | 25.1074     |
| 12     | 20          | 0.5         | 0.0206                          | 25.893      |
| 13     | 25          | 0.5         | 0.00943                         | 18.5168     |
| 14     | 25          | 5           | 0.09451                         | 17.8236     |
| 15     | 30          | 5           | 0.06259                         | 17.2128     |
| 16     | 35          | 5           | 0.04456                         | 16.8066     |
| 17     | 40          | 5           | 0.03257                         | 16.1224     |
| 18     | 45          | 5           | 0.02412                         | 15.1668     |
| 19     | 50          | 5           | 0.01893                         | 14.7256     |
| 20     | 60          | 5           | 0.1201                          | 13.4996     |
| 21     | 70          | 5           | 0.00762                         | 11.6887     |
| 22     | 80          | 5           | 0.00492                         | 9.86356     |
| 23     | 90          | 5           | 0.00322                         | 8.17503     |
| 24     | 100         | 5           | 0.00193                         | 6.05467     |
| 25     | 100         | 10          |                                 |             |
| 26     | 120         | 10          | 0.0034                          | 7.64512     |
| 26     | 120         | 10          | 0.0019                          | 4.27668     |

|                                    | S. N        | - 0     | 7 6     | 0 4     | 5       | 9       | 7       | <b>∞</b> | 6       | 11  | 12      | 13      | 14      | 15      | 19      | 1/      | 10      | 20      | 21      | 22      | 23      | 24      | 26      |
|------------------------------------|-------------|---------|---------|---------|---------|---------|---------|----------|---------|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                                    |             |         |         |         |         |         |         |          |         |     |         |         |         |         |         |         |         |         |         |         |         |         |         |
| ini                                | Resistivity | 60.031  | 46.4071 | 43.019  | 34.7805 | 26.88   | 21.5326 | 18.6626  | 17.6527 |     | 19.345  | 23.2241 | 23.3961 | 37.2248 | 19.5274 | 19.6233 | 18.8304 | 18.4464 | 17.724  | 16.8628 | 16.3768 | 13.89   | 10.2443 |
| VES-07, Sector -19 DDA Park Rohini | Resistance  | 14.5529 | 3.93757 | 2.28131 | 1.26474 | 0.54303 | 0.27682 | 0.1661   | 0.0881  |     | 0.04281 | 0.02889 | 0.01862 | 0.01895 | 0.10355 | 0.07135 | 0.04992 | 0.03726 | 0.02819 | 0.02167 | 0.01457 | 0.00693 | 0.00326 |
| S-07, Sector                       | MN/2        | 0.5     | 0.5     | 0.5     | 0.5     | 0.5     | 0.5     | 0.5      | 0.5     | 0.5 | 0.5     | 0.5     | 0.5     | 0.5     | 5       | 5       | 5       | 5       | 5       | 5       | 5       | 5       | 5       |
| VE                                 | <b>AB/2</b> | 1.25    | 2       | 2.5     | 3       | 4       | 5       | 6        | 8       | 10  | 12      | 16      | 20      | 25      | 25      | 30      | 35      | 40      | 45      | 50      | 60      | 80      | 100     |
|                                    | S. No.      | 1       | 2       | 3       | 4       | 5       | 6       | 7        | 8       | 9   | 10      | 11      | 12      | 13      | 14      | 15      | 16      | 17      | 18      | 19      | 20      | 21      | 22      |

|        | VES-08, P   | lain land op | VES-08, Plain land opposite to Vasant Dada Nagar | la Nagar    |
|--------|-------------|--------------|--------------------------------------------------|-------------|
| S. No. | <b>AB/2</b> | MN/2         | Resistance                                       | Resistivity |
| 1      | 1.25        | 0.5          | 5.27799                                          | 21.7717     |
| 2      | 2           | 0.5          | 1.34794                                          | 15.8864     |
| 3      | 2.5         | 0.5          | 0.54407                                          | 10.2597     |
| 4      | 3           | 0.5          | 0.29039                                          | 7.98576     |
| 5      | 4           | 0.5          | 0.10287                                          | 5.09248     |
| 6      | 5           | 0.5          | 0.04785                                          | 3.7224      |
| 7      | 9           | 0.5          | 0.03047                                          | 3.42398     |
| 8      | 8           | 0.5          | 0.01392                                          | 2.79001     |
| 6      | 10          | 0.5          | 0.00867                                          | 2.72075     |
| 10     | 12          | 0.5          | 0.00695                                          | 3.1414      |
| 11     | 16          | 0.5          | 0.00513                                          | 4.12565     |
| 12     | 20          | 0.5          | 0.00397                                          | 4.99856     |
| 13     | 25          | 0.5          | 0.00416                                          | 8.17673     |
| 14     | 25          | 5            | 0.03203                                          | 6.04048     |
| 15     | 30          | 5            | 0.02428                                          | 6.67952     |
| 16     | 35          | 5            | 0.0199                                           | 7.50875     |
| 17     | 40          | 5            | 0.01724                                          | 8.53707     |
| 18     | 45          | 5            | 0.0142                                           | 8.92578     |
| 19     | 50          | 5            | 0.01241                                          | 9.65342     |
| 20     | 60          | 5            | 0.00785                                          | 8.83027     |
| 21     | 70          | 5            | 0.00457                                          | 7.0143      |
| 22     | 80          | 5            | 0.00321                                          | 6.44469     |
| 23     | 06          | 5            | 0.00254                                          | 6.45737     |
| 24     | 100         | 5            | 0.00199                                          | 6.2547      |
| 25     | 100         | 10           | 0.00961                                          | 7.18133     |
| 26     | 120         | 10           | 0.00316                                          | 7.10339     |
| 27     | 150         | 10           | 0.002                                            | 7.05817     |
| 28     | 180         | 10           | 0.00128                                          | 6.51097     |
| 29     | 200         | 10           | 0.00088                                          | 5.53351     |

|        | VES-        | 09. Swaroot | VES-09. Swaroon Nagar Park. Bhalaswa | SWB         |      |
|--------|-------------|-------------|--------------------------------------|-------------|------|
| S. No. | <b>AB/2</b> | MN/2        | Resistance                           | Resistivity | S. N |
| 1      | 1.25        | 0.5         | 3.50474                              | 14.457      | - (  |
| 2      | 2           | 0.5         | 1.37983                              | 16.2622     | 0 10 |
| 3      | 2.5         | 0.5         | 0.87183                              | 16.4402     | 0 4  |
| 4      | 3           | 0.5         | 0.61478                              | 16.9065     | ŝ    |
| 5      | 4           | 0.5         | 0.37936                              | 18.7784     | 9    |
| 9      | 5           | 0.5         | 0.24596                              | 19.1322     | ٢    |
| 7      | 6           | 0.5         | 0.17336                              | 19.4791     | ∞    |
| 8      | 8           | 0.5         | 0.10723                              | 21.4843     | 6    |
| 6      | 10          | 0.5         | 0.07667                              | 24.0373     | 10   |
| 10     | 12          | 0.5         | 0.05863                              | 26.4925     | 11   |
| 11     | 16          | 0.5         | 0.03731                              | 29.9946     | 13   |
| 12     | 20          | 0.5         | 0.0266                               | 33.4287     | 14   |
| 13     | 25          | 0.5         | 0.0202                               | 39.6793     | 15   |
| 14     | 25          | 5           | 0.18631                              | 35.1349     | 16   |
| 15     | 30          | 5           | 0.16711                              | 32.2054     | 17   |
| 16     | 35          | 5           | 0.08019                              | 30.246      | 18   |
| 17     | 40          | 5           | 0.04964                              | 24.5758     | 20   |
| 18     | 45          | 5           | 0.03152                              | 19.8158     | 21   |
| 19     | 50          | 5           | 0.0197                               | 15.3244     | 22   |
| 20     | 60          | 5           | 0.01015                              | 11.4115     | 23   |
| 21     | 70          | 5           | 0.00595                              | 9.12257     | 24   |
| 22     | 80          | 5           | 0.00401                              | 8.03682     | 25   |
| 23     | 90          | 5           | 0.00219                              | 5.57972     | 50   |
| 24     | 100         | 5           | 0.00119                              | 3.73436     | 280  |
| 25     | 100         | 10          | 0.00244                              | 3.79788     | 50   |

|        | <b>VES-10. S</b> | hradhanad | VES-10. Shradhanad Park. Near Bhalaswa dairy | wa dairv    |
|--------|------------------|-----------|----------------------------------------------|-------------|
| S. No. | AB/2             | MN/2      | Resistance                                   | Resistivity |
| 1      | 1.25             | 0.5       | 4.63937                                      | 19.1374     |
| 2      | 2                | 0.5       | 4.40436                                      | 16.5514     |
| 3      | 2.5              | 0.5       | 0.90849                                      | 17.1316     |
| 4      | 3                | 0.5       | 0.64753                                      | 17.8071     |
| 5      | 4                | 0.5       | 0.43191                                      | 21.3796     |
| 9      | 5                | 0.5       | 0.3162                                       | 24.5964     |
| 7      | 6                | 0.5       | 0.2457                                       | 24.6069     |
| 8      | 8                | 0.5       | 0.16745                                      | 33.6111     |
| 9      | 10               | 0.5       | 0.11724                                      | 36.7563     |
| 10     | 12               | 0.5       | 0.0859                                       | 39.8164     |
| 11     | 16               | 0.5       | 0.04921                                      | 39.5583     |
| 12     | 20               | 0.5       | 0.0299                                       | 37.6656     |
| 13     | 25               | 0.5       | 0.02062                                      | 40.321      |
| 14     | 25               | 5         | 0.17676                                      | 33.3327     |
| 15     | 30               | 5         | 0.10196                                      | 28.9392     |
| 16     | 35               | 5         | 0.06217                                      | 23.4476     |
| 17     | 40               | 5         | 0.3643                                       | 18.0348     |
| 18     | 45               | 5         | 0.02682                                      | 16.8617     |
| 19     | 50               | 5         | 0.01923                                      | 14.9644     |
| 20     | 60               | 5         | 0.00896                                      | 10.0738     |
| 21     | 70               | 5         | 0.00488                                      | 7.48796     |
| 22     | 80               | 5         | 0.00373                                      | 7.48136     |
| 23     | 90               | 5         | 0.00312                                      | 7.92208     |
| 24     | 100              | 5         | 0.00306                                      | 6.54857     |
| 25     | 100              | 10        | 0.00355                                      | 5.53338     |
| 26     | 120              | 10        | 0.00217                                      | 4.89099     |
| 27     | 150              | 10        | 0.00122                                      | 4.31516     |
| 28     | 180              | 10        | 0.00077                                      | 3.93593     |
| 29     | 200              | 10        | 0.00044                                      | 2.70422     |
|        |                  |           |                                              |             |

# **Annexure-VIII: Stakeholder Feedback Forms**

| lame                                             | -Ankit Sharma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /illage                                          | Caloud them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tehsil                                           | Jahangirpuri<br>Model Toon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  | Model (1001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| District                                         | Nisth<br>ITI, Gahangirpuni, K-Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Address                                          | ITI, Jahangripuis in Busch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mobile No.(optional)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Type and Number of Structures                    | and the second se |
| Туре                                             | Tube well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Coordinates                                      | 28.733024, 77.170516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Depth of well                                    | 28.733024,77.170516<br>30mbg1 (Repsted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Casing Depth HR                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Slotted pipe depth SR                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fracture Encountered depth HR                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Depth of installation of pump                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Average Water Level Pre-<br>monsoon              | 5-6 mbg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Average Water Level Post<br>monsoon              | 5-6mbs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The well is used for                             | Building construction & cleaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Is water available throughout the<br>Year        | yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If not for how many months<br>water is available | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Quality of water                                 | slightly prakish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Common health issues in the area                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| lame                                             | Suncel Ray                                                                                                     |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| /iilage                                          | Mukund pur                                                                                                     |
| rehsil                                           | model Town                                                                                                     |
| District                                         | NER                                                                                                            |
| Address                                          | Near Snee Roun chowk, Theeman village                                                                          |
| Mobile No.(optional)                             |                                                                                                                |
| Type and Number of Structures                    | the second s |
| Туре                                             | TW                                                                                                             |
| Number                                           |                                                                                                                |
| Coordinates                                      | 28.752271,77.182345                                                                                            |
| Depth of well                                    | 15mbg)                                                                                                         |
| Casing Depth HR                                  | -                                                                                                              |
| Slotted pipe depth SR                            | · · · · · · · · · · · · · · · · · · ·                                                                          |
| Fracture Encountered depth HR                    | -                                                                                                              |
| Depth of installation of pump                    | 12 mbs1                                                                                                        |
| Average Water Level Pre-<br>monsoon              | 4-5 mbs                                                                                                        |
| Average Water Level Post<br>monsoon              | 4-5 mbg)                                                                                                       |
| The well is used for                             | House construction of weshing, clining                                                                         |
| Is water available throughout the<br>Year        | The                                                                                                            |
| If not for how many months<br>water is available | -                                                                                                              |
| Quality of water                                 | slightly Brakish (yellowish)                                                                                   |
| Common health issues in the area                 |                                                                                                                |

| Name                                          | Rampan                           |
|-----------------------------------------------|----------------------------------|
| Village                                       | Shradbanand colony               |
| Tehsil                                        | Model Town                       |
| District                                      | Nots                             |
| Address                                       |                                  |
| Mobile No.(optional)                          |                                  |
| Type and Number of Structures                 |                                  |
| Туре                                          | Tube well                        |
| Number                                        |                                  |
| Coordinates                                   | 28.74456,77.15506                |
| Depth of well                                 | 30mtr bg1 (Reported)             |
| Casing Depth HR                               |                                  |
| Slotted pipe depth SR                         | -                                |
| Fracture Encountered depth HR                 | -                                |
| Depth of installation of pump                 | 28-3773                          |
| Average Water Level Pre-<br>monsoon           | 6-7 mtrs                         |
| Average Water Level Post                      | 2-5 wf27                         |
| The well is used for                          | washing purpose                  |
| Is water available throughout the<br>Year     | 7-3                              |
| If not for how many months water is available | -                                |
| Quality of water                              | Not potable,                     |
| Common health issues in the area              | Not potable,<br>Breathing issues |

| lame                                          | Ragender                                                   |
|-----------------------------------------------|------------------------------------------------------------|
| /illage                                       | Refender<br>Bhalasma Darry (New Dwegs chook)<br>Model Town |
| [ehsil                                        | Model Town                                                 |
| District                                      | NOR                                                        |
| Address                                       |                                                            |
| Mobile No.(optional)                          |                                                            |
| Type and Number of Structures                 |                                                            |
| Туре                                          | Handpunp                                                   |
| Number                                        | Handpungp                                                  |
| Coordinates                                   | 28.74147,77.16379                                          |
| Depth of well                                 | 15 mtrasby)                                                |
| Casing Depth HR                               | -                                                          |
| Slotted pipe depth SR                         |                                                            |
| Fracture Encountered depth HR                 |                                                            |
| Depth of installation of pump                 | -                                                          |
| Average Water Level Pre-<br>monsoon           |                                                            |
| Average Water Level Post                      |                                                            |
| The well is used for                          | Domestic purpose not for Dorinking                         |
| is water available throughout the<br>Year     | yos                                                        |
| If not for how many months water is available | -                                                          |
| Quality of water                              | slightly brakish                                           |
| Common health issues in the area              | slightly brakish<br>skin itching                           |

| Name                                          | Rahul songh              |
|-----------------------------------------------|--------------------------|
| /illage                                       | Thansport Nagar          |
| [ehsil                                        | Alepur                   |
| District                                      | NSito                    |
| Address                                       |                          |
| Mobile No.(optional)                          |                          |
| Type and Number of Structures                 |                          |
| Туре                                          | Tw                       |
| Number                                        | 1                        |
| Coordinates                                   | 28.747596,77.148713      |
| Depth of well                                 | 77:148713 40mbg)         |
| Casing Depth HR                               |                          |
| Slotted pipe depth SR                         | . –                      |
| Fracture Encountered depth HR                 |                          |
| Depth of installation of pump                 | 30 mbg)                  |
| Average Water Level Pre-<br>monsoon           | 12-13mbg/                |
| Average Water Level Post<br>monsoon           | 11-13 mbg/               |
| The well is used for                          | washing & cleaning       |
| is water available throughout the<br>Year     | jes                      |
| If not for how many months water is available |                          |
| Quality of water                              | Not potable for drinking |
| Common health issues in the area              | -                        |

| Name                                          | Poliveen Gupta<br>Samaypurd<br>Model Town<br>North |
|-----------------------------------------------|----------------------------------------------------|
| Village                                       | Samayour                                           |
| Tehsil                                        | Model Town                                         |
| District                                      | NELTS                                              |
| Address                                       | Near Dispensary, MCD colony                        |
| Mobile No.(optional)                          |                                                    |
| Type and Number of Structures                 |                                                    |
| Туре                                          | Tw                                                 |
| Number                                        | Δ                                                  |
| Coordinates                                   | 28.742526,77.145077                                |
| Depth of well                                 | \$\$ 35 mbg                                        |
| Casing Depth HR                               |                                                    |
| Slotted pipe depth SR                         |                                                    |
| Fracture Encountered depth HR                 |                                                    |
| Depth of installation of pump                 | 25 mbg)                                            |
| Average Water Level Pre-<br>monsoon           | 16-18=mbg) (Reposited)                             |
| Average Water Level Post<br>monsoon           | 16 - 18 mbg1                                       |
| The well is used for                          | cleaning & Harticentures.                          |
| ls water available throughout the<br>Year     | yes                                                |
| If not for how many months water is available | -                                                  |
| Quality of water                              | Fresh to saline                                    |
| Common health issues in the area              |                                                    |

| Name                                             | Sh. Syrender Such                                  |
|--------------------------------------------------|----------------------------------------------------|
| Village                                          | Sh. Surrender Engh<br>Bhalaswa Dairy<br>Model Town |
| Tehsil                                           | Madel Town                                         |
| District                                         | NED                                                |
| Address                                          |                                                    |
| Mobile No.(optional)                             |                                                    |
| Type and Number of Structures                    |                                                    |
| Туре                                             | Tw                                                 |
| Number                                           | 2                                                  |
| Coordinates                                      | 28.73920,77.15556                                  |
| Depth of well                                    | Age. Gombos                                        |
| Casing Depth HR                                  | -                                                  |
| Slotted pipe depth SR                            | -                                                  |
| Fracture Encountered depth HR                    |                                                    |
| Depth of installation of pump                    |                                                    |
| Average Water Level Pre-                         | 11 - 13 mbg                                        |
| Average Water Level Post<br>monsoon              | 10 - 12 mbg)                                       |
| The well is used for                             | 10 - 12 mbg)<br>Horticulture                       |
| Is water available throughout the<br>Year        | Yes                                                |
| If not for how many months<br>water is available | -                                                  |
| Quality of water                                 | Brakish                                            |
| Common health issues in the area                 | Brakish<br>Breathing issues                        |

|                                                                        | Lse                                                           |                                                                                                       | Used for<br>bathing and<br>domestic uses                                                    | Used for<br>washing and<br>cleaning<br>purpose                 | Used for toilets<br>cleaning and<br>flushing<br>purpose                     | Used for<br>washing<br>purpose                                                                  |
|------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                        | Depth to<br>water<br>level<br>June_04<br>(m bgl)              |                                                                                                       |                                                                                             | 3.88                                                           | 3.77                                                                        | 5.3                                                                                             |
|                                                                        | Depth<br>to<br>water<br>level<br>June_0<br>4 (m<br>bmp)       |                                                                                                       |                                                                                             | 4.05                                                           | 4.62                                                                        | 5.8                                                                                             |
| l site                                                                 | Depth to<br>water<br>level<br>Dec_03<br>(m bgl)               |                                                                                                       |                                                                                             | 4.4                                                            | 3.18                                                                        | 5.59                                                                                            |
| andfil                                                                 | M.P.<br>(m<br>agl)                                            |                                                                                                       |                                                                                             | 0.17                                                           | 0.85                                                                        | 0.5                                                                                             |
| nalsawa L                                                              | Depth to<br>water<br>level<br>Dec, 03<br>(m bmp)              |                                                                                                       |                                                                                             | 4.57                                                           | 4.03                                                                        | 6.09                                                                                            |
| ed in Bl                                                               | Depth<br>zones<br>tapped<br>(m bgl)                           |                                                                                                       | 3 to 6                                                                                      | 12<br>to18                                                     |                                                                             | 18 to<br>30                                                                                     |
| s inventori                                                            | Aquifer Depth<br>tapped zones<br>(reported) tapped<br>(m bgl) |                                                                                                       | silty sand                                                                                  | 100 silty sand                                                 | silty sand                                                                  | silty sand                                                                                      |
| f wells                                                                | Di<br>Di<br>Di<br>Di                                          |                                                                                                       | 60                                                                                          | 100                                                            | 153                                                                         | 153                                                                                             |
| al details o                                                           | Depth of<br>the well<br>in (m)                                |                                                                                                       | Q                                                                                           | 18                                                             | 60                                                                          | 30                                                                                              |
| Hydrogeological details of wells inventoried in Bhalsawa Landfill site | Nature of<br>well                                             | Leachate                                                                                              | Hand<br>Pump                                                                                | Tubewell<br>fitted with<br>jet pump                            | Tubewell                                                                    | Tubewell                                                                                        |
| Hydro                                                                  | Location                                                      | Leachate location on the<br>Western side of Sanitary<br>land Fill in Sanjay Gandhi<br>Transport Nagar | In the premises of AG16,<br>Bharat Motor transport Co.,<br>Sanjay Gandhi Transport<br>nagar | Atlas Transport Corporation,<br>AG-15, Sanjay Gandhi<br>Nagar, | MCD Toilet Complex,<br>Sanjay Gandhi Transport<br>Nagar, Adjacent to BG-234 | Located infront of SLF Store, Tubewell<br>Eastern side of GT Road,<br>about 10 m from the store |
|                                                                        | Sample<br>No.                                                 | BH-1                                                                                                  | BH-2                                                                                        | BH-3                                                           | BH-4                                                                        | BH-5                                                                                            |
|                                                                        | No.                                                           | ~                                                                                                     | N                                                                                           | ო                                                              | 4                                                                           | ນ                                                                                               |

| Data              |
|-------------------|
| ological          |
| [ydroge           |
| tudies H          |
| evious S          |
| IX: Pr            |
| <b>Annexure-I</b> |

| Leachate<br>sample                                                                 | used for<br>washing and<br>bathing<br>purpose                                                    | used for<br>washing and<br>bathing<br>purpose                                | Used for<br>washing and<br>cooking<br>purposes and<br>some time<br>drinking<br>purposes | Reported water<br>level is 1.5 m<br>belog ground<br>level                                           | Surface Clay 0.00 to 3.00 mbgl Sand Used for<br>medium to coarse 3-9 m bgl, Clay yellow washing and<br>fine grained 9-12 m bgl, Sand yellow fine cooking<br>grained 12-30 m bgl with cly lenses at 18 purposes and<br>to 20 m depth some time<br>drinking purposes |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | 2.1                                                                                              | 2.1                                                                          |                                                                                         | 1.5 m (Reported)                                                                                    | Surface Clay 0.00 to 3.00 mbgl Sand<br>nedium to coarse 3-9 m bgl, Clay yellow<br>fine grained 9-12 m bgl, Sand yellow fine<br>grained 12-30 m bgl with cly lenses at 18<br>to 20 m depth                                                                          |
|                                                                                    | 2.1                                                                                              | 2.1                                                                          |                                                                                         | 1.5 m (F                                                                                            | .00 mbg<br>bgl, Cl<br>Sand ye<br>cly lens<br>spth                                                                                                                                                                                                                  |
|                                                                                    | 1.5                                                                                              | 1.5                                                                          |                                                                                         | 1.0 m<br>(reported)                                                                                 | Surface Clay 0.00 to 3.00 mbgl Sand<br>edium to coarse 3-9 m bgl, Clay yellc<br>ne grained 9-12 m bgl, Sand yellow fin<br>rained 12-30 m bgl with cly lenses at 1<br>to 20 m depth                                                                                 |
|                                                                                    | 0                                                                                                | 0                                                                            |                                                                                         | 1.<br>(rep                                                                                          | ce Clay<br>to coars<br>ined 9-1<br>12-30 r<br>to                                                                                                                                                                                                                   |
|                                                                                    | 1.5                                                                                              | 1.5                                                                          |                                                                                         |                                                                                                     | Surfac<br>medium<br>fine grai<br>grained                                                                                                                                                                                                                           |
|                                                                                    | 13<br>to16                                                                                       | 8 to<br>12                                                                   | 4.5 to<br>7.5                                                                           | 3 to 6                                                                                              | 18-20                                                                                                                                                                                                                                                              |
|                                                                                    | silty sand                                                                                       | silty sand                                                                   | silty sand                                                                              | silty sand                                                                                          | silty sand                                                                                                                                                                                                                                                         |
|                                                                                    | 60                                                                                               | 60                                                                           | 60                                                                                      | 60                                                                                                  | 60                                                                                                                                                                                                                                                                 |
|                                                                                    | 16                                                                                               | 12                                                                           | 7.6                                                                                     | Q                                                                                                   | 20                                                                                                                                                                                                                                                                 |
| Leachate                                                                           | Tubewell                                                                                         | Hand<br>Pump                                                                 | Pump                                                                                    | Hand<br>Pump                                                                                        | Hand<br>Pump                                                                                                                                                                                                                                                       |
| Leachate collected from the<br>SLF located on Eastern side<br>of GT Road, Bhalsawa | In side the complex of<br>Vikram Poultry Farm,<br>Shradanand Colony, 250 m<br>from SLF, Bhalsawa | Inside the shiv temple which<br>is located 100 m from<br>Vikram Poultry farm | In front of Raju Teastall, A-2,<br>Durga Chowk, Bhalsawa<br>Dairy                       | 10 m west of Road<br>connecting Shradanand<br>Colony-Saroop Nagar, D-<br>Block of Shradanand Colony | BH-10 Infront of the house of Ramji Hand<br>Parmal, D-I, Bhalsawa Pump<br>Colony, Near the<br>intersection of Bhalsawa<br>Dairy-Saroop Nagar Road<br>with Burari Road                                                                                              |
| BH-6                                                                               | BH-7                                                                                             | BH-7<br>(H.P.)                                                               | BH-8                                                                                    | BH-9                                                                                                | BH-10                                                                                                                                                                                                                                                              |
| 9                                                                                  | 2                                                                                                | ω                                                                            | თ                                                                                       | 10                                                                                                  |                                                                                                                                                                                                                                                                    |

| Used for<br>washing and<br>domestic uses                                          | Used for<br>irrigational uses                                          | Domestic uses                                | Drinking and<br>domestic uses                            | Drinking and<br>domestic uses                            | Drinking and<br>domestic uses                                    | Drinking and<br>domestic uses       |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------|
|                                                                                   | 3.44                                                                   | 4.88                                         | 5.5                                                      |                                                          |                                                                  |                                     |
|                                                                                   | 3.6                                                                    | 5.28                                         | 5.66                                                     |                                                          |                                                                  |                                     |
|                                                                                   | 2.88                                                                   | 4.02                                         | 4.55                                                     |                                                          |                                                                  |                                     |
|                                                                                   | 0.16                                                                   | 0.4                                          | 0.16                                                     |                                                          |                                                                  |                                     |
|                                                                                   | 2.94                                                                   | 4.42                                         | 4.71                                                     |                                                          |                                                                  |                                     |
| 4.5 to<br>7.5                                                                     | 21 to<br>29                                                            | 24-32                                        | 26 to<br>44                                              | 6 to 7                                                   | 7 to 8                                                           | 18-24                               |
| silty sand                                                                        | Sand and<br>kankar                                                     | Fine silt<br>and<br>kankar                   | Fine silt<br>and<br>kankar                               | Fine silt<br>and<br>kankar                               | Fine silt<br>and<br>kankar                                       | Fine silt<br>and<br>kankar          |
| 60                                                                                | 253                                                                    | 100                                          | 202                                                      | 60                                                       | 100                                                              | 100                                 |
| 7.6                                                                               | 30                                                                     | 33                                           | 46                                                       | 2                                                        | ω                                                                | 25                                  |
| Hand<br>Pump                                                                      | Tubewell                                                               | Hand<br>Pump                                 | Tubewell                                                 | Handpum<br>p                                             | Tubewell                                                         | Tubewell                            |
| BH-11 In the premises of shekhar<br>Mkt, Gali No.12, Burari-<br>Saroop Nagar Road | Located in the premises of<br>Pait makhbara, 50 m from<br>the monument | Beside D.S. Transport<br>Corporation, BG-132 | BH-14 Bhagwanpura Jhuggi, Public Tubewell toilet complex | BH-15 In front of Priya electrical,<br>Bhalsawa Village, | Rajasthan Udyog Nagar,<br>58A car denting and painting<br>centre | BH-17 C-8, Rajasthan Udyog<br>Nagar |
| BH-11                                                                             | BH-12                                                                  | BH-13                                        | BH-14                                                    | BH-15                                                    | BH-16                                                            | BH-17                               |
| 12                                                                                | 13                                                                     | 14                                           | 15                                                       | 16                                                       | 17                                                               | 18                                  |

| nexure-X: Previous Studies Basic Chemical Quality Data |  |
|--------------------------------------------------------|--|

|            | Chemica | Chemical Quality of Ground                       | _   | /ater (D | ecember | Water (December, 2003) around Bhalsawa Sanitary Land Fill Sites | Iround F | 3halsaw:  | a Sanitaı              | ry Land | Fill Site | S   |                                |
|------------|---------|--------------------------------------------------|-----|----------|---------|-----------------------------------------------------------------|----------|-----------|------------------------|---------|-----------|-----|--------------------------------|
|            |         |                                                  |     |          |         |                                                                 | Conce    | entration | Concentrations in mg/L |         |           |     |                                |
| Sample-No. | Hd      | Electrical<br>Conductivity<br>μS/cm at 25 °<br>C | co3 | НСОЗ     | ō       | S04                                                             | NO3      | ш         | Ca                     | Mg      | Na        | ×   | Total<br>Hardness<br>as Ca CO3 |
| BH-1       | 8.13    | 35100                                            |     |          |         |                                                                 |          |           |                        |         |           |     |                                |
| BH-2       | 7.48    | 2730                                             | lin | 660      | 282     | 437                                                             | 37       | 1.25      | 46                     | 36      | 520       | 89  | 265                            |
| BH-3       | 7.44    | 6030                                             | nil | 343      | 1284    | 1128                                                            | 28       | 1.04      | 249                    | 146     | 940       | 18  | 1221                           |
| BH-4       | 8.01    | 3510                                             | lin | 216      | 702     | 722                                                             | 26       | 1.35      | 60                     | 67      | 630       | 8.6 | 550                            |
| BH-5       | 7.52    | 8940                                             | lic | 267      | 2145    | 1763                                                            | 37       | 1.45      | 329                    | 229     | 1525      | 15  | 1761                           |
| BH-6       | 8       | 19600                                            |     |          |         |                                                                 |          |           |                        |         |           |     |                                |
| BH-7       | 7.38    | 4090                                             | lin | 355      | 924     | 588                                                             | 1.8      | 0.58      | 148                    | 87      | 680       | 11  | 730                            |
| BH-8       | 7.35    | 2430                                             | lin | 417      | 317     | 386                                                             | 71       | 0.51      | 108                    | 97      | 240       | 06  | 670                            |
| BH-9       | 7.31    | 10080                                            | lin | 254      | 2807    | 1686                                                            | 20       | 1.01      | 489                    | 350     | 1500      | 14  | 2812                           |
| BH-10      | 8.24    | 1783                                             | lin | 406      | 268     | 224                                                             | nil      | 1.86      | 32                     | 17      | 365       | 5.4 | 150                            |
| BH-11      | 7.67    | 2890                                             | lin | 406      | 528     | 422                                                             | 3.6      | 0.82      | 60                     | 68      | 500       | 16  | 430                            |
| BH-12      | 7.5     | 2980                                             | ni  | 456      | 525     | 482                                                             | 4.6      | 0.86      | 80                     | 64      | 530       | 16  | 465                            |

| Chemical Quality of Ground Water (June, 2004) around Bhalsawa Land Fill Site | Electrical<br>Conductivity<br>(μS/cm)<br>at 25 ° C | HCO3 CI SO4 NO3 F Ca Mg Na K Total<br>Hardness | 3020 628 400 480 50 1.5 42 54 590 2.8 327 | 5850 228 1306 1230 26 1.41 179 156 930 90 1091 | 4320 304 856 740 24 1.74 117 112 675 13 754 | 8480 304 2123 1620 41 1.95 316 256 1500 8.1 1845 | 4340 266 953 760 0.8 0.66 125 103 730 13 734 | 1904         368         324         240         4.5         0.6         88         81         210         9.1         553 | 10370 222 2885 1950 14 1 544 379 1500 80 2917 | 2050 342 306 268 nii 2.8 42 29 385 9.9 226 | 3720 305 553 720 2.1 0.2 32 54 700 15 300 | 1545         46         135         456         63         1.27         32         34         183         108         220 | 1770         427         255         245         2.3         0.85         40         51         298         7.8         310 |
|------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Chemical Quality of 0                                                        | ical<br>ctivity<br>cm)<br>° C                      |                                                | 628                                       | 228                                            | 304                                         | 304                                              | 266                                          | 368                                                                                                                        | 222                                           | 342                                        | 305                                       | 46                                                                                                                        | 427                                                                                                                         |
|                                                                              | Ha                                                 |                                                | 7.6 302                                   | 7.6 585                                        | 7.96 432                                    | 7.8 848                                          | 7.73 434                                     | 7.5 190                                                                                                                    | 7.44 103                                      | 8.4                                        | 8.39                                      | 8.29                                                                                                                      | 8.23                                                                                                                        |
|                                                                              | Sample<br>No.                                      |                                                | BH-2                                      | BH-3                                           | BH-4                                        | BH-5                                             | BH-7                                         | BH-8                                                                                                                       | BH-9                                          | BH-10                                      | BH-11                                     | BH-13                                                                                                                     | BH-14                                                                                                                       |

| Heavy meta | al conce |                    | of Bhals<br>mber 20 |          | lfill site s | amples |      |
|------------|----------|--------------------|---------------------|----------|--------------|--------|------|
| Sample No. | Concer   | ntrations i<br>lit | n microgi<br>tre    | rams per |              |        |      |
|            | Cd       | Cr                 | Cu                  | Fe       | Mn           | Ni     | Zn   |
| BH-1       | 11       | 7850               | 340                 | 55568    | 308          | 671    | 832  |
| BH-2       | ND       | ND                 | ND                  | 233      | 322          | ND     | 19   |
| BH-3       | ND       | ND                 | 6                   | 515      | 397          | ND     | 171  |
| BH-4       | ND       | ND                 | ND                  | 78       | 294          | ND     | 282  |
| BH-5       | ND       | ND                 | ND                  | 40       | ND           | ND     | 49   |
| BH-6       | 17       | 4660               | 1065                | 30969    | 289          | 678    | 1066 |
| BH-7       | ND       | ND                 | ND                  | 86       | 227          | ND     | 10   |
| BH-8       | ND       | ND                 | ND                  | 31       | 5            | ND     | 5    |
| BH-9       | ND       | ND                 | ND                  | 243      | 4000         | ND     | 47   |
| BH-10      | ND       | ND                 | 57                  | 504      | 6            | ND     | 267  |
| BH-11      | ND       | ND                 | ND                  | 1403     | 791          | ND     | 222  |
| BH-12      | ND       | ND                 | ND                  | 13155    | 498          | ND     | 302  |

## Annexure-XI: Previous Studies Heavy metal Analysis Data

| Isotoj | pic analysis  | of Samples            | from Bhalsav<br>2003) | va SLF site (                     | December,             |
|--------|---------------|-----------------------|-----------------------|-----------------------------------|-----------------------|
| S.No   | Sample<br>No. | δ <sup>18</sup> Ο (‰) | δ²Η (‰)               | <sup>3</sup> Η [TU ±<br>1σ (0.5)] | δ <sup>13</sup> C (‰) |
| 1      | BH-1          | -1.31                 | -3.06                 | 174.48                            | 15.6                  |
| 2      | BH-2          | -6.46                 | -46                   | 8.75                              | -12                   |
| 3      | BH-3          | -6.8                  | -47.9                 | 1.35                              | -7.03                 |
| 4      | BH-4          | -7.39                 | -49.7                 | 1.26                              | -14.3                 |
| 5      | BH-5          | -6.65                 | -47.2                 | 0.78                              | -11.4                 |
| 6      | BH-6          | -1.49                 | -8.75                 | 133.72                            | 2.64                  |
| 7      | BH-7          | -6.78                 | -45.6                 | 0.46                              | -13.3                 |
| 8      | BH-8          | -7.01                 | -50.5                 | 10.18                             | -8.58                 |
| 9      | BH-9          | -6.17                 | -45.5                 | 4.75                              | -8.75                 |
| 10     | BH-10         | -6.73                 | -48.4                 | 1.6                               | -4.92                 |
| 11     | BH-11         | -3.88                 | -35.68                | 10.72                             |                       |
| 12     | BH-12         |                       |                       | 1.6                               | -8                    |

## Annexure-XII: Previous Studies Isotopic Analysis Data

| S.No | Sample<br>No. | δ <sup>18</sup> Ο (‰) | δ²Η (‰) | <sup>3</sup> Η [TU ±<br>1σ (0.5)] | δ <sup>13</sup> C (‰) |
|------|---------------|-----------------------|---------|-----------------------------------|-----------------------|
| 1    | BH-2A         | -5.94                 | -43.3   | 9.9                               | -11.35                |
| 2    | BH-3A         | -6.7                  | -45.7   | 6.7                               | -13.15                |
| 3    | BH-4A         | -7.12                 | -48.9   | 1.9                               | -11.25                |
| 4    | BH-5A         | -6.2                  | -45.7   | 4.84                              | -10.65                |
| 5    | BH-7A         | -6.49                 | -44     | 3.62                              | -12.79                |
| 6    | BH-8A         | -6.9                  | -46.9   | 9.9                               | -7.62                 |
| 7    | BH-9A         | -6.11                 | -42.9   | 6.77                              | -7.82                 |
| 8    | BH-10A        | -6.84                 | -46.7   | 4.68                              | -3.56                 |
| 9    | BH-11A        | -3.78                 | -32.6   | 10.71                             |                       |
| 10   | BH-13A        | -5.34                 | -34.9   | 14.41                             | -7.62                 |
| 11   | BH-14A        | -6.84                 | -45.6   | 3.92                              | -12.61                |
| 12   | BH-15A        | -7.59                 | -48.7   | 11.34                             | -9.61                 |
| 13   | BH-16A        | -5.99                 | -41.4   |                                   | -11.08                |
| 14   | BH-17A        |                       |         | 11.3                              |                       |



Central Ground Water Board State Unit Office West block 2, Sector 1, R.K. Puram New Delhi - 110066

Email: oicnd-cgwb@nic.in