**Technical series D** 

FOR OFFICIAL USE ONLY सरकारी उपयोग के लिए केवल

No...01../2021-22



Central Ground Water Board केंद्रीय भूमि जल बोर्ड Department of Water Resources, River Development & Ganga Rejuvenation जलसंसाधन, नदी विकास और गंगा संरक्षण विभाग Ministry of Jal Shakti जल शक्ति मंत्रालय GOVERNMENT OF INDIA भारत सरकार

AQUIFER MAPPING AND MANAGEMENT PLAN OF JORHAT DISTRICT, ASSAM AAP 2021-22



NORTH EASTERN REGION उत्तर पूर्वी क्षेत्र GUWAHATI गुवाहाटी JUNE, 2022



# GOVERNMENT OF INDIA MINISTRY OF JAL SHAKTI DEPARTMENT OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION

# **REPORT ON**

# "AQUIFER MAPPING AND MANAGEMENT PLAN OF JORHAT DISTRICT, ASSAM"

# (AAP 2021-22)

By Shri Ebadur Rahman Scientist-B (HG) & Shri Rajat Gupta Asst. Hydrogeologist

Central Ground Water Board State Unit Office Naharlagun Arunachal Pradesh

### Acknowledgement

I would like to acknowledge all the below mentioned for their untiring help and support in all aspects related to this work.

I would like to extend my heartfelt gratitude to Shri. Biplap Ray, Regional director, CGWB, NER, Guwahati for his constant support and guidance during the course of this study.

I render my outmost and sincere thanks to Shri Tapan Chakaraborty Nodal officer of NAQUIM, NER and Dr. D. J Khound, Sc-B for all the help, support, guidance, technical inputs and encouragement.

I would like to thank Dr. Keisham Radhapyari, Scientist-B (Chemist) and her team for analysing the ground water samples and providing the data. I thank all the Engineers and Drilling staff of CGWB, Division VII, Guwahati for their contribution in ground water exploratory drilling activities in the study area.

I thank all the officials and staff of CGWB, SUO, Naharlagun for their help and support during the course of this work.

## CONTENTS

| Chapter 1.0                                                                 | 1  |
|-----------------------------------------------------------------------------|----|
| Introduction                                                                | 1  |
| 1.1 Objectives                                                              | 1  |
| 1.2 Scope of the study                                                      | 1  |
| 1.2.1 Data Compilation & Data Gap Analysis                                  | 1  |
| 1.2.2 Data Generation                                                       | 1  |
| 1.2.3 Aquifer Map Preparation                                               | 2  |
| 1.2.4 Aquifer Management Plan Formulation                                   | 2  |
| 1.3 Approach and Methodology                                                | 2  |
| 1.4 Area Details                                                            | 2  |
| 1.5 Administrative set up of the study area                                 | 3  |
| 1.6 Data availability, Data Adequacy, Data Gap Analysis and Data Generation | 4  |
| 1.7 Rainfall Distribution                                                   | 5  |
| 1.8 Temperature                                                             | 5  |
| 1.9 Physiographic set up                                                    | 6  |
| 1.10 Geology                                                                | 7  |
| 111 Geomorphologic Features and Landforms                                   | 8  |
| 1.12 Land use Pattern                                                       | 9  |
| 1.13 Soil                                                                   | 10 |
| 1.14 Hydrology and Drainage                                                 | 12 |
| 1.15 Agriculture and Plantation                                             |    |
| CHAPTER 2.0                                                                 | 14 |
| DATA COLLECTION AND GENERATION                                              | 14 |
| 2.1 Data collection                                                         | 14 |
| 2.2 Data Generation                                                         | 14 |
| 2.2.1 Geophysical survey                                                    | 14 |
| 2.2.2 Soil Infiltration studies                                             | 16 |
| 2.2.3. Water Quality                                                        | 17 |
| 2.2.4 Exploratory Drilling                                                  |    |
| 2.2.5 Hydrogeological data                                                  | 19 |
| Chapter 3.0                                                                 |    |
| DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING                        |    |
| 3.1 Data Interpretation                                                     |    |
| 3.1.1 Aquifer Disposition                                                   |    |
| 3.1.2. Aquifer Characteristics                                              | 25 |
| 3.2 Ground water level of shallow aquifer zone                              |    |
| 3.2.1 Ground Water Movement                                                 |    |
| 3.2.2 Water level trend analysis                                            |    |
| 3.3 Ground water quality                                                    |    |
| Chapter 4.0                                                                 | 41 |
| Ground water Resources                                                      | 41 |
| Chapter 5.0                                                                 |    |
| Groundwater Related Issues                                                  |    |
| 5.1 Area vulnerable to water logging                                        |    |
| 5.2 Area vulnerable to Flood                                                |    |
| 5.2 Area vulnerable to Iron, Lead and other Heavy metals in groundwater     |    |
| Chapter 6.0                                                                 |    |
| MANAGEMENT STRATEGIES                                                       |    |
|                                                                             |    |

| 6.1 Sustainable Management of GW resources for Irrigation    | .46 |
|--------------------------------------------------------------|-----|
| 6.2 Management of groundwater for drinking and domestic uses | .51 |

# List of Table

| Table 1.1: Administrative Divisions                                                                  | 4   |
|------------------------------------------------------------------------------------------------------|-----|
| Table 1.2: Revenue Circle Wise Number of villages and population of Jorhat District                  | 4   |
| Table 1.3: Data availability, data gap and data generation in Jorhat, district, Assam                | 4   |
| Table 1.4: Rainfall variations of Jorhat District from 2015-2020                                     | 5   |
| Table 1.5: Land Use Pattern in Jorhat District                                                       | 10  |
| Table 1.6: Soil Profile of the district                                                              | 11  |
| Table 2.1: Location details of VES data                                                              | 14  |
| Table 2.2: Summary of Infiltration Test                                                              | 16  |
| Table 2.3: Details of exploratory wells in the study area                                            | 18  |
| Table 2.4: Details of GW Monitoring Stations in the study area                                       | 20  |
| Table 3.1: Distribution of EW based on drilled depth                                                 | 22  |
| 3D disposition of aquifer:                                                                           | 23  |
| Table 3.2: Granular zones encountered in exploratory wells in Jorhat District, Assam                 | 25  |
| Table 3.3: Aquifer properties of deeper aquifer zones                                                | 26  |
| Table 3.4: Trend of Water levels in GWMS Wells                                                       | 30  |
| Table 3.5: Minimum, maximum and mean values of hydro chemical parameters of groundwater              |     |
| samples                                                                                              | 35  |
| Drinking Water Quality:                                                                              | 36  |
| Table 3.6: Suitability of groundwater for drinking purposes, Jorhat district, Assam.                 | 37  |
| Table 3.7: Concentration of Heavy Metal in ground water , Jorhat districct, Assam.                   | 38  |
| Irrigation Water Quality:                                                                            | 39  |
| Table 3.8: Suitability of groundwater (Shallow aquifer) for irrigation in Jorhat district, Assam     | 39  |
| Table 4.1: Summary results of Groundwater Resources Estimation in Jorhat District, Assam             | 42  |
| Table 6.2: Water requirement for Kharif paddy areas of Jorhat District.                              | 47  |
| Table 6.3: Crop-wise and month-wise precipitation deficit in winter paddy area of, Jorhat District.  | 48  |
| Table 6.4: Irrigation Water Requirement (in ham), in winter paddy area of Jorhat District            | 48  |
| Table 6.5: Water requirement for chronically flood affected areas of Jorhat district, Assam.         | 49  |
| Table 6.6: Crop-wise and month-wise precipitation deficit in chronically flood affected areas of,    |     |
| Jorhat District                                                                                      | 50  |
| Table 6.6: Irrigation Water Requirement (in ham), chronically flood affected areas of Jorhat Distric | ct. |
|                                                                                                      | 50  |

## List of Figures

| Fig 1.1: Index Map of Study area                                                             | 3  |
|----------------------------------------------------------------------------------------------|----|
| Fig 1.2 : Average monthly rainfall of Jorhat district                                        | 5  |
| Fig 1.3: Average annual rainfall variations of Jorhat district                               | 5  |
| Fig 1.4:Annual variation of temperature of Jorhat district, Assam                            | 6  |
| Fig 1.5:Digital Elevation Model (data source: USGS Earth Explorer, SRTM 30m resolution)      | 7  |
| Fig 1.6:Geological Map of Jorhat District, Assam                                             | 8  |
| Fig 1.7:Geomorphological Map of Jorhat District, Assam (data source: Bhukosh-GSI)            | 9  |
| Fig 1.8: Land use Map of Jorhat District (data source: MODIS Land cover-Product MCD12Q1, lan | ıd |
| cover type 1)                                                                                | 10 |
| Fig 1.9:Soil Map of Jorhat District, Assam                                                   | 11 |

| Fig 1.10:Drainage Map of Jorhat District, Assam                                                   | 12  |
|---------------------------------------------------------------------------------------------------|-----|
| Fig 2.1: Available data and data generation map of VES                                            | 15  |
| Fig 2.2: Time Vs Soil infiltration rate plot                                                      | 17  |
| Fig 2.3: Field photograph showing water quality analysis, soil infiltration study and water level |     |
| monitoring                                                                                        | 17  |
| Fig 2.4: Available data and data generation map of exploration in the study area                  | 19  |
| Fig 2.5: Available data and data generation map for ground water level monitoring                 | 20  |
| Fig 3.1: 2D disposition of aquifer along Brahmaputra River                                        | 22  |
| Fig 3.2:Cross section B-B' between Melamati-Maibalia                                              | 23  |
| Fig 3.3: Cross section C-C' between Khalnagaon-Melamati                                           | 23  |
| Fig 3.4:Fence diagram of showing aquifer disposition                                              | 24  |
| Fig 3.5:Northeast- southwest section Parallel to Brahmaputra River                                | 24  |
| Fig 3.7:Post-monsoon DTW map of shallow aquifer zone, Jorhat districct, Assam                     | 28  |
| Fig 3.8:Water Level Fluctuation map , Jorhat districct, Assam                                     | 29  |
| Fig 3.9:Water table contour , Jorhat district, Assam                                              | 30  |
| Fig 3.10:Post Monsoon Hydrograph of GWMS wells , Jorhat district, Assam                           | 33  |
| Fig 3.11:Pre Monsoon Hydrograph of GWMS wells , Jorhat districct, Assam                           | 35  |
| Fig 3.12:Major Hydrochemical facies of Groundwater, Jorhat district, Assam                        | 37  |
| Fig 3.13: US Salinity diagram showing suitability of groundwater for irrigation based on SAR and  | Ec. |
|                                                                                                   | 40  |
| Fig 5.1:Field photograph of study area showing rusting in iron pipe and interaction with public   | 43  |
| Fig 5.2:Map showing area vulnerable to Flooding.                                                  | 44  |
| Fig 5.3:Vulnarability map of Jorhat district, Assam.                                              | 45  |
| Fig 6.1: Tube-well design of a deep tube well tapping safe deeper aquifer of district             |     |
| where confining layer present                                                                     |     |

# ANNEXURE

| Annexure-I: Water level data                                            | 53 |
|-------------------------------------------------------------------------|----|
| Annexure-II: Chemical data of post-monsoon water sample (Basic)         |    |
| Annexure-III: Chemical data of post-monsoon water sample (Heavy Metals) |    |
| Annexure-IV: Chemical data of pre-monsoon water sample (Basic)          |    |
| Annexure-V: Chemical data of pre-monsoon water sample (Heavy Metals)    | 59 |

#### Chapter 1.0

#### Introduction

Central Ground Water Board, North Eastern Region has carried out Aquifer mapping and management plan in Jorhat district, Assam as per the Annual Action Plan 2012-13 and 2013-14, which covered an area of 1860 sq.km and during AAP 2021-22 the area covered is 934 sq.km (Total Mapable area 2794 sq km). Under National Aquifer Mapping and Management (NAQUIM) program, combination of geologic, hydrologic and hydrochemical information is applied to characterize the quantity, quality and sustainability of ground water aquifers. Systematic aquifer mapping will improve our understanding of the geologic framework of aquifers, their hydrogeologic characteristics, quality and also quantifying the available ground water resources potential and proposing plans appropriate to the scale of demand and the institutional arrangements for management. Aquifer mapping at the appropriate scale can help to prepare, implement and monitor the efficacy of various management interventions aimed at long-term sustainability of our precious ground water resources, which, in turn, will help achieve drinking water security, improved irrigation facilities and sustainability in water resources development.

#### **1.1 Objectives**

The objectives of this project are to understand the aquifer systems, to define the aquifer geometry, type of aquifers, ground water regime behaviours, hydraulic characteristics and to establish groundwater quantity, quality, and sustainability, and to estimate the dynamic and static resources accurately through a multidisciplinary scientific approach on 1:50,000 scale and finally formulate a complete, sustainable and effective management plan for ground water development.

## 1.2 Scope of the study

The activities of this Aquifer Mapping and management plan can be envisaged as follows:

### 1.2.1 Data Compilation & Data Gap Analysis

One of the important aspect of aquifer mapping program was the synthesis of the large volume of data already collected during specific studies carried out by Central Ground Water Board and various Government organizations with a new data set generated that broadly describe an aquifer system. The data were assembled, analyzed, examined, synthesized and interpreted from available sources. These sources were predominantly non computerized data, which was converted into computer based GIS data sets. On the basis of available data, data gaps were identified.

#### 1.2.2 Data Generation

There was also a strong need for generating additional data to fill the data gaps to achieve the task of aquifer mapping. This was achieved by multiple activities such as exploratory drilling, hydro-geochemical analysis, remote sensing, besides detailed hydrogeological surveys to delineate aquifer system; to bring out the efficacy of various geophysical techniques and a protocol for use of geophysical techniques for aquifer mapping in different hydrogeological environs.

## **1.2.3 Aquifer Map Preparation**

On the basis of integration of data generated from various studies of hydrogeology, aquifers have been delineated and characterized in terms of quality and potential. Various maps have been prepared bringing out characterization of Aquifers, which can be termed as Aquifer maps providing spatial variation (lateral & vertical) in reference to aquifer extremities, quality, water level, potential and vulnerability (quality & quantity).

## **1.2.4 Aquifer Management Plan Formulation**

Aquifer Maps and ground water regime scenario are being utilized to identify a suitable strategy for sustainable development of the aquifer in the area.

## **1.3 Approach and Methodology**

Aquifer mapping has been carried out by adopting a multi-disciplinary approach:

(i) Geophysical Surveys through Vertical Electrical Sounding (VES)

(ii) Exploratory drilling and construction of bore wells tapping various groups of aquifers

(iii) Ground Water Regime monitoring by establishing monitoring wells tapping different aquifers at different depths for long term monitoring of water level and quality

(iv) Pumping test of bore wells, soil infiltration test for determination of ground water recharge scope, intensity and potentials and also to determine the characteristics and performances of existing aquifers at various depths.

(v) Collection of various relevant technical data from the field in aquifer mapping area and also from the concerned State Govt. Agencies and other Institutes dealing with ground water and incorporating these data along with CGWB data for final output.

(vi) Preparations of a micro level mapping of existing aquifers, their potentials depth wise and sideways in 2D and 3D forms viewed from different angles by various GIS Layers.

(vii) Formulating a complete sustainable aquifer management plan for ground water development

#### **1.4 Area Details**

Jorhat district lies between 26.20", 27 10.30" north latitude, 93.39", and 94 36.30" east longitudes. The district is having a mapable area of 2794 sq.km. Out of this, 934 sq.km of area was covered during AAP-2021. Remaining1860 sq km area was already covered during AAP 2012-13 and 2013-14. District area falls partly or fully in the quadrants of Survey of India Toposheets bearing nos. 83I/4 and 83I/8, 83I/12, 83J/1, 83J/2, 83J/3, 83J/5 83J/6, 83J/7, 83J/8, 83J/9, 83J/10,83F/13and is bounded by Sivsagar district in the East, Nagaland in the south, Golaghat district in the West and Lakhimpur district in North. The base map of the study area is shown in fig.1.1.



Fig 1.1: Index Map of Study area

#### 1.5 Administrative set up of the study area

For the administrative purposes, the entire district is divided into three sub-divisions viz, Jorhat (Sadar), Majuli and Titabar. Again each sub-division is divided into revenue circles and under revenue circles there are Mauzas comprising villages of all kinds. In the district, there are 6 revenue circles and 848 villages. The names of revenue circles are Jorhat East, Jorhat West, Titabar, Teok, Mariani and Majuli. In the district there are 8 Community Development Blocks.

The names of the CD Blocks are Jorhat Dev. Block (Baghchung), North West Dev. Block (Dhekorgarah), Titabor Dev. Block (Titabor), East Jorhat Dev. Block (Selenghat), Kaliapani Dev. Block (Kaliapani), Central Jorhat Dev. Block (Chipahikhola), Majuli Dev. Block (Kamalabari) and Ujani Majuli Dev. Block (Jengraimukh). The district consists of 11 towns and which includes 4 Statutory Towns and 7 Census Towns. It has 111 Gaon Panchayats in all. Jorhat district covers an area of 2851 Sq.Km. Total population of the district 1092256 (2011 census) with population density of 349 per sq km.

| No of Civil | No. of CD | No.of   | No of Gram | No of       | No of Villages |
|-------------|-----------|---------|------------|-------------|----------------|
| Subdivision | Blocks    | Revenue | Panchayats | Villages    | (Uninhabited)  |
|             |           | Circles |            | (Inhabited) |                |
| 3           | 8         | 6       | 110        | 763         | 85             |

Data Source: Statistical Handbook, 2016, Assam

| District | Revenue Circles | No of Villages | Population |  |  |
|----------|-----------------|----------------|------------|--|--|
|          | Majuli          | 248            | 167304     |  |  |
|          | Jorhat East     | 65             | 195398     |  |  |
| Iorhat   | JorhatWest      | 130            | 211539     |  |  |
| Joinat   | Teok            | 156            | 184611     |  |  |
|          | Titabor         | 164            | 201791     |  |  |
|          | Mariani         | 85             | 131613     |  |  |

 Table 1.2: Revenue Circle Wise Number of villages and population of Jorhat District

Data source: Census Handbook 2011

## 1.6 Data availability, Data Adequacy, Data Gap Analysis and Data Generation

The preliminary works consisted of collection and review of all existing hydrogeological and exploration data of CGWB. All data were plotted in base map on GIS Platform (Arc-GIS 10.3.1 using Projection Coordinate system: UTM, Zone 46). The available data, data gap and data generation work is tabulated in Table: 1.3.

| Table 1.3: | : Data availa | bility, data ga | p and data | generation in | Jorhat, | district, | Assam |
|------------|---------------|-----------------|------------|---------------|---------|-----------|-------|
|------------|---------------|-----------------|------------|---------------|---------|-----------|-------|

| SN | Theme                  | Туре       | Data      | Data | Data       | Total | Remarks           |
|----|------------------------|------------|-----------|------|------------|-------|-------------------|
|    |                        |            | available | gap  | generation |       |                   |
| 1  | Borehole Lithology     |            | 21        | 3    | 2          | 23    | Maximum depth of  |
|    | Data                   |            |           |      |            |       | well is 457 mbgl. |
| 2  | Geophysical data       |            | 19        | 1    | 9          | 28    |                   |
| 3  | Groundwater level      | Dug well/  | 11        | 15   | 22         | 33    |                   |
|    | data                   | Hand pump  |           |      |            |       |                   |
|    |                        | Piezometer | 09 OW/    | Nil  | 01 OW      | 11    |                   |
|    |                        | Aquifer-I  | 1PZ       |      |            |       |                   |
| 4  | Groundwater quality    | Dug well/  | 06        |      | 47         | 53    |                   |
|    | data                   | Hand pump  |           |      |            |       |                   |
|    |                        | Aquifer-I  |           |      |            |       |                   |
| 5  | Soil Infiltration Test |            | 0         |      | 06         | 06    |                   |

#### **1.7 Rainfall Distribution**

The average annual rainfall recorded from 2015 to 2020 in Jorhat district is 1960mm. Rainfall during January to April contributes nearly 15.27% to the total rainfall whereas the rainy season which commences from May and continues up to September contributes 77.17%. October to December rainfall makes up the rest. November receives least rainfall and maximum rainfall occurs during July.The average monthly rainfall from 2015 to 2020 are tabulated in Table 1.4

| Year    | Jan  | Feb   | Mar   | Apr    | May    | Jun   | Jul    | Aug    | Sept  | Oct    | Nov   | Dec   |
|---------|------|-------|-------|--------|--------|-------|--------|--------|-------|--------|-------|-------|
| 2015    | 5.7  | 34    | 35.2  | 248.3  | 289.3  | 277.3 | 281.2  | 308.3  | 223.9 | 92.2   | 15.9  | 46.5  |
| 2016    | 28.6 | 19.9  | 64    | 423.7  | 312.7  | 313.5 | 423.3  | 114.3  | 286.7 | 93.8   | 15.8  | 32.9  |
| 2018    | 3.9  | 29.2  | 98.3  | 112.8  | 157.3  | 374.9 | 313    | 309.7  | 277.8 | 25.5   | 28.5  | 33.8  |
| 2019    | 6.8  | 33.1  | 70.6  | 132.4  | 354.9  | 269.6 | 366.1  | 209.9  | 347.5 | 155.4  | 6.3   | 13.2  |
| 2020    | 40.5 | 19.2  | 18.6  | 80.4   | 320.6  | 504.7 | 448.3  | 264.1  | 202.6 | 146.9  | 34.9  | 1.7   |
| Average | 17.1 | 27.08 | 57.34 | 199.52 | 286.96 | 348   | 366.38 | 241.26 | 267.7 | 102.76 | 20.28 | 25.62 |

Table 1.4: Rainfall variations of Jorhat District from 2015-2020



Fig 1.2 : Average monthly rainfall of Jorhat district



Fig 1.3: Average annual rainfall variations of Jorhat district

#### **1.8 Temperature**

The temperature in the region begins to increase from the end of February and reaches the highest point during July and August. January is the coldest month of the year. The air is highly humid throughout the year and winds are light in the district. However, some of the cyclonic

storm and depressions from the Bay of Bengal occur in the monsoon and post monsoon periods accompanied by heavy rain. Thunderstorms occur during the period from March to May. Fog occurs in the winter months.Temperature starts falling from November and rises from the month of March every year. The maximum temperature in the district is 42°C and the lowest is 8°C.



Fig 1.4:Annual variation of temperature of Jorhat district, Assam

#### 1.9 Physiographic set up

The district can be divided into three broad natural divisions. The first one is a belt of flooded land. The expanse of flooded belt runs 4 to 12 kms in width on the southern bank of Brahmaputra. The area is covered with jungle reed interspersed, some swamps and rich variety of fodder grass. Secondly a vast plain area lies between Nagaland and the Brahmaputra. The area is thickly populated with enormous plain area for cultivation of any sort. On the high areas tea is grown exorbitantly and while the plain area is surfaced with rice cultivation and is, therefore, regarded as surplus rice grown area in the district. The third division embraces the entire Majuli subdivision. Majuli is a gift of nature. Subansiri and Kherkatia Suti have separated Majuli from Lakhimpur district. Topographically the whole of Jorhat district is a level plain. The Brahmaputra and Bhogdai is the only major river in the district. Topographically the whole of Jorhat district is a level plain which is also indicated by the profile graph A-A' moving from west to east direction of the district. Some areas at the south and southeast of the district have low hill ranges which are the continuation of the Naga hills and is also indicated by the profile graph B-B' running from North to South direction. The northern part of the valley is flat to nearly level and often subject to moderate to severe flooding whereas the other parts have very gently slopes with impeded drainage and occasionally affected by flood.



Fig 1.5:Digital Elevation Model (data source: USGS Earth Explorer, SRTM 30m resolution)

#### 1.10 Geology

The district is covered by alluvium deposited by the river Brahmaputra and its tributaries. The older alluvium mainly of the Pleistocene period (less than 1 million years) consists of reddish to brownish sandy clay with coarser particles of sand and newer alluvium consists of sand, silt and clay along the plains of the Brahmaputra River. The rocks belonging to Tipam Group is exposed in the southern part of the district and consists mainly of course to gritty, ferruginous sandstones and shale (GSI, 1973).



Fig 1.6: Geological Map of Jorhat District, Assam

## 1..11 Geomorphologic Features and Landforms

Five geomorphological units are discernible in Jorhat district,

- (i) The flood plain of the Brahmaputra River in the north
- (ii) The central upland area covering younger alluvial formations

(iv) The southern undulating hill area running along the Naga-Patkai range covering the piedmont plain and

(v) Structural hills.

AQUIFER MAPPING IN JORHAT DISTRICT, ASSAM



Fig 1.7: Geomorphological Map of Jorhat District, Assam (data source: Bhukosh-GSI).

The elevation of the flood plain area varies from 80 to 90 m while in the central upland area it is 95 to 110 m above Mean Sea Level. The altitude of the hills in the southern parts of the district is up to 413 m above MSL. The general trend of the hills is NE-SW and at places to N-S. The mighty River Brahmaputra and its important tributaries like south Dhansiri, Bhogdoi and Kakodonga drain the district. The tributaries originate in Naga-Patkai range and flow northward to join the Brahmaputra River almost at right angles. These tributaries retain only meager base flow during the dry winter months. The rivers and streams are highly meandering in nature and sudden changes in courses of these rivers possibly due to heavy siltation and epi-orogenic movements cause the flood havocs.

#### 1.12 Land use Pattern

The Directorate of Economics and Statistics, the Government of Assam in its handbook, 2016, has published the land and land-use pattern of the district. These are presented below for the year 2015- 2016.

Table 1.5: Land Use Pattern in Jorhat District

| Sl. No. | Land put to different uses                                   | Area in hectares |
|---------|--------------------------------------------------------------|------------------|
| 1       | Total Geographical area                                      | 285100           |
| 2       | Forest area                                                  | 25247            |
| 3       | Land not available for cultivation                           | 80395            |
| а       | Land put to non-agriculture uses                             | 70000            |
| b       | Barren and un-cultural land                                  | 10395            |
| 4       | Other non-cultivated land excluding fallow land              | 25713            |
| а       | Permanent pastures and other grazing land                    | 4528             |
| b       | Land under misc, trees, groves etc. not included in net area | 13711            |
| с       | Cultivable waste land                                        | 7474             |
| 5       | Fallow land                                                  | 17019            |
| a       | Fallow other than current fallow                             | 5963             |
| b       | Current fallow                                               | 11056            |
| Source: | Statistical Handbook, Assam 2016                             |                  |
| 6       | Net area sown                                                | 136071           |
| 7       | Total cropped area                                           | 148421           |

Source: Agricultural Census, 2015-2016



Fig 1.8: Land use Map of Jorhat District (data source: MODIS Land cover-Product MCD12Q1, land cover type 1)

### 1.13 Soil

The soils of the district are generally acidic in nature. The mild acidic soils of the district can be reclaimed through appropriate amendment and can be further utilized. Micronutrient deficiency specially found in the district. Besides this, the occurrence of flood, sand deposition of soil erosion is also prevailing in the district.

The soil of Jorhat district predominantly sandy loam (58.25%) of total soils. While 15.40% silty clay loam, 9.92% sandy, 8.17% loamy and 8.26% clay soils. However, this composition varies across the blocks, sandy soil varies from zero(Baghchung block) to 43% (Jengrai), sandy loam 45% (Jengrai, Majuli), 67% (Kaliapani block), loamy soil zero (Chipahikhola block) to 12% (Baghchung block), silty clay loam 6% (Kamalabari and Jengrai block) to 21% (Chipahikhola) and clay soil from zero (Kamalabari and Jenrai block) to 12% (Titabar block). The soil of this district is very fertile for cultivation and the main crops are paddy, oilseeds, and potato. The main horticultural products are banana, jackfruit, mango, pineapple etc. In addition, the district is rich with sizeable production of vegetables.

| Sr. No. | Major Soil Classes | Area (ha) | Percent (%) of total geographical area |
|---------|--------------------|-----------|----------------------------------------|
| 1       | Sandy Loam         | 166070.75 | 58.25                                  |
| 2       | Sandy              | 28281.92  | 9.92                                   |
| 3       | Clay               | 23549.26  | 8.26                                   |
| 4       | SiltyClay Loam     | 43905.4   | 15.40                                  |
| 5       | Loamy              | 23292.67  | 8.17                                   |

Table 1.6: Soil Profile of the district.

Source: District Irrigation Plan, Jorhat.





#### 1.14 Hydrology and Drainage

The Brahmaputra is the principal river that mainly drains the area. Its tributaries namely Jhanji, Bhogdoi and Kakodonga originating from the Naga Hills of the Purvanchal Hill ranges flow through the district. These along with a number of streams flowing from the south and southeast merge into the mighty river Brahmaputra in the north of the district. Overall the drainage network of the area shows a dendritic drainage patterns. Collectively, the rivers after coming down from hills show a marked tendency to move towards south-westerly direction.



Fig 1.10:Drainage Map of Jorhat District, Assam

#### 1.15 Agriculture and Plantation

The economy of the whole of Assam is agrarian in character and Jorhat district is no exception to this. Growing of tea, paddy, sugarcane, vegetables and fruits etc. is found extensively carried out, crops like pulses, mustard seeds are grown in plenty. Rice growing is common in all the areas of the district. The hilly areas are suitably used for tea plantation. Based on the extensive production of these items three agricultural research centres namely (1) Rice experimental station at Titabor, (2) Toklai experimental station of Jorhat and (3) Agro-economic research station at Jorhat have been established. The major crops grown are paddy, wheat; mustard, sesamum, black gram, green gram, lentil, chillies, turmeric, ginger, sugarcane and others are grown to a minor extent. Paddy is mostly grown as both Ahu (autumn) and Sali (winter) in kharif season. Ahu is grown by broadcasting in the month of March-April and harvested in June-July. Sali is cultivated by both broadcasting and transplanting in June-august

and harvested in December-January. Bao (low land/deep water) paddy is also grown to some areas in kharif season. Boro paddy (summer) is grown in Rabi season to a less extent. Irrigation facilities are very meagre and occasional floods also cause problem of crop failure. The general crop rotations followed in the district are Paddy-wheat, paddy-pulses or oilseeds, paddy-fallow-paddy, pulses-vegetables and major areas are under only one crop, mainly paddy.

#### CHAPTER 2.0

#### DATA COLLECTION AND GENERATION

#### **2.1 Data collection**

Data collection includes collection of rainfall data from state government, compilation of CGWB's earlier survey data, GWMS data, chemical data, exploration data and geophysical data. Population data is collected from district Census handbook (2011). Agriculture data are taken from Agriculture Census Department of Agriculture & Farmers Welfare. CGWB had constructed 19 nos of exploratory wells in this area earlier and during current annual action plan 2 nos exploratory well has been constructed.

#### 2.2 Data Generation

#### 2.2.1 Geophysical survey

In surface geophysical methods, physical properties of subsurface formations and contained fluids are measured by instruments located on the surface. All the operations are carried out on the surface only. Out of the many techniques, electrical resistivity methods are most widely used in groundwater studies. The main objectives of the geophysical surveys are to provide the information about the thickness of weathered and fractured zones, depth to bed rock, delineation of solution cavities in Karst formations, structural and stratigraphic conditions controlling ground water occurrences etc. During AAP 2021-22, there was 09nos VES conducted in the area. CGWB old record were collected and examined. Total 19nos VES survey was conducted earlier. The location details of these VES survey is shown in Table 2.1.

|     |          |                |                |         |         |           | Depth of       |        |
|-----|----------|----------------|----------------|---------|---------|-----------|----------------|--------|
| S N | District | Block          | Location       | Lat     | Long    | Elevation | interpretation | Agency |
| 1   | Jorhat   | East Jorhat    | Deberapar      | 26.6960 | 94.4210 | 119       | 28             | CGWB   |
| 2   | Jorhat   | Central Jorhat | Dangoritol     | 26.8050 | 94.2930 | 90        | 108            | CGWB   |
| 3   | Jorhat   | Central Jorhat | Chenijan       | 26.8020 | 94.2860 | 93        | 99             | CGWB   |
| 4   | Jorhat   | East Jorhat    | Nakachari      | 26.6930 | 94.3990 | 117       | 191            | CGWB   |
|     |          |                | APDCL          |         |         |           |                |        |
| 5   | Jorhat   | Jorhat         | Nagajanka      | 26.6250 | 94.3240 | 119       | 112            | CGWB   |
| 6   | Jorhat   | East Jorhat    | Deha           | 26.7790 | 94.3580 | 97        | 54             | CGWB   |
| 7   | Jorhat   | East Jorhat    | Hemlai         | 26.7350 | 94.4580 | 113       | 56             | CGWB   |
| 8   | Jorhat   | East Jorhat    | Kaparadhara    | 26.7990 | 94.2960 | 91        | 40             | CGWB   |
| 9   | Jorhat   | East Jorhat    | Selenghat      | 26.6540 | 94.4080 | 131       | 159.2          | CGWB   |
| 10  | Jorhat   | East Jorhat    | Maibelia       | 26.6910 | 94.4330 | 120       | 185.8          | CGWB   |
| 11  | Jorhat   | East Jorhat    | Naganijan TE   | 26.6820 | 94.4500 | 125       | 146            | CGWB   |
| 12  | Jorhat   | Jorhat         | Bachagaon      | 26.6320 | 94.3570 | 125       | 156            | CGWB   |
| 13  | Jorhat   | East Jorhat    | Dihingiapar TE | 26.6630 | 94.3730 | 122       | 93.6           | CGWB   |
| 14  | Jorhat   | Jorhat         | Kathalguri TE  | 26.6570 | 94.3500 | 121       | 264.7          | CGWB   |
| 15  | Jorhat   | Jorhat         | bahoni         | 26.5920 | 94.2860 | 117       | 112.3          | CGWB   |
| 16  | Jorhat   | Titabar        | Bandarchaliha  | 26.5770 | 94.2880 | 122       | 61.3           | CGWB   |
| 17  | Jorhat   | Titabar        | Balijan        | 26.5730 | 94.2730 | 118       | 41.3           | CGWB   |
| 18  | Jorhat   | Jorhat         | Gotonga        | 26.5970 | 94.3190 | 123       | 241            | CGWB   |
| 19  | Jorhat   | Jorhat         | Katanibari TE  | 26.6650 | 94.2920 | 111       | 130            | CGWB   |
| 20  | Jorhat   | Majuli         | Lakhomi        | 27.0794 | 94.2853 | 83        | 191            | CGWB   |
| 21  | Jorhat   | Majuli         | Kaharduvi      | 27.0122 | 94.2456 | 83        | 46             | CGWB   |
| 22  | Jorhat   | Majuli         | Naganchuk      | 27.0361 | 94.2544 | 84        | 164            | CGWB   |
| 23  | Jorhat   | Majuli         | Mohkina        | 26.9469 | 94.1572 | 82        | 125            | CGWB   |
| 24  | Jorhat   | Majuli         | Borbil         | 26.9383 | 94.2642 | 84        | 22.7           | CGWB   |
| 25  | Jorhat   | Majuli         | Pashimsyam     | 27.0488 | 94.3271 | 88        | 91.6           | CGWB   |

Table 2.1: Location details of VES data

|     |          |        |             |         |         |           | Depth of       |        |
|-----|----------|--------|-------------|---------|---------|-----------|----------------|--------|
| S N | District | Block  | Location    | Lat     | Long    | Elevation | interpretation | Agency |
|     |          |        | Ratanpur    |         |         |           |                |        |
| 26  | Jorhat   | Majuli | Shikargaon  | 27.0738 | 94.4027 | 87        | 104            | CGWB   |
| 27  | Jorhat   | Majuli | Mohirchuk   | 26.9359 | 94.0320 | 79        | 175            | CGWB   |
| 28  | Jorhat   | Majuli | Bokajanmiri | 27.0156 | 94.3115 | 84        | 12.7           | CGWB   |



Fig 2.1: Available data and data generation map of VES

## **2.2.2 Soil Infiltration studies**

Salient features of the soil infiltration test are provided in Table 8. A perusal of the table shows that the test has been conducted only in barren land and the soil types encountered in the sites are sand/ Sandy Cay/Sandy loam admixtures. The infiltration test was conducted for 111 to 206 minutes.

|     |           |          |           |     |        | ſ     |          |          |            | Total     |             |
|-----|-----------|----------|-----------|-----|--------|-------|----------|----------|------------|-----------|-------------|
|     |           |          |           |     |        |       | Infiltra |          | Total      | quantum   |             |
|     |           |          |           |     |        |       | tion     | Duration | Quantum    | of water  |             |
|     |           |          |           | RL  | Land   | Soil  | rate     | of test  | of water   | recharged | Infiltratio |
| S N | Site      | Latitude | Longitude | (m) | use    | type  | mm/hr    | (min)    | added in m | in m      | n Factor    |
| 1   | Jengraim  | 27.08    | 94.29     | 86  | Barren | Sandy | 147      | 158      | 0.43       | 0.05      |             |
|     | ukh       |          |           |     |        |       |          |          |            |           | 10.77       |
| 2   | Malapin   | 26.95    | 94.06     | 82  | Barren | Sandy | 55.2     | 137      | 0.17       | 0.01      | 6.21        |
|     | dha       |          |           |     |        |       |          |          |            |           |             |
| 3   | Luitpuria | 27.05    | 94.35     | 90  | Barren | Sandy | 59.7     | 111      | 0.08       | 0.01      | 6.31        |
| 4   | Rangach   | 27.02    | 94.27     | 83  | Barren | Sandy | 33.1     | 141      | 0.19       | 0.01      | 3.61        |
|     | ahi       |          |           |     |        |       |          |          |            |           |             |
| 5   | Kohalga   | 26.93    | 94.29     | 85  | Barren | Sandy | 83       | 112      | 0.25       | 0.02      | 6.38        |
|     | on        |          |           |     |        |       |          |          |            |           |             |
| 6   | Garamur   | 26.98    | 94.15     | 83  | Barren | Sandy | 17.6     | 206      | 0.19       | 0.00      | 2.52        |

Table 2.2: Summary of Infiltration Test





Fig 2.2: Time Vs Soil infiltration rate plot.

# 2.2.3. Water Quality

To understand the chemical quality of groundwater in the study area and its suitability for domestic, drinking and agricultural utilization, 46 nos. of pre-monsoon and 31 nos. of post monsoon ground water samples were collected from monitoring wells for analysis of basic elements, iron, heavy metals and arsenic. The ground water samples are submitted to Regional Chemical Laboratory CGWB NER Guwahati for chemical analysis. Chemical quality analysis data attached in annexure II, III, IV and V.



Fig 2.3: Field photograph showing water quality analysis, soil infiltration study and water level monitoring.

# **2.2.4 Exploratory Drilling**

During AAP 2020-21, 2 nos of exploratory well drilled by CGWB in study area. 19 nos of Exploratory wells drilled by CGWB before NAQUIM, and 2 nos Exploratry well data from irrigation department, Assam and examined. Data gap analysis shown in Fig. 2.4..

| S N | Location     | Block     | Lat     | Long    | RL   | Depth  | Discharge          |
|-----|--------------|-----------|---------|---------|------|--------|--------------------|
|     |              |           |         |         |      | (m)    | m <sup>3</sup> /hr |
| 1   | Melamati     | Titabor   | 26.5761 | 94.1389 | 92   | 300.2  |                    |
| 2   | Bibijan      | Titabor   | 26.76   | 94.2    | 82   | 200    | 85.14              |
| 3   | Gohaigaon    | Kaliapani | 26.85   | 94.48   | 92   | 300.5  | 211.44             |
| 4   | Boishabi     | East      | 26.78   | 94.5    | 101  |        |                    |
|     |              | Jorhat    |         |         |      | 288.3  | NA                 |
| 5   | Maibalia     | East      | 26.7    | 94.44   | 116  |        |                    |
|     |              | Jorhat    |         |         |      | 299.3  | 7.77               |
| 6   | Jagduar      | Central   | 26.86   | 94.44   | 90   |        |                    |
|     |              | Jorhat    |         |         |      | NA     | NA                 |
| 7   | Kakojan      | Central   | 26.81   | 94.36   | 92   |        |                    |
|     |              | Jorhat    |         | 0.4.9.4 | 1.00 | 311.77 | 206.16             |
| 8   | Nagajanka    | Jorhat    | 26.63   | 94.36   | 120  | 165.4  | 29.1               |
| 9   | Dekagaon     | Jorhat    | 26.67   | 94.3    | 111  | 292.8  | NA                 |
| 10  | Lichubari    | Jorhat    | 26.6833 | 94.228  | 98   | 230.74 | 22.79              |
| 11  | No-1         | Titabor   | 26.74   | 94.19   | 93   |        | 67.90              |
|     | Sonarigaon   |           |         |         |      | 175    |                    |
| 12  | Jalukunibari | Titabor   | 26.6414 | 94.1914 | 83   | 160.55 | 68.04              |
| 13  | Machorhat    | Jorhat    | 26.5264 | 94.0764 | 94   | 171.3  | NA                 |
| 14  | Brahmingaon  | East      | 26.8289 | 94.26   | 90   | 457.3  | 211.42             |
|     |              | jorhat    |         |         |      |        |                    |
| 15  | Bhalukmora   | Jorhat    | 26.6696 | 94.0971 | 90   | 107    | NA                 |
| 16  | Rangajan     | Jorhat    | 26.6394 | 94.2165 | 103  | 150    | NA                 |
| 17  | Mithaamtol   | Jorhat    | 26.8333 | 94.1348 | 85   | 103.65 | NA                 |
| 18  | Khalnagon    | Jorhat    | 26.8333 | 94.0083 | 83   | 106.68 | NA                 |
| 19  | Koronga      | Jorhat    | 26.695  | 94.2403 | 105  | 124    | NA                 |
| 20  | Karkichuck   | Majuli    | 27.0404 | 94.2685 | 83   | 88.4   | 21.6               |
|     | Phuluni      | 5         |         |         |      |        |                    |
| 21  | Chilakola    | Majuli    | 26.9488 | 94.0969 | 83   | 86.2   | 18                 |
|     | Gaon         |           |         |         |      |        |                    |
| 22  | Jengraimukh  | Majuli    | 27.0827 | 94.2891 | 84   | 73.52  | 94.63              |
|     | chapori      |           |         |         |      |        |                    |
| 23  | Lakhimi      | Majuli    | 27.0850 | 94.2907 | 83   | 73.52  | 94.63              |
|     | Kathalguri   |           |         |         |      |        |                    |

| Table 2.3: Details of exploratory wells in the study area | 1 |
|-----------------------------------------------------------|---|
|-----------------------------------------------------------|---|



Fig 2.4:Available data and data generation map of exploration in the study area

## 2.2.5 Hydrogeological data

The entire study area is covered by regular monitoring of existing GWMS and another 22 key wells have been established. All these wells are under regular monitoring after establishment.



Fig 2.5: Available data and data generation map for ground water level monitoring Table 2.4: Details of GW Monitoring Stations in the study area

| r   |                 |           |         |         | -  |         |       |         |
|-----|-----------------|-----------|---------|---------|----|---------|-------|---------|
| S N | Location        | Block     | Lat     | Long    | RL | Type of | Depth | Agency  |
|     |                 |           |         | _       |    | Well    | (m)   |         |
| 1   | Cinemora        | Jorhat    | 26.7094 | 94.2164 | 82 | DW      | 6.76  | Private |
| 2   | Dabarapara      | Jorhat    | 26.6667 | 94.4083 | 85 | DW      | 3.78  | Private |
| 3   | Kokilamukh      | Jorhat    | 26.8186 | 94.1717 | 78 | DW      | 6.52  | Private |
| 4   | Lichubari       | Jorhat    | 26.7272 | 94.2106 | 74 | DW      | 2.04  | Private |
| 5   | Meleng          | Jorhat    | 26.7903 | 94.3022 | 99 | DIU     | 2.6   | Private |
|     | Kaparadharia    | -         |         |         |    | DW      | 3.6   |         |
| 6   | Sodial Kacha    | ri Jorhat | 26.5067 | 94.1569 | 83 | DW      | 5.03  | Private |
| 7   | Bijay Nagar     | Jorhat    | 26.7225 | 94.1772 | 96 | DW      | 3.2   | Private |
| 8   | Kamarbandha TE  | Jorhat    | 26.66   | 94.1314 | 94 | DW      | NA    | Private |
| 9   | Kunwari Pukhuri | Jorhat    | 26.6983 | 94.2072 | 84 | DW      | NA    | Private |

| 10 | Gatisunga        | Jorhat | 26.6789 | 94.3853 | 97 | DW | 7.08  | Private     |
|----|------------------|--------|---------|---------|----|----|-------|-------------|
| 11 | Titabor          | Jorhat | 26.6018 | 94.2    | 98 | DW | NA    | Private     |
| 12 | Jengraimukh      | Majuli | 27.0792 | 94.2862 | 86 | TW | 14.18 | Private     |
| 13 | Mekheli gaon     | Majuli | 26.9557 | 94.2658 | 87 | TW | 29    | State Govt. |
| 14 | Mudoi gaon       | Majuli | 26.9658 | 94.2814 | 90 | TW | 7     | State Govt. |
| 15 | Pohumora         | Majuli | 27.0041 | 94.2634 | 85 | TW | 9     | State Govt. |
| 16 | Kamalabari       | Majuli | 26.9483 | 94.1715 | 85 | TW | 28    | State Govt. |
| 17 | Merua bari       | Majuli | 26.9979 | 94.1934 | 84 | HP | 7.91  | Private     |
| 18 | Rajguru bari     | Majuli | 26.95   | 94.2141 | 85 | TW | 47    | State Govt. |
| 19 | Dakhinpat kalita | Majuli | 26.9176 | 94.2713 | 85 | TW |       | State Govt. |
|    | gaon             |        |         |         |    |    | 19    |             |
| 20 | 2 no. borgayan   | Majuli | 26.9489 | 94.1108 | 83 | TW | 12    | State Govt. |
| 21 | Balichapori      | Majuli | 26.947  | 94.0866 | 83 | TW | 12    | State Govt. |
| 22 | Malapindha       | Majuli | 26.947  | 94.0644 | 81 | TW |       | State Govt. |
|    | Mising Gaon      |        |         |         |    |    | 15    |             |
| 23 | Phuloni          | Majuli | 27.0408 | 94.2743 | 86 | TW | 11    | State Govt. |
| 24 | Punctang gaon    | Majuli | 27.0762 | 94.3747 | 97 | HP | 10    | Private     |
| 25 | Major deuri gaon | Majuli | 27.0777 | 94.338  | 86 | HP | 14    | Private     |
| 26 | Kohardubi gaon   | Majuli | 26.9927 | 94.2106 | 85 | HP | 7.2   | Private     |
| 27 | Garamur satra    | Majuli | 26.9795 | 94.1498 | 81 | DW | 4.75  | Private     |
| 28 | Narasingha satra | Majuli | 27.0356 | 94.3305 | 88 | TW | 8.98  | State Govt. |
| 29 | Sukansuti gaon   | Majuli | 27.0457 | 94.3544 | 90 | TW | 10.38 | State Govt. |
| 30 | Bokajan gaon     | Majuli | 27.0141 | 94.307  | 89 | HP | 19.26 | Private     |
| 31 | Laon gaon        | Majuli | 27.0443 | 94.2371 | 85 | HP | 8.66  | Private     |
| 32 | Jengraimukh IB   | Majuli | 27.082  | 94.2884 | 86 | TW | 10.09 | State Govt. |
| 33 | Rawnapar BTS     | Majuli | 26.9493 | 94.2584 | 84 | DW | 4.37  | State Govt. |

# Chapter 3.0

# DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

## 3.1 Data Interpretation

The subsurface geology of Jorhat District is interpreted based on exploration data of Central Ground Water Board (CGWB) and exploration data of State Govt. of Assam. The drilling depth of CGWB's exploratory well ranges from 86 to 457mbgl.Whereas irrigation departments exploratory well depth ranges up to 73.52mbgl.

| Depth       | < 50m | 50-100m | 100-150 m | 150-200 m | 200-300 m | >300 m |
|-------------|-------|---------|-----------|-----------|-----------|--------|
| No of wells | 0     | 5       | 5         | 5         | 4         | 4      |
| % of wells  | 0     | 21.7    | 21.7      | 21.7      | 17.4      | 17.4   |

Table 3.1: Distribution of EW based on drilled depth

From the examination of available litholog, it is observed that down to a maximum explored depth of 457m, the subsurface lithlogy is dominated by, sand, clay, sand with gravel and clay mixed with sand. The available data indicate major aquifer of the district is younger alluvium (AL01) of quaternary age.

# 3.1.1 Aquifer Disposition

Following sections are constructed to show the 2D disposition of aquifers in the district.

(i) 2D disposition along Brahmaputra River: Section prepared parallel to Brahmaputra river showing 6 clay beds in the western side of district. These clay layers are absent in Khalnagaon and Mithaamtol EW. Upto 100 m thickness the aquifer material is dominated by sand. However, beyond 100m clay beds is dominated.



Fig 3.1: 2D disposition of aquifer along Brahmaputra River

(ii) 2D disposition along southern foothills: The thickness of the granular zone is less in this section. In Dekagaon and Maibalia EW clay is dominated down to a depth of 300m with intervening thin sand beds.



Fig 3.2:Cross section B-B' between Melamati-Maibalia.

(iii) 2D disposition of aquifer along NW-SE direction: This section indicates that the aquifer materials are dominated by sand, sand mixed with gravel and clay However sand is dominated in the northern part of the section near to Brahmaputra river and toward the south aquifer material is dominated by clay.



Fig 3.3: Cross section C-C' between Khalnagaon-Melamati.

3D disposition of aquifer: The fence diagram and 3D aquifer model of the district indicate that the sub-surface formation in the alluvial plain is dominated by sand, sand mixed clay, and clay. Various clay and sandy clay layers encountered south to Brahmaputra of district and thickness of this layer increasing toward south and south east. Granular zone thickness increasing toward north.



Fig 3.4:Fence diagram of showing aquifer disposition.

# Aquifer Disposition in Majuli

The subsurface geology of Majuli is interpreted based on 2nos exploration data of Central Ground Water Board (CGWB) and 2 nos Exploration data of irrigation department, Assam. Following sections are prepared to shown the 2D disposition of aquifers in Majuli. (i) Northeast- southwest section Parallel to Brahmaputra River: Based on available 4 EW data in Majuli, section prepared parallel to Brahmaputra River. Aquifer material is dominated by sand and gravelly sand up to the depth of 86 m except few meter thin clayey sand zone in the form of lenses shaped observed in the western side at 19m and 76m depth with 6.3m and 12.6 m thickness that are pinched out toward Karkichuck. (Fig.3.5)



Fig 3.5:Northeast- southwest section Parallel to Brahmaputra River.

# **3.1.2.** Aquifer Characteristics

Major aquifer of district is younger alluvium (AL01). The aquifer of the district can be broadly divided into two groups. Shallow aquifer depth limit is 50m and below which deeper aquifer exists. The cumulative thicknesses of both shallow and deeper aquifers are given in Table.

|                  | Drilled Depth | Granular Zones/   | Cumulative thickness of |              |  |
|------------------|---------------|-------------------|-------------------------|--------------|--|
| Village/Location | (m)           | Potential Zones   | granula                 | ar zones (m) |  |
|                  |               | Encountered       | GL to 50                | 50 to 300 m  |  |
|                  |               |                   | m                       | and above    |  |
| Gohaingaon       | 300.5         | 25-134            | 25                      | 129.8        |  |
|                  |               | 232.4-278.2       |                         |              |  |
| Boishabi         | 288.3         | 67.7-76.9         | 0                       | 21.4         |  |
|                  |               | 86-98.2           |                         |              |  |
| Maibalia         | 299.3         | 3.5-40.1          | 36.6                    | 23           |  |
|                  |               | 103.6-126.6       |                         |              |  |
| Jagduar          | NA            | 34-50             | 16                      | NA           |  |
| Kakojan          | 311.77        | 45.7-50.3         | 4.6                     | 22.95        |  |
|                  |               | 66.77-89.72       |                         |              |  |
| Nagajanka        | 165.4         | 6.8-25.25         | 37.05                   | 65.55        |  |
|                  |               | 31.4-56, 62-68.3, |                         |              |  |
|                  |               | 74.45-80.6, 89.9- |                         |              |  |
|                  |               | 96.05, 108-120,   |                         |              |  |
|                  |               | 135.95-165.4      |                         |              |  |
| Dekagaon         | 292.8         | 170-182           | 0                       | 12           |  |
| Melamati         | 300.2         | 57-61, 66-76, 81- | 0                       | 60           |  |
|                  |               | 91, 97-102, 159-  |                         |              |  |
|                  |               | 165, 182-191,     |                         |              |  |
|                  |               | 250-266           |                         |              |  |
| Bibijan          | 200           | 28.2-31.2, 59-62, | 3                       | 46.05        |  |
|                  |               | 74.25-92.7,       |                         |              |  |
|                  |               | 95.85-98.85, 105- |                         |              |  |
|                  |               | 126.6             |                         |              |  |
| Lichubari        | 230.74        | 10-84.2, 122.67-  | 40                      | 65           |  |
|                  |               | 125.67, 199.65-   |                         |              |  |
|                  |               | 227.69            |                         |              |  |
| No-1 Sonarigaon  | 175           | 6.8-12.95, 71.45- | 6.15                    | 49.65        |  |
|                  |               | 99.50, 148.25-    |                         |              |  |
|                  |               | 169.85            |                         |              |  |
| Jalukonibari     | 160.55        | 0-6.8, 142.1-     | 6.8                     | 12.3         |  |
|                  |               | 154.4             |                         |              |  |
| Machorhat        | 171.3         | 0-53.1            | 50                      | 115.25       |  |
|                  |               | 59.15-83.75       |                         |              |  |
| Brahmingaon      | 457.3         | 22.6-28.6         | 6                       | 99.69        |  |
|                  |               | 107.1-137.16,     |                         |              |  |
|                  |               | 167.64-173.73,    |                         |              |  |
|                  |               | 181.35-189.55,    |                         |              |  |

| Table 3.2:  | Granular zones  | encountered in e | xploratory  | wells in J | orhat District. | Assam   |
|-------------|-----------------|------------------|-------------|------------|-----------------|---------|
| 1 uoie 5.2. | Ofulfulur Lones | cheotanterea m e | mprorutor y | wents mis  | ornat District, | 1 100um |

|                    |        | 190.5-202.60,  |       |       |
|--------------------|--------|----------------|-------|-------|
|                    |        | 207.26-239.77, |       |       |
|                    |        | 241.4-247.40,  |       |       |
|                    |        | 269.75-271.88, |       |       |
|                    |        | 317-320.6      |       |       |
| Bhalukmora         | 107.02 | 14.94-17.99,   | 33.23 | 24.59 |
|                    |        | 19.82-50.91,   |       |       |
|                    |        | 75.31-         |       |       |
|                    |        | 92.99,102.02-  |       |       |
|                    |        | 107.02         |       |       |
| Rangajan           | 150    | 30-60          | 20    | 85    |
|                    |        | 72-147         |       |       |
| Mithaamtol         | 103.65 | 19.09-67.41    | 30.91 | 50.68 |
|                    |        | 70.43-103.7    |       |       |
| Khalnagaon         | 106.68 | 6.09-106.68    | 43.91 | 56.68 |
| Koronga            | 124    | 42-124         |       |       |
| Karkichuk Phuloni  | 88.4   | 6.5-88.4       | 43.5  | 38.4  |
| Chilakola          | 86.2   | 6.55-19.1      | 37.15 | 25.8  |
|                    |        | 25.4-75.8      |       |       |
| Jengraimukh        | 73.52  | 6.09-12.19     | 37.82 | 23.15 |
| chapori            |        | 18.28-73.15    |       |       |
| Lakhimi Kathalguri | 73.52  | 12.19-73.15    | 37.81 | 23.15 |
|                    |        |                | 1     |       |

**Shallow Aquifer zone:** In shallow aquifer granular zone thickness varies from 0m to 50 m, and granular zone thickness increasing toward north of district, viz., at Kalangaon, Machorahat, Karkichuck Phuloni, Chilakola. It is observed that lowest thickness of this zone is found towards southern part of the district in Boisabi and Melamati.

The predominance of clay in the southern part of district within 50 m depth makes the shallow aquifer less productive Aquifer property storitivity, transmitivity, of shallow aquifer upto depth of 50m not known.

**Deeper Aquifer Zone:** The cumulative thickness of deeper aquifer beyond 200m could not be ascertained in all exploratory well, only 9 exploratory wells have drilling depth of 200 m or more, However based on the available information it can be confirmed that 12.3 to 129.8 m cumulative thickness of granular zones are available. The thickness of granular zone decreases toward south and south east. Groundwater within this depth range occurs under semi-confined to confined condition as storativity value ranges from 1.02 x  $10^{-3}$  to 5.8x  $10^{-4}$ . Transmissivity value ranges from 6.65 to 5632 m2 /day. Discharge varies from 3.52 m<sup>3</sup>/hrs to 221.4 m<sup>3</sup>/hrs, for drawdown of 1.88m to 14.81m.

| Depth     | SWL              | Discharge  | Drawdown     | Т              | Permeability | Storativity                                   |
|-----------|------------------|------------|--------------|----------------|--------------|-----------------------------------------------|
| Range (m) | (mbgl)           | (m3/hr)    | (m)          | (m2/day)       | (m/day)      |                                               |
| 50-457    | 2.05 to<br>19.90 | 3.52-211.4 | 1.88 – 14.81 | 6.65 -<br>5632 | 71.86 - 84.2 | 0.89 <sup>-3</sup> to<br>5.8x10 <sup>-4</sup> |

Table 3.3: Aquifer properties of deeper aquifer zones.

#### 3.2 Ground water level of shallow aquifer zone

To study ground water regime, depth to water level from 33 monitoring stations (GWMS 11, Key well 22) are measured seasonally. In pre-monsoon the depth-to-water level varies from 0.67 to 6.73 mbgl and in post monsoon depth-to-water level varies from 0.73 to 4.13 mbgl. In pre- monsoon deeper water level recorded at Kamlabari, Majuli block and shallow water level at Sodial Kacharigaon of Titabor Block. In post- monsoon deeper water level recorded in Jengraimukh of Majuli block and shallow water level at Vijay Nagar of Jorhat west Block (Fig. 3.6 and 3.7).



Fig 3.6:Pre-monsoon DTW map of shallow aquifer zones. , Jorhat districct, Assam





Seasonal fluctuation of water level ranges from 0.04 m to 4.63m. Highest fluctuation observed in Kamlabari of Majuli block and Kokilamukh of Jorhat west block. Most of area showing water level fluctuation less than 2.0 m. (Fig. 3.8).



Fig 3.8:Water Level Fluctuation map , Jorhat districct, Assam

## 3.2.1 Ground Water Movement

The water table contour has been prepared based on water level of ground water monitoring stations which is shown in Fig.24.The ground water flow direction is toward Brahmaputra River. The highest water table is 100m and lowest water table 80 m above the mean sea level.



Fig 3.9:Water table contour, Jorhat district, Assam

## 3.2.2 Water level trend analysis

For analysis of long-term behavior of ground water level, data from Ground Water Monitoring Stations (GWMS) are utilized. Historical depth-to-water level data (in mbgl) are plotted as individual hydrographs and are given in Figure 25, 26 and Table 14 showing overall trend of water levels in GWMS wells of Jorhat district, Assam.

| SN | Locality/Name | No. of years | Water Level Trend |             |  |  |
|----|---------------|--------------|-------------------|-------------|--|--|
|    |               |              | Post-monsoon      | Pre-monsoon |  |  |
| 1  | Cinemora      | 8            | Rise              | Rise        |  |  |
| 2  | Debarapara    | 10           | Rise              | Rise        |  |  |

Table 3.4: Trend of Water levels in GWMS Wells

| SN | Locality/Name | No. of years | Water Level Trend     |             |  |  |
|----|---------------|--------------|-----------------------|-------------|--|--|
|    |               |              | Post-monsoon          | Pre-monsoon |  |  |
| 3  | Kokilamukh    | 9            | No significant cl     | nange       |  |  |
| 4  | Meleng        | 8 and 7      | Rise                  | Rise        |  |  |
| 5  | Sodial        | 8            | Rise                  | Rise        |  |  |
| 6  | Titabor       | 10           | Rise                  | Rise        |  |  |
| 7  | Kunwari       | 6            | No significant change |             |  |  |
| 8  | Lichubari     | 8            | Rise                  |             |  |  |
| 9  | Kamarbandha   | 6            | Rise                  |             |  |  |















Fig 3.10:Post Monsoon Hydrograph of GWMS wells , Jorhat district, Assam













Fig 3.11:Pre Monsoon Hydrograph of GWMS wells , Jorhat districct, Assam

## 3.3 Ground water quality

During AAP 2021-22, 31 nos. of Shallow aquifer Groundwater samples were collected from dug well/ hand pump/tube well during post monsoon and 46 nos sample in pre-monsoon for water quality study of Jorhat district. Temperature, Ec, pH, and salinity were measured using portable digital quality kit on site. Chemical analysis of ground water samples are carried out by regional chemical laboratory of Central Ground Water Board, North Eastern Region, Guwahati. In the present study the quality of water with respect to major ion, heavy metals, iron, arsenic and uranium, TDS, TH etc. was estimated and various parameter analyzed to evaluate the suitability of ground water in the study area for human consumption and agriculture practices.

|             |         |                  | Post Mor | nsoon |        | Pre Monsoon      |         |        |        |  |
|-------------|---------|------------------|----------|-------|--------|------------------|---------|--------|--------|--|
| Parameter   | Unit    | No of<br>Samples | Average  | Max   | Min    | No of<br>Samples | Average | Max    | Min    |  |
| pН          | No unit | 31               | 8.1      | 8.8   | 7.50   | 46               | 8.2     | 8.5    | 7.25   |  |
| EC          | (µs/cm) | 31               | 325.3    | 702.1 | 118.00 | 46               | 425.1   | 1000.0 | 162.80 |  |
| Turbidity   | No unit | 31               | 0.2      | 0.3   | 0.00   | 46               | 0.2     | 0.4    | BDL    |  |
| TDS         | mg/l    | 31               | 187.3    | 399.8 | 66.70  | 46               | 280.6   | 660.0  | 107.45 |  |
| Carbonate   | mg/l    | 31               | 2.7      | 12.0  | 0.00   | 46               | 12.5    | 12.6   | BDL    |  |
| Bicorbonate | mg/l    | 31               | 213.5    | 439.6 | 79.36  | 46               | 225.3   | 415.1  | 85.47  |  |
| TA          | mg/l    | 31               | 216.2    | 445.6 | 79.36  | 46               | 234.3   | 433.1  | 85.47  |  |
| Chloride    | mg/l    | 31               | 22.3     | 81.5  | 7.09   | 46               | 35.5    | 195.0  | 10.64  |  |
| Sulphate    | mg/l    | 31               | 14.7     | 52.0  | 0.00   | 46               | 7.8     | 34.2   | 0.01   |  |
| Nitrate     | mg/l    | 31               | 5.3      | 38.8  | 0.00   | 46               | 1.0     | 6.0    | 0.04   |  |
| Flouride    | mg/l    | 31               | 0.5      | 0.7   | 0.23   | 46               | 0.4     | 0.8    | 0.04   |  |
| Calcium     | mg/l    | 31               | 35.4     | 72.1  | 8.01   | 46               | 36.6    | 100.1  | 16.01  |  |
| Magnesium   | mg/l    | 31               | 24.3     | 50.9  | 6.06   | 46               | 22.4    | 54.6   | 3.63   |  |
| TH          | mg/l    | 31               | 188.4    | 345.0 | 70.00  | 46               | 183.0   | 300.0  | 65.00  |  |

Table 3.5: Minimum, maximum and mean values of hydro chemical parameters of groundwater samples.

|           |            |    | Post Mon | soon |       |                  | Pre Mo  | nsoon |       |
|-----------|------------|----|----------|------|-------|------------------|---------|-------|-------|
| Parameter | meter Unit |    | Average  | Max  | Min   | No of<br>Samples | Average | Max   | Min   |
| Sodium    | mg∖        | 31 | 9.4      | 38.0 | 0.31  | 46               | 19.3    | 95.3  | 3.51  |
| Potasium  | mg/l       | 31 | 5.8      | 37.1 | 0.10  | 46               | 10.9    | 59.2  | 1.77  |
| Iron      | mg/l       | 31 | 7.0      | 89.6 | 0.63  | 46               | 3.7     | 29.4  | 0.13  |
| Manganese | mg/l       | 31 | 0.9      | 2.6  | 0.02  | 46               | 0.9     | 3.3   | BDL   |
| Zinc      | mg/l       | 31 | 0.7      | 6.6  | 0.05  | 46               | —       | -     | _     |
| Copper    | mg/l       | 31 | 0.0      | 0.0  | 0.01  | 46               | _       |       |       |
| Cadmium   | µg/l       | 31 | 0.3      | 1.6  | 0.14  | 46               | 0.9     | 9.7   | 0.09  |
| Lead      | µg/l       | 31 | 15.1     | 42.8 | 1.54  | 46               | 4.1     | 42.7  | 0.63  |
| SAR       | No unit    | 31 | 0.3      | 1.4  | 0.01  | 46               | 0.7     | 3.5   | 0.09  |
| PI        | %          | 31 | 57.6     | 95.4 | 32.99 | 46               | 62.8    | 95.1  | 31.80 |
| RSC       | meq/l      | 31 | -0.3     | 0.9  | -2.88 | 46               | 0.0     | 1.1   | -2.78 |
| Na%       | %          | 31 | 12.8     | 40.2 | 2.77  | 46               | 23.3    | 67.0  | 6.50  |
| KR        | No unit    | 31 | 0.1      | 0.6  | 0.00  | 46               | 0.3     | 1.5   | 0.03  |
| MH        | %          | 31 | 52.6     | 71.4 | 31.21 | 46               | 49.6    | 81.8  | 15.20 |
| PS        | meq/l      | 31 | 0.8      | 2.4  | 0.2   | 46               | 1.1     | 5.9   | 0.40  |

Drinking Water Quality: Pre Monsoon and Post monsoon groundwater analysis data has been analyzed and were compared with the Bureau of Indian Standard for drinking water quality (BIS-2012 to evaluate the suitability of groundwater in the study area for human consumption shown in Table 3.6.

In postmonsoon67.67% of groundwater samples have iron concentration above the permissible limits in Majuli block, highest value has been observed 89mg/l in Hazarikagaon.12.9% 61.3% water sample showing lead concentration above the permissible limit and highest value 42.8 µg/l observed in Gerikigaon of Majuli block. 74.2% water sample showing manganese concentration above the permissible limit and highest value 2.56 mg/l observed in Jugikoibotro Gaon of Majuli block. (Chemical data enclosed in Annexure-II and III).

In pre monsoon water sample 56.5% of groundwater samples have iron concentration above the permissible limits, highest value has been observed 29.42 in Nambotiya mari Gaon. 4.3% of groundwater samples have lead concentration above the permissible limits; highest value has been observed 42.7  $\mu$ g/l in Jengraimukh. 69.5water sample showing manganese concentration above the permissible limit and highest value 3.24 mg/l observed in Goalbari Gaon of Majuli.(Chemical data enclosed in Annexure-IV and V).



Fig 3.12:Major Hydrochemical facies of Groundwater, Jorhat district, Assam

Hydrochemical analysis data is plotted in Piper diagram (Fig 3.12). In the present study majority of samples are plotted in Calcium Bicarbonate field and few samples fall in Na-Cl field.

|               |           |          | Post M      | lonsoon     | Pre Monsoon |             |  |
|---------------|-----------|----------|-------------|-------------|-------------|-------------|--|
|               | Permissit |          | % of sample | % of sample | % of sample | % of sample |  |
|               |           | le Limit | under       | exceeding   | under       | exceeding   |  |
|               |           | BIS      | Permissible | Permissible | Permissible | Permissible |  |
| Parameter     | Unit      | (2012)   | limits      | limits      | limits      | limits      |  |
|               | No        |          |             |             |             |             |  |
| pН            | unit      | 6.5-8.5  | 83.88       | 16.12       | 100         | 0           |  |
| TH (as COCO3) | mg/l      | 600      | 100         | 0           | 100         | 0           |  |
| TDS           | mg/l      | 2000     | 100         | 0           | 100         | 0           |  |
| Turbidity     | NTU       | 5        | 100         | 0           | 100         | 0           |  |
| Calcium       | mg/l      | 200      | 100         | 0           | 100         | 0           |  |
| Magnesium     | mg/l      | 100      | 100         | 0           | 100         | 0           |  |
| Chloride      | mg/l      | 1000     | 100         | 0           | 100         | 0           |  |

Table 3.6: Suitability of groundwater for drinking purposes, Jorhat district, Assam.

|           |           |          | Post M      | onsoon      | Pre Monsoon |             |  |
|-----------|-----------|----------|-------------|-------------|-------------|-------------|--|
|           | Permissib |          | % of sample | % of sample | % of sample | % of sample |  |
|           |           | le Limit | under       | exceeding   | under       | exceeding   |  |
|           |           | BIS      | Permissible | Permissible | Permissible | Permissible |  |
| Parameter | Unit      | (2012)   | limits      | limits      | limits      | limits      |  |
| Sulphate  | mg/l      | 400      | 100         | 0           | 100         | 0           |  |
| Flouride  | mg/l      | 1.5      | 100         | 0           | 100         | 0           |  |
| Nitrate   | mg/l      | 45       | 100         | 0           | 100         | 0           |  |
| Iron      | mg/l      | 1        | 32.26       | 67.74       | 43.5        | 56.5        |  |
| Manganese | mg/l      | 0.3      | 25.8        | 74.2        | 30.5        | 69.5        |  |
| Zinc      | mg/l      | 15       | 100         | 0           | NA          |             |  |
| Copper    | mg/l      | 1.5      | 100         | 0           | NA          | Δ           |  |
| Cadmium   | μgl       | 3        | 100         | 0           | 91.4        | 8.6         |  |
| Lead      | μgl       | 10       | 38.7        | 61.3        | 95.7        | 4.3         |  |

Table 3.7: Concentration of Heavy Metal in ground water, Jorhat districct, Assam.

|     |               |        |      |     | Post-Monsoon |     |     | Pre-Monsoon |      |      |     |    |      |      |
|-----|---------------|--------|------|-----|--------------|-----|-----|-------------|------|------|-----|----|------|------|
|     | Location      | Block  | Sour | Dep | Fe           | Mn  | As  | C           | Pb   | Fe   | Mn  | As | Cd   | Pb   |
| Sr. |               |        | ce   | th  |              |     |     | d           |      |      |     |    |      |      |
| No  |               |        |      | (m) | mg/L         |     |     | μg/L        |      | mg/l | L   |    | μg/L |      |
| 1   | Jengraimukh   | Majuli | HP   | 7.8 | 0.8          | 2.1 | 12. | 1           | 7    | 0.73 | 0.2 |    | 0.   | 42.7 |
| 2   | Garamur soru  | Majuli | HP   | 11  | 0.7          | 0.2 | 2.0 | 0           | 6    | 4.29 | 0.5 |    | 5.   | 5.40 |
| 3   | Mekheli       | Majuli | TW   | 13  | 3.9          | 0.8 | 1.8 | 0           | 16.7 | 3.33 | 0.2 |    | 0.   | 4.06 |
| 4   | Pohumora      | Majuli | HP   | 11  | 0.7          | 0.9 | 1.4 | 0           | 18.4 | 4.72 | 0.2 |    | 0.   | 4.73 |
| 5   | Kamalabari,P  | Majuli | ΤW   | 28  | 7.9          | 1   | 2.6 | 0           | 7    | 0.12 | 0.4 |    | 0.   | 3.05 |
| 6   | Nambotiya     | Majuli | HP   | 11  | 25.          | 1   | 11. | 0           | 17.6 | 29.4 | 1.5 |    | 2.   | 5.06 |
| 7   | Kerala gaon   | Majuli | HP   | 11  | 3.9          | 0.2 | 2.2 | 0           | 20.1 | 0.31 | BD  |    | 0.   | 2.03 |
| 8   | Merua bari    | Majuli | HP   | 14  | 1.1          | 0.2 | 1.2 | 0           | 32.1 | 10.4 | 0.3 |    | 1.   | 3.72 |
| 9   | Borkolia      | Majuli | HP   | 11  | 1.1          | 0.3 | 1.1 | 0           | 13.2 | 0.79 | 0.4 |    | 0.   | 2.37 |
| 10  | Pakajora      | Majuli | HP   | 11  | 0.9          | 0.1 | 5.4 | 0           | 15.9 | 0.73 | 0.1 |    | 0.   | 2.71 |
| 11  | Kohardubi     | Majuli | HP   | 7   | 0.8          | 0.4 | 5.2 | 0           | 17.6 | 0.58 | 0.0 |    | 0.   | 4.06 |
| 12  | Hazarika gaon | Majuli | HP   | 11  | 89.          | 0.6 | 3.6 | 0           | 23.8 | 2.54 | 0.5 |    | 0.   | 13.5 |
| 13  | Gereki gaon   | Majuli | HP   | 7   | 8.1          | 0.9 | 1.9 | 0           | 42.8 | 0.16 | 0.0 |    | 0.   | 4.39 |
| 14  | Bhogpur       | Majuli | HP   | 14  | 14.          | 0.9 | 4.6 | 0           | 15.9 | 7.78 | 1.4 |    | 4.   | 5.06 |
| 15  | Rajguru bari  | Majuli | TW   | 47  | 6.5          | 1.1 | 8.6 | 0           | 24.2 | 0.16 | 0.0 |    | 0.   | 2.71 |
| 16  | Komargaon     | Majuli | HP   | 11  | 0.9          | 0.1 | 2.2 | 0           | 15.9 | 9.47 | 1.4 |    | 0.   | 2.71 |
| 17  | Kalita gaon   | Majuli | HP   | 14  | 0.8          | 1.9 | 1.1 | 0           | 17.6 | 0.46 | 0.2 |    | 0.   | 2.37 |
| 18  | Jugiikoibotro | Majuli | HP   | 8   | 16.          | 2.6 | 8.4 | 0           | 15   | 0.29 | 2.1 |    | 0.   | 3.38 |
| 19  | Goalabari-    | Majuli | TW   | 11  | 0.6          | 1.2 | 1.1 | 0           | 19.3 | 17.6 | 3.2 |    | 1.   | 4.06 |
| 20  | Kakori        | Majuli | HP   | 8   | 1.7          | 0   | 1.2 | 0           | 9.7  | 0.24 | 1.9 |    | 0.   | 2.37 |
| 21  | Malapindha    | Majuli | HP   | 8   | 1.2          | 1.6 | 4.4 | 0           | 9.7  | 0.40 | 0.0 |    | 0.   | 6.72 |
| 22  | Malapindha    | Majuli | HP   | 8   | 0.9          | 0.2 | 1.3 | 0           | 7    | 2.75 | 2.9 |    | 0.   | 3.72 |
| 23  | Boridigha     | Majuli | HP   | 8   | 6.4          | 1   | 1.1 | 0           | 15   | 0.69 | 0.3 |    | 3.   | 2.71 |
| 24  | Uluwani       | Majuli | HP   | 11  | 2.1          | 0.4 | 3.6 | 0           | 29.8 | 2.08 | 1.5 |    | 0.   | 4.73 |
| 25  | Rongachahi    | Majuli | HP   | 8   | 2.1          | 1.3 | 2.1 | 0           | 11.5 | 1.35 | 0.4 |    | 0.   | 1.69 |
| 26  | Bapuchola     | Majuli | HP   | 14  | 1.7          | 0.4 | 11. | 0           | 6    | 2.17 | 1.4 |    | 0.   | 3.05 |
| 27  | Lahon gaon    | Majuli | HP   | 14  | 4.5          | 1.5 | 11. | 0           | 8.8  | 2.68 | 2.2 |    | 0.   | 2.37 |
| 28  | Gosaibari     | Majuli | HP   | 8   | 1.1          | 2.2 | 2.3 | 0           | 6    | 7.19 | 0.4 |    | 0.   | 2.37 |
| 29  | Phutsang gaon | Majuli | HP   | 8   | 2            | 0.2 | 2.0 | 0           | 6    | 0.31 | 2.7 |    | 0.   | 2.03 |
| 30  | Ratanpur miri | Majuli | HP   | 14  | 1            | 0.7 | 1.0 | 0           | 1.5  | 7.90 | 1.0 |    | 0.   | 1.43 |

| AQUIFER MAPPING IN | JORHAT DISTRIC | T, ASSAM |
|--------------------|----------------|----------|
|--------------------|----------------|----------|

| Sr. | Location           | Block  | Source | Depth | Fe   | Mn  | As               | Cd    | Pb    | Fe    | Mn    | Cd    | Pb   |
|-----|--------------------|--------|--------|-------|------|-----|------------------|-------|-------|-------|-------|-------|------|
| No  |                    |        |        | (m)   | mg/L |     |                  | µg/L  |       | m     | g/L   | μg/l  | L    |
| 31  | Major deuri gaon   | Majuli | HP     | 14    | 5.9  | 1.3 | 3.11             | 0.2   | 9.7   | 1.277 | 1.032 | 0.205 | 1.27 |
| 32  | Garamura satra     | Majuli | DW     | 4.75  |      |     |                  |       |       | 6.148 | 0.468 | 0.205 | 1.11 |
| 33  | Karkichuk, phuloni | Majuli | HP     | 8     |      |     |                  |       |       | 1.256 | 0.651 | 0.167 | 0.95 |
| 34  | Karkichuk, phuloni | Majuli | TW     | 88.4  |      |     |                  |       |       | 0.874 | 0.651 | 0.129 | 0.79 |
| 35  | Karkichuk, phuloni | Majuli | TW     | 88.4  |      |     |                  |       |       | 0.756 | 0.586 | 0.393 | 0.63 |
| 36  | Nambotiya mari     | Majuli | HP     | 11    |      |     |                  |       |       | 8.57  | 1.076 | 9.676 | 2.71 |
| 37  | Hazarika           | Majuli | HP     | 14    |      |     |                  |       |       | 9.761 | 0.912 | 0.318 | 5.40 |
| 38  | Bhogpur(filtered)  | Majuli | HP     | 14    |      |     |                  |       |       | 7.844 | 1.076 | 0.544 | 3.38 |
| 39  | Kakori             | Majuli | HP     | 14    | IN P |     | onsooi<br>+ +aka | n sam | ipie  | 0.639 | 0.255 | 0.959 | 4.06 |
| 40  | Bapuchola          | Majuli | HP     | 14    |      | no  | стаке            | n     |       | 1.505 | 0.533 | 0.091 | 1.35 |
| 41  | Lahon              | Majuli | HP     | 14    |      |     |                  |       |       | 4.859 | 1.902 | 0.431 | 1.69 |
| 42  | Nambotiya          | Majuli | HP     | 14    |      |     |                  |       |       | 0.371 | 1.054 | 0.242 | 4.73 |
| 43  | Kakori kota        | Majuli | HP     | 11    |      |     |                  |       | 1.359 | 0.011 | 0.129 | 2.71  |      |
| 44  | Kakori kota        | Majuli | HP     | 14    |      |     |                  |       | 0.296 | 0.032 | 0.129 | 1.69  |      |
| 45  | Boridigha gaon     | Majuli | HP     | 8     |      |     |                  |       | 2.082 | 1.364 | 0.77  | 2.71  |      |
| 46  | Lahon gaon         | Majuli | HP     | 25    |      |     |                  |       |       | 0.504 | BDL   | 0.129 | 1.35 |

HP:Hand pump TW: Tube well

DW: Dug well

Irrigation Water Quality: Sodium hazards (Na%), Kelly's Index (KI), Permeability Index (PI), Magnesium Hazards (MAR), Residual Sodium Carbonate (RSC), Sodium Adsorption Ratio (SAR), Potential Salinity (PS) etc parameters has been analyzed to evaluate the suitability of ground water in the study area for irrigation. all parameters deciphered the quality of groundwater of study area are Excellent to Good for irrigation purpose and same is Summarized in table 18.

Table 3.8: Suitability of groundwater (Shallow aquifer) for irrigation in Jorhat district, Assam.

| H          | Based on EC | Post Monsoon | Pre Monsoon |  |  |  |
|------------|-------------|--------------|-------------|--|--|--|
| EC (µs/cm) | Water Class | % of samples |             |  |  |  |
| <250       | Excellent   | 29           | 8.7         |  |  |  |
| 250-750    | Good        | 71           | 86.9        |  |  |  |
| 750-2000   | Permissible | 0            | 4.4         |  |  |  |
| 2000-3000  | Doubtful    | 0            | 0           |  |  |  |
| >3000      | Unsuitable  | 0            | 0           |  |  |  |
| В          | ased on RSC |              |             |  |  |  |
| RSC meq/l  | Water Class | % of s       | amples      |  |  |  |
| <1.25      | Good        | 100          | 100         |  |  |  |
| 1.25-2.5   | Doubtful    | 0            | 0           |  |  |  |
| >2.5       | Unsuitable  | 0            | 0           |  |  |  |
|            | Based o     | on SAR       |             |  |  |  |
| SAR        | Water Class | % of samples | SAR         |  |  |  |
| <10        | Excellent   | 100          | 100         |  |  |  |
| 10.0 -18.0 | Good        | 0            | 0           |  |  |  |
| 18.0 - 26  | Doubtful    | 0            | 0           |  |  |  |
| > 26       | Unsuitable  | 0            | 0           |  |  |  |

| E           | Based on EC           | Post Monsoon | Pre Monsoon  |
|-------------|-----------------------|--------------|--------------|
|             | Based on Na%          |              |              |
| Na%         | Water Class           | 9            | % of samples |
| <20         | Excellent             | 87           | 32.6         |
| 20-40       | Good                  | 9.67         | 60.8         |
| 40-60       | Permissible           | 3.33         | 6.6          |
| 60-80       | Doubtful              | 0            | 0            |
| >80         | Unsuitable            | 0            | 0            |
|             | Based on PI           |              |              |
| PI in %     | Water Class           | 9            | 6 of Samples |
| >75         | Class-I, Suitable     | 9.67         | 15.2         |
| 25-75       | Class-II, Good        | 90.33        | 84.8         |
| <25         | Class-III, unsuitable | 0            | 0            |
|             | Based on Kelly Index  | ,            |              |
| KI          | Water Class           | 9/           | 6 of Samples |
| <1          | Recommended           | 100          | 97.8         |
| >1          | Not recommended       | 0            | 2.2          |
|             | Potential Salinity    |              |              |
| PS in meq/l | Water Class           | 9            | % of samples |
| <3.0        | Suitable              | 100          | 97.8         |
| >3.0        | Unsuitable            | 0            | 2.2          |

SAR vs EC on the US salinity diagram is shown in fig 29, most of groundwater sample fall in C1S1 and C2S1 indicating low sodium content and low to medium salinity nature of groundwater is good for irrigation purpose.



Fig 3.13: US Salinity diagram showing suitability of groundwater for irrigation based on SAR and Ec.

#### Chapter 4.0

#### **Ground water Resources**

The computation of ground water resources available in the district has been done using GEC 2015 methodology. The dynamic resource estimation is done district wise due to paucity of block-wise data.

Data and assumptions used in the assessment: Following data and assumptions are used in the assessment:

1) Rainfall recharge has been computed by both RIF and WLF methods. To calculate rainfall recharge, both for monsoon and non-monsoon season, RIF factor is considered as 22%. Specific yield has been taken as 12 %.

2) Last ten years rainfall data is considered for groundwater resource calculation.

3) Water level data has been considered for 2019-20. Water level fluctuation based on data of March (Pre monsoon) and November (post monsoon) has been considered since deepest water levels are recorded during the month of March.

4) The population figures were collected from Census, 2011and projected to 2021. Therefore, domestic extraction is calculated based on per capita water requirement i.e. @60 lpcd for rural and @135 lpcd in urban areas. The dependency on ground water resource for domestic and industrial water supply in rural areas is considered as 76%.

The total replenishable ground water resources available in the study area have been computed using the average water level fluctuations in observation wells and specific yield of aquifers. These have been normalised using normal rainfall data to eliminate variations in recharge due to excess or deficit rainfall. The monsoon recharge arrived at is then compared with the recharge computed using rainfall infiltration method. In cases where the difference between the two is more than 20 percent, the recharge is computed using ad hoc method.

#### 4.1 Recharge

Total area of assessment unit is 285100 Ha, out of which 279408 Ha considered as recharge worthy area (Slope <20%). The aquifers of the study area are recharged through a) infiltration of rainfall b) seepage from the tanks and ponds c) subsurface inflow across the up dip margin. The area experiences south-west monsoon. Monsoon rainfall contributes approximately 81 percent of total rainfall (May, June, July, August, and September). Previous records show that the rainfall occurs almost in every month of a year. The month November to December has the minimum number of rainy days in any year.

The monsoon recharge of recharge worthy area from rainfall is 53640.97ham while non-monsoon recharge is 35,381.99ham. Recharge from other sources during monsoon is 3172.98 ham and during non-monsoon is 1066.36 ham. Total ground water recharge is 93262.30ham.

#### 4.2 Ground Water Extraction

The ground water extraction of unconsolidated aquifer is created by natural discharge like seepages and draft created by human interference, viz., (a) withdrawals for irrigation and

industry and (b) public-supply wells. In the district total natural discharge is 9326.23 ham of the total groundwater recharge. Total irrigation extraction created is 4215.12 ham, for industry 3.18 ham and extraction for domestic uses is 1669.55 ham. Total groundwater extraction for all uses is only 5887.85 hams.

The water trend analysis shows that there is no significant change in the water level for both post-monsoon periods.

### 4.3 Allocation of resources up to 2025

The net ground water resource is allocated for domestic uses are 1756.71hams while 59463.6 ham resources are available for future use.

#### 4.4 Stage of Ground Water Extraction

The area has very little irrigation facilities. Similarly industrial development in the area is practically less. Groundwater is mainly utilized for domestic purposes. The stage of groundwater extraction in the district is 8.99%.

Table 4.1: Summary results of Groundwater Resources Estimation in Jorhat District, Assam

| PARAMETER                                                                              | VALUES    |
|----------------------------------------------------------------------------------------|-----------|
| Total geographical area (Ha)                                                           | 285100    |
| Recharge worthy area (Ha)                                                              | 279408    |
| Rainfall Recharge (monsoon) (Ham)                                                      | 53640.97  |
| Rainfall Recharge (non-monsoon) (Ham)                                                  | 35,381.99 |
| Annual Recharge from Other Sources (monsoon) (Ham)                                     | 3,172.98  |
| Annual Recharge from Other Sources (non-monsoon) (Ham)                                 | 1066.36   |
| Annual G. W. Recharge (Ham)                                                            | 93262.30  |
| Total Natural discharge (Ham)                                                          | 9326.23   |
| Annual extractable Ground Water Resource (Ham)                                         | 65454.22  |
| Current annual gross G.W. Extraction for domestic use (Ham)                            | 1669.55   |
| Current annual gross G.W. Extraction for irrigation (Ham)                              | 4215.12   |
| Current annual gross G.W. Extraction for industrial use (Ham)                          | 3.18      |
| Current annual gross G.W. Extraction for All uses (Ham)                                | 5887.85   |
| Annual G.W. Allocation for Domestic water supply as on 2025 (Ham)                      | 1756.71   |
| Net Annual G.W. availability for future use (Ham)                                      | 59463.6   |
| Stage of GW Extraction (in %)                                                          | 8.99      |
| Categorisation for Future GW extraction (Safe/Semi-Critical /Critical /Over Exploited) | Safe      |

#### Chapter 5.0

## **Groundwater Related Issues**

The main groundwater issue in this area is vulnerable to water logging, flooding and ground water pollution.

## 5.1 Area vulnerable to water logging

Water logged areas are observed in the southwestern part of district, Titabor block, shown in figure 31. water level map that showing south western part of district is vulnerable to water logging and having ground water level less than 2.0 mbgl in pre-monsson.



Fig 5.1:Field photograph of study area showing rusting in iron pipe and interaction with public.

## **5.2 Area vulnerable to Flood**

Entire Jorhat district is vulnerable to flooding. The causes of flood in Jorhat District are due to excessive rainfall in Assam, Arunachal Pradesh and Nagaland, melting of snow at Tibet etc. During flood the rivers get charged with enormous quantity of silt and in their movement the rivers alter the condition of flow and sometime change the river courses causing untold miseries to the people living in its low line basin, making the district vulnerable to annual flooding. After the great earthquake 1950 the river bed of Brahmaputra is risingcontinuously due to disposition of sand carried down from the upstream. This has also lead to the formation of saucer shaped low lying zone in the plain of the district.

## 5.2 Area vulnerable to Iron, Lead and other Heavy metals in groundwater

During AAP 2021-22 studies, it is confirmed to occurrence of Iron, Manganese, lead and Cadmium in Pre and Post-monsoon groundwater samples of Majuli. 67.74 % of post monsoon water sample showing iron concentration above the permissible limits in the Majuli, values having above the permissible limits observed in 21 locations, 74.21% of post monsoon water sample showing Manganese concentration above the permissible limits, concentration having above the permissible limits observed in 23 locations.61.3% of water sample showing lead concentration above the permissible limits, values having above the permissible limits observed in 19 locations (Annexure II and III).However Pre monsoon groundwater samples also having Iron, lead, manganese and other heavy metals in groundwater above the permissible limits. (Data enclosed in Annexure IV and V) Fig: 31.



Fig 5.2:Map showing area vulnerable to Flooding.

In previous study carried out in southern part of district, during annual action plan 2012-13 and 2013-14, to know the water quality of the study area, water sampling done from both shallow and deeper aquifers. As per P.H.E.D. Govt. of Assam, concentration of arsenic and Iron in the shallow aquifer zone of Jorhat district is beyond permissible limit. (Refer to AQUIFER MAPPING REPORT Parts of Jorhat and Golaghat Districts, Assam).

The probable source of Iron, manganese and Arsenic in ground water is mostly due to leaching of geological minerals, dissolution of unstable Iron/manganese/Arsenic minerals, and chemical transformation within the formation. Alluvial environments are mostly characterized by reducing conditions (anaerobic), which cause high Arsenic concentrations in ground water. Arsenic contamination may also be caused by oxidation of pyrite, arsenopyrite that is present in aquifer sediments. Iron also plays an important role in the release of arsenic in groundwater. Another factor that can affect arsenic concentrations is the presence of anions such as bicarbonate, phosphate and sulphate. Heavy Metals like Lead, Arsenic and Cadmium that has been observed in ground water may be both Geogenic and Anthropogenic. The source of the Arsenic is mainly geogenic in nature and its occurrence in groundwater is due to leaching of geological minerals and dissolution of unstable arsenic minerals, chemical transformation within the minerals, etc. While the occurrence of lead in groundwater may be derived from corrosion of water abstracting pipes, fixtures, etc. and also due to sewage slugs and pesticides used for agricultural purpose. Metal like Cadmium can occur due to unregulated industrial waste disposal, sewage slugs, use of fertilizer and plumbing materials.



Fig 5.3:Vulnarability map of Jorhat district, Assam.

# Chapter 6.0 MANAGEMENT STRATEGIES

From the panel diagram it is clear that the aquifer material is combination of sand, sand with gravel, sandy clay, clayey sand and clay. The variation of lithology and geomorphic set up of the study area has also influenced the ground water regime. From flood zonation map it becomes clear that barring the structural hills, the entire district is ravaged by flood.

The objective of management is to utilize the available ground water resources to fulfill human needs and also to boost economy of an area without hampering the interest of future generation. The objective can be achieved by finding out demand of various sectors and adjusting the demand with available resource.

#### 6.1 Sustainable Management of GW resources for Irrigation

As per dynamic ground water resource estimation of Jorhat District for 2020, annual extractable ground water is 65454.22hams and stage of ground water extraction is only 8.99 %. The district is having balance net ground water availability for future development in the tune of 59463.6hams. If an irrigation plan is made to develop 60% of the balance dynamic ground water resources available, then 35687 ham of groundwater resources is available in the district for the future irrigation uses. There is ample scope for ground water development in Jorhat district for irrigation purpose which will help the district in achieving self-reliance on food grain.

In Jorhat District, net sown area is 136071 ha, and Gross cropped area is 148421 ha and cropping intensity is about 109% (agriculture census 2015-16). Cropping intensity is calculated generally from field crops, which are of short duration whereas horticulture (like citrus, banana etc) and plantation crops like spices are long duration crops. Therefore, there is enough scope for future development of ground water in the study area to bring more area under irrigation practice.

To use the groundwater for irrigation purpose a cropping plan for unirrigated kharif paddy has been designed for the district by using CROPWAT model developed by FAO (Food & Agriculture Organisation), Un irrigated Kharif paddy cultivation area of the district is 101701 ha (agriculture census 2015-16). In rice fallow land, with the support of irrigation potato, pulses, vegetables, oilseeds and wheat can be grown. The irrigation requirement of proposed cropping plan is summarised in Table 6.2 while precipitation deficiency and monthwise irrigation water requirement are shown in Table 6.3 and 6.4 respectively.

| July/August –November | November/December – March |
|-----------------------|---------------------------|
| 1. Rice               | 1. Pulses                 |
|                       | 2. Vegetables             |
|                       | 3. Oil seeds              |
|                       | 4. Wheats                 |
|                       | 5. Potatoes               |

Table 6.1: Cropping sequence in unirrigated kharif paddy area of Jorhat district.

| Cropping pattern (s)              |                               |                       |                    |             |  |  |
|-----------------------------------|-------------------------------|-----------------------|--------------------|-------------|--|--|
| Rice based cropping pattern       |                               |                       |                    |             |  |  |
| 1. Rice-Pulses                    | Present<br>Cultivated<br>area | Area to be cultivated | Area to be         | Irrigation  |  |  |
| 2. Rice-Wheat                     | (ha)                          | (%)                   | cultivated         | requirement |  |  |
| 3. Rice-Vegetable                 |                               |                       | (ha)               | (ham)       |  |  |
| 4. Rice-Potato                    |                               |                       |                    |             |  |  |
| 5. Rice-Oil seeds                 |                               |                       |                    |             |  |  |
|                                   | 1                             | 2 (% of 1)            | 3                  | 4           |  |  |
| Rice (main crop)                  | 101701                        | 50                    | 101701             | 17124       |  |  |
| Pulses                            |                               | 10                    | 20340              | 1859        |  |  |
| Potatoes                          |                               | 10                    | 20340              | 2498        |  |  |
| Oil seeds                         |                               | 10                    | 20340              | 1442        |  |  |
| Wheat                             |                               | 5                     | 10170              | 923         |  |  |
| Vegetable                         |                               | 15                    | 30511              | 2688        |  |  |
|                                   |                               | 100                   | 203402             |             |  |  |
| Net cultivated area               | 101701                        |                       | 101701             |             |  |  |
| Gross cultivated area             |                               |                       |                    |             |  |  |
| (1+pulses/+Rice/+potato/+         | 101701                        |                       | 203402             |             |  |  |
| /+Vegetable)                      |                               |                       |                    |             |  |  |
| Total irrigation requirement      |                               |                       |                    | 26534       |  |  |
| Total Irrigationrequirement ((70% |                               |                       |                    | 37005       |  |  |
| irrigation efficiency)            |                               |                       |                    | 57905       |  |  |
| Cropping intensity                | 100<br>(Present)              |                       | 200%<br>(Intended) |             |  |  |

Table 6.2: Water requirement for Kharif paddy areas of Jorhat District.

As per information, 14392 ha cultivable area of the district is chronically flood affected and multi-cropped area is not available near flood affected area(District Disaster Management Plan, Jorhat). Therefore, the water demand of agricultural sector to provide assured irrigation potentiality to un-irrigated flood prone areas and medium/medium low land will be calculated separately using Cropwat 8.0 software of FAO. A management plan has been prepared for chronically flood affected crop land of 14392 ha.

|                       | Jan  | Feb  | Mar  | Apr | May | Jun   | Jul | Aug | Sep | Oct  | Nov  | Dec  |
|-----------------------|------|------|------|-----|-----|-------|-----|-----|-----|------|------|------|
| Precipitation deficit |      |      |      |     |     |       |     |     |     |      |      |      |
| 1. Rice               | 0    | 0    | 0    | 0   | 0   | 48.7  | 98  | 0   | 0   | 12.1 | 23.4 | 0    |
| 2. Rice               | 0    | 0    | 0    | 0   | 0   | 147.3 | 0   | 0   | 0   | 0.3  | 0    | 0    |
| 3. Pulses             | 34.3 | 41.6 | 13.4 | 0   | 0   | 0     | 0   | 0   | 0   | 0    | 0    | 2.1  |
| 4. Potato             | 39.3 | 40.3 | 22.9 | 0   | 0   | 0     | 0   | 0   | 0   | 0    | 10   | 10.3 |
| 5. Oilseeds           | 35.2 | 5.3  | 0    | 0   | 0   | 0     | 0   | 0   | 0   | 0    | 13.9 | 16.5 |
| 6. Wheat              | 7.9  | 36.9 | 46   | 0   | 0   | 0     | 0   | 0   | 0   | 0    | 0    | 0    |
| 7. Vegetables         | 33   | 34.8 | 6.3  | 0   | 0   | 0     | 0   | 0   | 0   | 0    | 0    | 14   |

Table 6.3: Crop-wise and month-wise precipitation deficit in winter paddy area of, Jorhat District.

Table 6.4: Irrigation Water Requirement (in ham), in winter paddy area of Jorhat District.

| Crops                       | Area in<br>ha | Jan  | Feb  | Mar | Apr | May | Jun  | Jul  | Aug | Sep | Oct | Nov  | Dec | Annual |
|-----------------------------|---------------|------|------|-----|-----|-----|------|------|-----|-----|-----|------|-----|--------|
| Precipitation deficit (ham) |               |      |      |     |     |     |      |      |     |     |     |      |     |        |
| 1. Rice                     | 61024         | 0    | 0    | 0   | 0   | 0   | 2972 | 5980 | 0   | 0   | 738 | 1428 | 0   | 11119  |
| 2. Rice                     | 40682         | 0    | 0    | 0   | 0   | 0   | 5992 | 0    | 0   | 0   | 12  | 0    | 0   | 6005   |
| 3. Pulses                   | 20340         | 698  | 846  | 273 | 0   | 0   | 0    | 0    | 0   | 0   | 0   | 0    | 43  | 1859   |
| 4. Potato                   | 20340         | 799  | 820  | 466 | 0   | 0   | 0    | 0    | 0   | 0   | 0   | 203  | 210 | 2498   |
| 5. Oilseeds                 | 20340         | 716  | 108  | 0   | 0   | 0   | 0    | 0    | 0   | 0   | 0   | 283  | 336 | 1442   |
| 6. Wheat                    | 10170         | 80   | 375  | 468 | 0   | 0   | 0    | 0    | 0   | 0   | 0   | 0    | 0   | 923    |
| 7. Vegetables               | 30511         | 1007 | 1062 | 192 | 0   | 0   | 0    | 0    | 0   | 0   | 0   | 0    | 427 | 2688   |

| Cropping pattern (s)                                               |                               |                       |                          |                   |
|--------------------------------------------------------------------|-------------------------------|-----------------------|--------------------------|-------------------|
| Rice based cropping pattern                                        |                               |                       |                          |                   |
| 1. Early summer Rice- late<br>Winter rice                          | Present<br>Cultivated<br>area | Area to be cultivated | Area to be               | Irrigation        |
| 2. Pulses-Late Winter rice/Potato/Vegetables                       | (ha)                          | (%)                   | cultivated ( <b>ha</b> ) | requirement (ham) |
| 3. Summer Vegetables- Late winter rice                             |                               |                       |                          |                   |
|                                                                    | 1                             | 2 (% of 1)            | 3                        | 4                 |
| Rice (main crop)                                                   | 14392                         | 50                    | 14392                    | 3637              |
| Pulses                                                             |                               | 15                    | 4318                     | 328               |
| Potatoes                                                           |                               | 10                    | 2878                     | 338               |
| Wheat                                                              |                               | 10                    | 2878                     | 150               |
| Vegetable                                                          |                               | 15                    | 4318                     | 311               |
|                                                                    |                               | 100                   | 28784                    | 4764              |
| Net cultivated area                                                | 14392                         |                       | 14392                    |                   |
| Gross cultivated area<br>(1+pulses/+Rice/+potato/+<br>/+Vegetable) | 14392                         |                       | 28784                    |                   |
| Total irrigation requirement                                       |                               |                       |                          | 4764              |
| Total Irrigation requirement ((70% irrigation efficiency)          |                               |                       |                          | 6806              |
| Cropping intensity                                                 |                               |                       |                          |                   |

Table 6.5: Water requirement for chronically flood affected areas of Jorhat district, Assam.

|                       | Jan   | Feb   | Mar  | Apr | May | Jun   | Jul   | Aug | Sep | Oct  | Nov  | Dec  |
|-----------------------|-------|-------|------|-----|-----|-------|-------|-----|-----|------|------|------|
| Precipitation deficit |       |       |      |     |     |       |       |     |     |      |      |      |
| 1. Rice               | 192.2 | 42.9  | 53.1 | 0   | 0   | 0     | 0     | 0   | 0   | 0    | 0    | 52.4 |
| 2. Rice               | 55.2  | 193.8 | 52.3 | 0   | 0   | 0     | 0     | 0   | 0   | 0    | 0    | 0    |
| 3. Rice               | 0     | 0     | 0    | 0   | 0   | 147.3 | 0     | 0   | 0   | 0.3  | 0    | 0    |
| 4. Rice               | 0     | 0     | 0    | 0   | 0   | 0     | 192.5 | 0   | 0   | 13.5 | 43.5 | 0    |
| 5. Wheat              | 0.6   | 6.4   | 45.1 | 0   | 0   | 0     | 0     | 0   | 0   | 0    | 0    | 0    |
| 6.Pulses              | 0     | 0     | 0    | 0   | 0   | 0     | 0     | 0   | 0   | 9.8  | 51   | 7.5  |
| 7. Pulses             | 1.2   | 0     | 0    | 0   | 0   | 0     | 0     | 0   | 0   | 4.6  | 51   | 23   |
| 8. Vegetable          | 0     | 0     | 0    | 0   | 0   | 0     | 0     | 0   | 2.1 | 6.2  | 44.9 | 9.4  |
| 9. Vegetable          | 35.6  | 15.7  | 0    | 0   | 0   | 0     | 0     | 0   | 0   | 0    | 22.7 | 21.4 |
| 10.Potato             | 40.2  | 32.9  | 3.5  | 0   | 0   | 0     | 0     | 0   | 0   | 2.5  | 14   | 24.3 |

Table 6.6: Crop-wise and month-wise precipitation deficit in chronically flood affected areas of, Jorhat District.

Table 6.6: Irrigation Water Requirement (in ham), chronically flood affected areas of Jorhat District.

|                             | Area  |     |     |     |     |     |     |     |     |     |     |     |     |        |
|-----------------------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| Crops                       | in ha | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
| Precipitation deficit (ham) |       |     |     |     |     |     |     |     |     |     |     |     |     |        |
| 1. Rice                     | 2878  | 553 | 123 | 153 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 151 | 980    |
| 2. Rice                     | 4318  | 238 | 837 | 226 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1301   |
| 3. Rice                     | 4318  | 0   | 0   | 0   | 0   | 0   | 636 | 0   | 0   | 0   | 1   | 0   | 0   | 637    |
| 4. Rice                     | 2878  | 0   | 0   | 0   | 0   | 0   | 0   | 554 | 0   | 0   | 39  | 125 | 0   | 718    |
| 5. Wheat                    | 2878  | 2   | 18  | 130 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 150    |
| 6.Pulses                    | 1440  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 14  | 73  | 11  | 98     |
| 7. Pulses                   | 2878  | 3   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 13  | 147 | 66  | 230    |
| 8. Vegetable                | 2878  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 18  | 129 | 27  | 174    |
| 9. Vegetable                | 1440  | 51  | 23  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 33  | 31  | 137    |
| 10.Potato                   | 2878  | 116 | 95  | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 7   | 40  | 70  | 338    |

CGWB had constructed 21 nos. of exploratory wells in this district down to a depth of 447m. The discharge of these deep exploratory wells ranges from 3.52 to 216 m<sup>3</sup> /hr. Discharge of the tube wells constructed by CGWB and State Govt. Irrigation department, tapping zones within depth range 30m to 88m of alluvial aquifer varies from 16.2 to 94.6 m<sup>3</sup> /hr. It is expected that tube wells of 50 m depth tapping 15 to 30m of granular zones of the alluvial aquifer will yield 35 m<sup>3</sup>/hr. If such a tube well runs for 8 hrs/day for 120 days, then it will create a draft of 3.36 ham.

Total numbers of tube wells require to construct in the district to fulfil the irrigation requirement of 44711 ham, is found to be 13307 nos. Extraction of 44711 ham of groundwater will increase the stage of groundwater extraction to 77%. For sustainable groundwater development, it is necessary to keep the stage of groundwater extraction within the safe limit of 70%. Therefore, it is proposed to develop only 60% of balanced dynamic groundwater resources of the district i.e., 36213ham or 36300 ham (rounded off). To extract 36300 ham groundwater 10810 (rounded off) nos. of tube wells need to be constructed. The balanced requirement of nearly 8400 ham needs to be supplied through surface water irrigation. Towards the southern part of the district under Titabor block, thick clay layers are found at shallow depth. Such areas are suitable for construction of tanks and ponds which can be utilised for irrigation purpose. Moreover, potential resource in water logged and shallow water table area of district is 110684 ham and this resource may also be utilized for irrigation purpose.

Under PMSKY HKKP (GW), 263 nos. of shallow tube wells have been constructed in Jorhat district. Out of 263 nos. of tube wells 155 nos. are energised with electrical pumps and 108 nos. of the tube wells are energised with solar pumps. These tube wells have created an irrigated area of 1052 ha. While in Majuli district 141 nos. of tube wells are constructed and electrical pumps are installed in 75 nos. of tube wells and rest 66 nos. are energised with solar pumps. Construction of these tube wells under PMSKY HKKP (GW)in Majuli district have created irrigated area of 564 ha.

As 404 nos. of tube well has already been constructed in Jorhat (undivided) district under PMKSY HKKP (GW), total number of tube well that need to be constructed as per the NAQUIM management plan is 10406 [i.e., 10810 (as per NAQUIM management plan)-404 (under PMKSY HKKP)].

#### 6.2 Management of groundwater for drinking and domestic uses

**Iron and arsenic and other heavy metals pollution**: The chemical quality of ground water indicates that groundwater in the area have high iron concentration in some pockets which are beyond the permissible limit, Removal of the iron is best effected by aeration process followed by sedimentation and filtration. Potassium permanganate or chlorine/chloride may be employed to oxidize the iron, which is then filtered from the waters. The process is applicable very much when bacteria is present in the water. Iron can also be removed by addition of a mixture of sodium carbonate and sodium phosphate to precipitate iron as insoluble, followed by settling and filtration.

During previous study in southern part of Brahmaputra River of district, it is found arsenic only in shallow aquifer. From the 2D and 3D disposition of aquifer diagram it is observed that clay or sandy clay layers are in southern part of district. These confining layers can be utilizing to separate the arsenic occurrence zone by adopting proper well construction technique in southern part of district. Deep tube well in arsenic affected areas may be constructed by proper cement sealing and clay filling as shown in fig 32.

Several methods have been used to remove heavy metals from contaminated water. They include chemical precipitation, ion exchange, adsorption, membrane filtration, reverse osmosis, solvent extraction, and electrochemical treatment. Many of these methods suffer from high capital and operational costs. Adsorption seems to be one of the best-suited methods, due to its high efficiency, low-cost, and ease of operation. Various adsorbents, such as carbon foam, activated carbon, zeolite, clay minerals, organic polymers, and biochar, reused sandhave been used for the removal of heavy metals by adsorption. The most effective heavy metal adsorbents, especially for arsenic, are adsorbents based on metal oxides (Fe, Al, Mn oxides), such as WTRs, bog iron ores, ferrihydrite, goethite, layered double hydroxide, Sn/Ti-Mn binary metal oxides, Al/Fe oxide-oxyhydroxide composite powders, and red mud.



Fig 6.1: Tube-well design of a deep tube well tapping safe deeper aquifer of district where confining layer present.

(Source: Concept note on geo-genic contamination of groundwater in India)

# Annexure-I: Water level data

|     |                        |           |          |      |        | Nov-21 | Mar-22 |
|-----|------------------------|-----------|----------|------|--------|--------|--------|
| S1. |                        |           |          |      | MP     | DTW    | DTW    |
| No. | Location               | Well Type | Depth(m) | Dia  | (magl) | (mbgl) | (mbgl) |
| 1   | Jengraimukh            | Hand Pump | 14.18    | 0.05 | 1.6    | 3.56   | 4.67   |
| 2   | Mekheli gaon           | Tubewell  | 13       | 0.1  | 0.9    | 1.94   | 3.3    |
| 3   | Mudoi gaon             | Tubewell  | 7        | 0.1  | 0.17   | 1.65   | 3.16   |
| 4   | Pohumora               | Tubewell  | 9        | 0.1  | 0.9    | 2      | 3.9    |
| 5   | Kamalabari             | Tubewell  | 28       | 0.1  | 0.33   | 2.1    | 6.73   |
| 6   | Merua bari             | Hand Pump | 7.91     | 0.05 | 0.8    | 2.94   | 4.03   |
| 7   | Rajguru bari           | Tubewell  | 27       | 0.15 | 0.83   | 2.7    | 3.88   |
| 8   | Dakhinpat kalita gaon  | Tubewell  | 78       | 0.1  | 0.74   | 2.21   | 5.13   |
| 9   | 2 no. borgayan         | Tubewell  | 12       | 0.1  | 0.27   | 2.32   | 3.58   |
| 10  | Balichapori            | Tubewell  | 37       | 0.1  | 0.87   | 3.13   | 4.54   |
| 11  | Malapindha mising gaon | Tubewell  | 15       | 0.1  | 0.71   | 1.85   | 3.08   |
| 12  | Phuloni                | Tubewell  | 11       | 0.1  | 0      | 2.52   | 2.9    |
| 13  | Punctang gaon          | Hand Pump | 10       | 0.05 | 0.44   | 2.59   | 4.66   |
| 14  | Major deuri gaon       | Hand Pump | 9        | 0.05 | 3.2    | 2.16   | 3.64   |
| 15  | Kohardubi gaon         | Hand Pump | 7.2      | 0.05 | 0.45   | 1.95   | 2.33   |
| 16  | Garamur satra          | Dug well  | 4.75     | 0.8  | 0.92   | 2.56   | 3.22   |
| 17  | Narasingha satra       | Tubewell  | 8.98     | 0.1  | 0.49   | 1.89   | 2.41   |
| 18  | Sukansuti gaon         | Borewell  | 10.38    | 0.1  | 0.7    | 2.42   | 2.75   |
| 19  | Bokajan gaon           | Hand Pump | 19.26    | 0.05 | 0.65   | 1.38   | 1.97   |
| 20  | Laon gaon              | Hand Pump | 8.66     | 0.05 | 0.75   | 2.28   | 3.05   |
| 21  | Jengraimukh IB         | Tubewell  | 10.09    | 0.05 | 0.46   | 4.31   | 4.68   |
| 22  | Rawnapar BTS           | Dug well  | 4.37     | 0.93 | 0.42   | 2.09   | 2.8    |
| 23  | Cinemora               | Dug well  | 6.76     |      | 0.53   | 1.7    | 1.44   |
| 24  | Dabarapara Charali     | Dug well  | 3.78     |      | 0.85   | 1.45   | 2.13   |
| 25  | Kokilamukh             | Dug well  | 6.52     |      | 0.51   | 1.29   | 5.42   |
| 26  | Lichubari              | Dug well  | 2.04     |      | 0.92   | 0.77   | 0.75   |
| 27  | Meleng Kaparadharia    | Dug well  | 3.6      |      | 0.75   | 1.12   | 1.58   |
| 28  | Sodial Kachari Gaon    | Dug well  | 5.03     |      | 1.08   | 0.83   | 0.67   |
| 29  | Bijay Nagar            | Dug well  | 3.2      |      | 0.41   | 0.73   | 0.69   |
| 30  | Kamarbandha TE         | Dug well  |          |      | 1.25   | 1.24   | 2.19   |
| 31  | Kunwari Pukhuri        | Dug well  |          |      | 0.55   | 1.55   | 2.3    |
| 32  | Gatisunga              | Dug well  | 7.08     |      | 1.35   | 2.95   | 4.3    |
| 33  | Titabor                | Dug well  |          |      | 0.35   | 1.53   | 1.73   |

| Location                 | Block  | Temp°<br>C | pН  | EC<br>(us/cm) | Turbidity<br>(in NTI) | TDS   | $CO_{3}^{-2}$ | $HCO_3^{-1}$ | TA (as<br>CaCO3) | Cl-  | $SO_4^{-2}$ | $NO_{3}^{-1}$ | F-  | Ca <sup>+2</sup> | Mg <sup>+2</sup> | TH (as<br>CaCO3) | Na   | K    |
|--------------------------|--------|------------|-----|---------------|-----------------------|-------|---------------|--------------|------------------|------|-------------|---------------|-----|------------------|------------------|------------------|------|------|
|                          |        | C          |     | 25°C          | (111(10)              |       |               |              | CucO3)           |      | i<br>i      | n mg/L        |     |                  |                  | CucO3)           |      |      |
| Jengraimukh              | Majuli | 27.3       | 7.6 | 214.7         | 0                     | 122   | 0             | 170.9        | 170.9            | 7.1  | 0           | 11.7          | 0.5 | 24               | 20.6             | 145              | 0.3  | 3.8  |
| Garamur soru satra       | Majuli | 25.7       | 8.3 | 370.9         | 0                     | 210.6 | 0             | 146.5        | 146.5            | 24.8 | 9.1         | 34            | 0.3 | 30               | 23               | 170              | 6.3  | 20.4 |
| Mekheli gaon,PHED        | Majuli | 26         | 8.1 | 249.8         | 0.2                   | 141.3 | 0             | 183.1        | 183.1            | 10.6 | 0.6         | 0             | 0.4 | 20               | 23               | 145              | 4.3  | 2.7  |
| Pohumora                 | Majuli | 26.6       | 7.5 | 702.1         | 0.3                   | 399.8 | 0             | 201.5        | 201.5            | 81.5 | 10.3        | 38.8          | 0.3 | 56               | 35.2             | 285              | 24.8 | 12.9 |
| Kamalabari,PHED          | Majuli | 26.7       | 7.7 | 288           | 0                     | 163.4 | 0             | 189.3        | 189.3            | 14.2 | 6.5         | 0             | 0.4 | 28               | 21.8             | 160              | 4.1  | 3.8  |
| Nambotiya mari           | Majuli | 26.5       | 7.8 | 267.4         | 0                     | 153   | 0             | 207.6        | 207.6            | 24.8 | 2.5         | 0             | 0.5 | 34               | 21.8             | 175              | 3.2  | 2.1  |
| Kerala gaon              | Majuli | 25.8       | 7.9 | 229.1         | 0                     | 130   | 0             | 164.8        | 164.8            | 10.6 | 2.3         | 0             | 0.4 | 24               | 18.2             | 135              | 3.6  | 3.3  |
| Merua bari               | Majuli | 26.2       | 8.1 | 118           | 0                     | 66.7  | 0             | 79.4         | 79.4             | 10.6 | 0           | 0             | 0.3 | 8                | 12.1             | 70               | 0.7  | 2.1  |
| Borkolia chariali        | Majuli | 26         | 8   | 285.2         | 0                     | 163.7 | 0             | 232          | 232              | 7.1  | 0           | 0             | 0.5 | 32               | 27.9             | 195              | 3    | 4.8  |
| Pakajora                 | Majuli | 26.5       | 7.9 | 314           | 0                     | 178.2 | 0             | 225.9        | 225.9            | 14.2 | 7.5         | 7             | 0.5 | 38               | 19.4             | 175              | 8.9  | 4.8  |
| Kohardubi gaon           | Majuli | 26.4       | 8.6 | 224.8         | 0                     | 127.6 | 6             | 189.3        | 195.3            | 7.1  | 0           | 0             | 0.5 | 26               | 18.2             | 140              | 7.9  | 3.4  |
| Hazarika gaon            | Majuli | 25.5       | 8.5 | 180.3         | 0                     | 102.8 | 3             | 140.4        | 143.4            | 78   | 1.2         | 0             | 0.4 | 22               | 6.1              | 80               | 3.4  | 3.6  |
| Gereki gaon              | Majuli | 27.7       | 8.8 | 296.5         | 0                     | 169.6 | 12            | 225.9        | 237.9            | 17.7 | 0.5         | 0             | 0.4 | 38               | 23               | 190              | 4.9  | 4    |
| Bhogpur uriampora        | Majuli | 25.7       | 8.8 | 327.8         | 0                     | 186.2 | 12            | 262.5        | 274.5            | 10.6 | 1.8         | 4.2           | 0.5 | 38               | 25.5             | 200              | 5.9  | 3    |
| Rajguru bari             | Majuli | 25.6       | 8.4 | 442.5         | 0                     | 257   | 12            | 378.5        | 390.5            | 7.1  | 2.6         | 0             | 0.3 | 56               | 37.6             | 295              | 1.3  | 4.3  |
| Komargaon                | Majuli | 25.9       | 8.5 | 608.3         | 0.2                   | 354.8 | 6             | 244.2        | 250.2            | 74.4 | 10.7        | 36.1          | 0.3 | 72.1             | 40               | 345              | 17.1 | 4.4  |
| Kalita gaon              | Majuli | 25.6       | 8.4 | 264.4         | 0                     | 152.7 | 6             | 213.7        | 219.7            | 10.6 | 4           | 0             | 0.6 | 32               | 21.8             | 170              | 12.9 | 0.1  |
| Jugiikoibotro gaon       | Majuli | 25.3       | 7.9 | 486.2         | 0                     | 283   | 0             | 372.4        | 372.4            | 21.3 | 39.5        | 4.4           | 0.4 | 56               | 48.5             | 340              | 2.9  | 2.9  |
| Goalabari-jadavpur       | Majuli | 25.6       | 8   | 220.6         | 0                     | 127.7 | 0             | 158.7        | 158.7            | 7.1  | 21.2        | 0             | 0.6 | 34               | 10.9             | 130              | 8.9  | 2.9  |
| Kakori kota,chilakola GP | Majuli | 25.4       | 7.6 | 233.8         | 0                     | 137.1 | 0             | 85.5         | 85.5             | 28.4 | 8           | 17.1          | 0.4 | 22               | 12.1             | 105              | 13.9 | 3.8  |
| Malapindha mising gaon   | Majuli | 28.5       | 7.9 | 346.3         | 0                     | 201.5 | 0             | 238.1        | 238.1            | 17.7 | 52          | 0             | 0.4 | 44               | 25.5             | 215              | 12.8 | 4.1  |
| Malapindha koibotro gaon | Majuli | 26.6       | 8   | 316.2         | 0                     | 183.5 | 0             | 158.7        | 158.7            | 35.5 | 30.4        | 7             | 0.5 | 36               | 20.6             | 175              | 9.9  | 3.5  |
| Boridigha gaon           | Majuli | 26.2       | 8.4 | 222           | 0                     | 129   | 6             | 183.1        | 189.1            | 7.1  | 34.8        | 0             | 0.6 | 26               | 20.6             | 150              | 12.4 | 2.6  |
| Uluwani karkichuk gaon   | Majuli | 25.8       | 8.1 | 250           | 0                     | 145.3 | 0             | 225.9        | 225.9            | 7.1  | 0.4         | 0             | 0.5 | 36               | 14.5             | 150              | 11.3 | 3.2  |
| Rongachahi mising gaon   | Majuli | 26         | 8.4 | 275.6         | 0                     | 159.8 | 6             | 225.9        | 231.9            | 7.1  | 49.5        | 0             | 0.7 | 26               | 18.2             | 140              | 38   | 8.7  |
| Bapuchola gaon           | Majuli | 26         | 8.6 | 328.6         | 0                     | 191   | 9             | 274.7        | 283.7            | 10.6 | 41.1        | 0             | 0.6 | 36               | 26.7             | 200              | 27.3 | 14.1 |
| Lahon gaon               | Majuli | 26.8       | 8.4 | 533.1         | 0                     | 308.5 | 6             | 439.6        | 445.6            | 14.2 | 41          | 0             | 0.6 | 54               | 50.9             | 345              | 16.1 | 5.3  |
| Gosaibari gaon           | Majuli | 25.7       | 7.9 | 486.6         | 0                     | 281.7 | 0             | 293          | 293              | 24.8 | 14.9        | 4.2           | 0.6 | 44               | 29.1             | 230              | 9.9  | 37.1 |
| Phutsang gaon            | Majuli | 25.3       | 8.1 | 298.4         | 0                     | 171.7 | 0             | 177          | 177              | 24.8 | 8.3         | 0.5           | 0.7 | 30               | 23               | 170              | 5.3  | 3.3  |
| Ratanpur miri gaon       | Majuli | 26.2       | 8   | 451.9         | 0                     | 262   | 0             | 140.4        | 140.4            | 60.3 | 43.8        | 0             | 0.2 | 46               | 34               | 255              | 5.6  | 2.6  |
| Major deuri gaon         | Majuli | 26.5       | 8.2 | 251.6         | 0.1                   | 145.3 | 0             | 189.3        | 189.3            | 14.2 | 11.4        | 0             | 0.3 | 28               | 21.8             | 160              | 3.4  | 3.3  |

Annexure-II: Chemical data of post-monsoon water sample (Basic)

| Location                  | tion Block Structure |                   | Iron   | Manganese | Zinc  | Copper | Cadmium | Lead   |
|---------------------------|----------------------|-------------------|--------|-----------|-------|--------|---------|--------|
|                           |                      |                   |        | mg/L      |       |        | μg/L    | 4      |
| Permissible Limit         |                      | $\longrightarrow$ | 1      | 0.3       | 15    | 1.5    | 3       | 10     |
| Jengraimukh               | Majuli               | Hand pump         | 0.776  | 2.061     | 0.372 | BDL    | 1.619   | 6.951  |
| Garamur soru satra        | Majuli               | Hand pump         | 0.704  | 0.213     | 0.14  | BDL    | 0.346   | 6.03   |
| Mekheli gaon,PHED         | Majuli               | Tube well         | 3.878  | 0.803     | 0.806 | BDL    | 0.381   | 16.727 |
| Pohumora                  | Majuli               | Hand pump         | 0.704  | 0.878     | 0.815 | 0.021  | 0.311   | 18.434 |
| Kamalabari,PHED           | Majuli               | Tube well         | 7.938  | 1.048     | 0.322 | 0.021  | 0.241   | 6.951  |
| Nambotiya mari            | Majuli               | Hand pump         | 25.234 | 0.972     | 0.164 | BDL    | 0.207   | 17.584 |
| Kerala gaon               | Majuli               | Hand pump         | 3.878  | 0.231     | 0.437 | 0.007  | 0.207   | 20.12  |
| Merua bari                | Majuli               | Hand pump         | 1.07   | 0.213     | 0.204 | 0.007  | 0.137   | 32.067 |
| Borkolia chariali         | Majuli               | Hand pump         | 1.14   | 0.304     | 0.281 | 0.007  | 0.241   | 13.248 |
| Pakajora                  | Majuli               | Hand pump         | 0.92   | 0.086     | 0.194 | BDL    | 0.241   | 15.866 |
| Kohardubi gaon            | Majuli               | Hand pump         | 0.85   | 0.413     | 0.051 | 0.007  | 0.207   | 17.584 |
| Hazarika gaon             | Majuli               | Hand pump         | 89.6   | 0.616     | 6.554 | 0.036  | 0.311   | 23.848 |
| Gereki gaon               | Majuli               | Hand pump         | 8.13   | 0.897     | BDL   | 0.007  | 0.311   | 42.793 |
| Bhogpur uriampora         | Majuli               | Hand pump         | 14.68  | 0.878     | 5.141 | 0.007  | 0.311   | 15.866 |
| Rajguru bari              | Majuli               | Tube well         | 6.47   | 1.124     | 0.231 | 0.007  | 0.346   | 24.238 |
| Komargaon                 | Majuli               | Hand pump         | 0.92   | 0.122     | 0.21  | 0.007  | 0.311   | 15.866 |
| Kalita gaon               | Majuli               | Hand pump         | 0.78   | 1.862     | 0.184 | 0.007  | 0.276   | 17.584 |
| Jugiikoibotro gaon        | Majuli               | Hand pump         | 16.71  | 2.566     | 0.304 | 0.007  | 0.311   | 14.999 |
| Goalabari-jadavpur        | Majuli               | Tube well         | 0.63   | 1.162     | 0.174 | 0.007  | 0.311   | 19.28  |
| Kakori kota, chilakola GP | Majuli               | Hand pump         | 1.67   | 0.015     | 0.328 | 0.021  | 0.241   | 9.682  |
| Malapindha mising gaon    | Majuli               | Hand pump         | 1.216  | 1.645     | 0.417 | 0.007  | 0.276   | 9.682  |
| Malapindha koibotro gaon  | Majuli               | Hand pump         | 0.922  | 0.213     | 0.298 | 0.007  | 0.207   | 6.951  |
| Boridigha gaon            | Majuli               | Hand pump         | 6.376  | 0.953     | BDL   | 0.007  | 0.241   | 14.999 |
| Uluwani karkichuk gaon    | Majuli               | Hand pump         | 2.123  | 0.377     | 0.109 | 0.021  | 0.276   | 29.775 |
| Rongachahi mising gaon    | Majuli               | Hand pump         | 2.123  | 1.258     | 0.083 | 0.021  | 0.207   | 11.476 |
| Bapuchola gaon            | Majuli               | Hand pump         | 1.665  | 0.395     | 0.215 | 0.021  | 0.241   | 6.03   |
| Lahon gaon                | Majuli               | Hand pump         | 4.546  | 1.509     | 0.275 | 0.021  | 0.311   | 8.777  |
| Gosaibari gaon            | Majuli               | Hand pump         | 1.069  | 2.161     | 0.31  | 0.021  | 0.557   | 6.03   |
| Phutsang gaon             | Majuli               | Hand pump         | 1.969  | 0.213     | 0.199 | 0.021  | 0.241   | 6.03   |
| Ratanpur miri gaon        | Majuli               | Hand pump         | 0.995  | 0.728     | 0.275 | 0.021  | 0.381   | 1.536  |
| Major deuri gaon          | Majuli               | Hand pump         | 5.931  | 1.277     | 0.199 | 0.021  | 0.207   | 9.682  |

# Annexure-III: Chemical data of post-monsoon water sample (Heavy Metals)

| S N | Location                             | Block  | Structure    | Depth | pН   | EC<br>µS/cm | Turbidity | TDS    | TA as $CaCO_3$ | Cl     | Ca    | Mg    | TH     | Na    | K     | CO <sub>3</sub> | HCO <sub>3</sub> | $SO_4$ | NO <sub>3</sub> | F    |
|-----|--------------------------------------|--------|--------------|-------|------|-------------|-----------|--------|----------------|--------|-------|-------|--------|-------|-------|-----------------|------------------|--------|-----------------|------|
|     |                                      |        |              |       | 1    | at 25°C     | (NIU)     |        |                |        |       |       |        | mg/L  | ı     |                 |                  |        |                 |      |
| 1   | Jengraimukh                          | Majuli | Hand<br>pump | 7.82  | 8.34 | 431.10      | BDL       | 284.53 | 179.94         | 56.72  | 42.03 | 16.97 | 175.00 | 19.70 | 6.27  | 9.00            | 170.94           | 13.61  | 0.04            | 0.41 |
| 2   | Garamur soru<br>satra                | Majuli | Hand<br>pump | 11    | 7.28 | 221.40      | BDL       | 146.12 | 158.73         | 28.36  | 20.02 | 16.98 | 120.00 | 14.35 | 5.21  | BDL             | 158.73           | 7.65   | 0.29            | 0.35 |
| 3   | Mekheli<br>gaon,PHED                 | Majuli | Tube<br>well | 29    | 7.25 | 369.50      | BDL       | 243.87 | 177.04         | 21.27  | 28.02 | 16.98 | 140.00 | 6.05  | 27.66 | BDL             | 177.04           | 0.01   | 0.19            | 0.38 |
| 4   | Pohumora                             | Majuli | Hand<br>pump | 11    | 7.35 | 330.70      | 0.10      | 218.26 | 189.25         | 28.36  | 28.02 | 20.62 | 155.00 | 6.51  | 4.03  | BDL             | 189.25           | 1.60   | 0.36            | 0.32 |
| 5   | Kamalabari,P<br>HED                  | Majuli | Tube<br>well | 28    | 8.32 | 682.50      | BDL       | 450.45 | 274.51         | 60.27  | 34.03 | 42.46 | 260.00 | 18.21 | 25.99 | 12.00           | 262.51           | 2.26   | 1.84            | 0.39 |
| 6   | Nambotiya<br>mari                    | Majuli | Hand<br>pump | 11    | 8.31 | 333.00      | BDL       | 219.78 | 231.78         | 17.73  | 30.02 | 20.62 | 160.00 | 15.75 | 4.84  | 12.00           | 219.78           | 7.33   | 0.52            | 0.49 |
| 7   | Nambotiya<br>mari                    | Majuli | Hand<br>pump | 11    | 8.45 | 511.20      | 0.20      | 337.39 | 329.45         | 35.45  | 40.03 | 37.60 | 255.00 | 4.83  | 6.30  | 12.00           | 317.45           | 2.66   | 1.01            | 0.28 |
| 8   | Nambotiya<br>mari (Filtered)         | Majuli | Hand<br>pump | 14    | 8.41 | 506.90      | 0.10      | 334.55 | 326.35         | 17.73  | 50.04 | 31.53 | 255.00 | 9.22  | 6.26  | 15.00           | 311.35           | 5.48   | 0.11            | 0.32 |
| 9   | Kerala<br>gaon(Mokhina<br>LP school) | Majuli | Hand<br>pump | 11    | 8.35 | 287.50      | BDL       | 189.75 | 183.04         | 194.98 | 34.03 | 13.33 | 140.00 | 95.34 | 59.20 | 6.00            | 177.04           | 34.24  | 0.26            | 0.42 |
| 10  | Merua bari                           | Majuli | Hand<br>pump | 14    | 8.41 | 293.40      | BDL       | 193.64 | 183.04         | 31.91  | 32.03 | 14.55 | 140.00 | 17.76 | 4.60  | 6.00            | 177.04           | 20.55  | 1.46            | 0.33 |
| 11  | Borkolia<br>chariali                 | Majuli | Hand<br>pump | 11    | 7.82 | 162.80      | BDL       | 107.45 | 91.57          | 17.73  | 18.01 | 8.49  | 80.00  | 8.58  | 3.30  | BDL             | 91.57            | 7.08   | 0.91            | 0.50 |
| 12  | Pakajora                             | Majuli | Hand<br>pump | 11    | 8.36 | 352.40      | 0.30      | 232.58 | 225.67         | 21.27  | 26.02 | 25.47 | 170.00 | 19.26 | 7.73  | 12.00           | 213.67           | 16.89  | 0.14            | 0.49 |
| 13  | Kohardubi<br>gaon                    | Majuli | Hand<br>pump | 7     | 8.40 | 397.40      | BDL       | 262.28 | 262.20         | 21.27  | 26.02 | 27.90 | 180.00 | 25.65 | 6.01  | 18.00           | 244.20           | 7.20   | 0.82            | 0.46 |
| 14  | Hazarika gaon<br>namghar             | Majuli | Hand<br>pump | 14    | 8.41 | 304.70      | 0.40      | 201.10 | 204.36         | 21.27  | 34.03 | 14.55 | 145.00 | 19.27 | 4.59  | 9.00            | 195.36           | 5.14   | 0.93            | 0.45 |
| 15  | Hazarika gaon<br>(filtered)          | Majuli | Hand<br>pump | 14    | 8.44 | 344.60      | BDL       | 227.44 | 231.78         | 24.82  | 34.03 | 18.19 | 160.00 | 25.86 | 4.77  | 12.00           | 219.78           | 21.43  | 0.43            | 0.31 |
| 16  | Gereki gaon                          | Majuli | Hand<br>pump | 7     | 7.99 | 462.10      | BDL       | 304.99 | 225.88         | 46.09  | 38.03 | 19.40 | 175.00 | 29.01 | 13.16 | BDL             | 225.88           | 23.95  | 5.14            | 0.52 |

Annexure-IV: Chemical data of pre-monsoon water sample (Basic)

| S N | Location                      | Block  | Structure    | Depth | pН   | EC<br>μS/cm<br>at 25°C | Turbidity<br>(NTU) | TDS .  | TA as<br>CaCO <sub>3</sub> | Cl    | Ca    | Mg    | TH     | Na    | K     | CO <sub>3</sub> | HCO <sub>3</sub> | $SO_4$ | NO <sub>3</sub> | F    |
|-----|-------------------------------|--------|--------------|-------|------|------------------------|--------------------|--------|----------------------------|-------|-------|-------|--------|-------|-------|-----------------|------------------|--------|-----------------|------|
|     |                               |        |              | 1     | 1    |                        |                    |        |                            |       |       |       |        | mg/L  | ,     |                 |                  |        |                 |      |
| 17  | Bhogpur<br>(non-filtered)     | Majuli | Hand<br>pump | 14    | 8.39 | 399.10                 | 0.10               | 263.41 | 259.20                     | 35.45 | 32.03 | 29.11 | 200.00 | 15.78 | 5.31  | 15.00           | 244.20           | 4.77   | 0.40            | 0.49 |
| 18  | Bhogpur<br>(filtered)         | Majuli | Hand<br>pump | 14    | 8.36 | 424.00                 | BDL                | 279.84 | 295.82                     | 24.82 | 32.03 | 30.32 | 205.00 | 27.66 | 4.35  | 15.00           | 280.82           | 6.15   | 0.30            | 0.35 |
| 19  | Rajguru bari                  | Majuli | Tubewell     | 47    | 8.42 | 429.00                 | BDL                | 283.14 | 304.93                     | 21.27 | 24.02 | 35.18 | 205.00 | 28.54 | 4.62  | 18.00           | 286.93           | 1.74   | 1.36            | 0.51 |
| 20  | Komargaon                     | Majuli | Hand<br>pump | 11    | 8.39 | 545.00                 | BDL                | 359.70 | 378.29                     | 21.27 | 34.03 | 43.67 | 265.00 | 17.86 | 6.95  | 12.00           | 366.29           | 7.65   | 0.25            | 0.36 |
| 21  | Kalita gaon                   | Majuli | Tara<br>pump | 32    | 7.89 | 754.20                 | BDL                | 497.77 | 201.46                     | 88.63 | 20.02 | 54.60 | 275.00 | 17.53 | 7.97  | BDL             | 201.46           | 0.88   | 0.93            | 0.59 |
| 22  | Jugiikoibotro<br>gaon         | Majuli | Hand<br>pump | 8     | 7.91 | 358.90                 | BDL                | 236.87 | 195.36                     | 31.91 | 30.02 | 20.62 | 160.00 | 12.24 | 1.77  | BDL             | 195.36           | 0.01   | 0.23            | 0.27 |
| 23  | Goalabari-<br>jadavpur        | Majuli | Tube<br>well | 27    | 8.39 | 621.30                 | BDL                | 410.06 | 390.40                     | 31.91 | 56.04 | 38.81 | 300.00 | 9.29  | 3.70  | 18.00           | 372.40           | 9.58   | 0.75            | 0.68 |
| 24  | Kakori kota                   | Majuli | Hand<br>pump | 8     | 8.01 | 381.60                 | BDL                | 251.86 | 164.83                     | 24.82 | 28.02 | 20.62 | 155.00 | 9.38  | 5.81  | BDL             | 164.83           | 2.69   | 0.25            | 0.47 |
| 25  | Kakori kota                   | Majuli | Hand<br>pump | 11    | 7.93 | 234.10                 | 0.10               | 154.51 | 85.47                      | 17.73 | 20.02 | 3.63  | 65.00  | 8.68  | 13.13 | BDL             | 85.47            | 1.60   | 0.08            | 0.26 |
| 26  | Kakori kota<br>(Filtered)     | Majuli | Hand<br>pump | 14    | 8.36 | 1000.0<br>0            | BDL                | 660.00 | 250.09                     | 63.81 | 60.05 | 21.82 | 240.00 | 13.78 | 55.92 | 12.00           | 238.09           | 13.14  | 1.05            | 0.27 |
| 27  | Kakori kota<br>(Non-Filtered) | Majuli | Hand<br>pump | 14    | 8.32 | 407.50                 | BDL                | 268.95 | 140.31                     | 31.91 | 30.02 | 13.33 | 130.00 | 15.31 | 5.58  | 6.00            | 134.31           | 7.87   | 0.10            | 0.04 |
| 28  | Malapindha<br>mising gaon     | Majuli | Hand<br>pump | 8     | 8.34 | 298.80                 | BDL                | 197.21 | 143.31                     | 39.00 | 30.02 | 14.55 | 135.00 | 16.72 | 4.61  | 9.00            | 134.31           | 9.92   | 0.43            | 0.52 |
| 29  | Malapindha<br>koibotro gaon   | Majuli | Hand<br>pump | 8     | 8.31 | 500.00                 | BDL                | 330.00 | 292.82                     | 28.36 | 20.02 | 33.97 | 190.00 | 34.23 | 7.48  | 12.00           | 280.82           | 10.91  | 1.39            | 0.47 |
| 30  | Boridigha<br>gaon             | Majuli | Hand<br>pump | 8     | 8.34 | 358.20                 | 0.20               | 236.41 | 195.15                     | 24.82 | 26.02 | 27.90 | 180.00 | 7.79  | 5.30  | 12.00           | 183.15           | 10.72  | 0.84            | 0.62 |
| 31  | Boridigha<br>gaon             | Majuli | Hand<br>pump | 8     | 8.31 | 320.60                 | 0.20               | 211.60 | 207.36                     | 10.64 | 22.02 | 27.90 | 170.00 | 6.66  | 4.88  | 12.00           | 195.36           | 9.17   | 0.50            | 0.55 |
| 32  | Uluwani<br>karkichuk<br>gaon  | Majuli | Hand<br>pump | 11    | 8.39 | 220.60                 | BDL                | 145.60 | 164.62                     | 42.54 | 22.02 | 10.91 | 100.00 | 35.60 | 14.10 | 12.00           | 152.62           | 10.06  | 0.70            | 0.68 |
| 33  | Rongachahi<br>mising gaon     | Majuli | Hand<br>pump | 8     | 8.34 | 318.90                 | BDL                | 210.47 | 237.88                     | 14.18 | 42.03 | 12.12 | 155.00 | 27.18 | 5.28  | 12.00           | 225.88           | 11.05  | 0.14            | 0.59 |

| S N | Location                            | Block  | Structure    | Depth | pН   | EC<br>µS/cm | Turbidity                          | TDS    | TA as<br>CaCO <sub>3</sub> | Cl     | Ca     | Mg    | TH     | Na    | K     | CO <sub>3</sub> | HCO <sub>3</sub> | $SO_4$ | NO <sub>3</sub> | F    |  |
|-----|-------------------------------------|--------|--------------|-------|------|-------------|------------------------------------|--------|----------------------------|--------|--------|-------|--------|-------|-------|-----------------|------------------|--------|-----------------|------|--|
|     |                                     |        |              | _     |      | at 25°C     | $(\mathbf{N}\mathbf{I}\mathbf{U})$ |        | mg/L                       |        |        |       |        |       |       |                 |                  |        |                 |      |  |
| 34  | Bapuchola<br>gaon(non-<br>filtered) | Majuli | Hand<br>pump | 14    | 8.31 | 355.80      | BDL                                | 234.83 | 243.99                     | 21.27  | 24.02  | 19.41 | 140.00 | 32.54 | 6.97  | 12.00           | 231.99           | 3.85   | 0.07            | 0.44 |  |
| 35  | Bapuchola<br>gaon(filtered)         | Majuli | Hand<br>pump | 14    | 8.41 | 427.30      | 0.30                               | 282.02 | 298.82                     | 28.36  | 50.04  | 18.18 | 200.00 | 32.18 | 6.52  | 18.00           | 280.82           | 3.48   | 0.41            | 0.32 |  |
| 36  | Lahon<br>gaon(non-<br>filtered)     | Majuli | Hand<br>pump | 14    | 8.34 | 286.80      | BDL                                | 189.29 | 189.15                     | 24.82  | 16.01  | 13.34 | 95.00  | 33.16 | 11.70 | 6.00            | 183.15           | 2.10   | 0.98            | 0.57 |  |
| 37  | Lahon<br>gaon(filtered)             | Majuli | Hand<br>pump | 14    | 7.81 | 626.60      | BDL                                | 413.56 | 372.40                     | 21.27  | 86.07  | 18.16 | 290.00 | 8.75  | 7.41  | BDL             | 372.40           | 11.50  | 5.39            | 0.51 |  |
| 38  | Lahon gaon                          | Majuli | Hand<br>pump | 25    | 8.41 | 633.70      | BDL                                | 418.24 | 433.13                     | 31.91  | 100.08 | 10.87 | 295.00 | 31.68 | 19.56 | 18.00           | 415.13           | 9.07   | 0.52            | 0.18 |  |
| 39  | Gosaibari<br>gaon                   | Majuli | Hand<br>pump | 8     | 8.46 | 569.60      | BDL                                | 375.94 | 329.35                     | 28.36  | 58.05  | 27.88 | 260.00 | 9.95  | 6.63  | 18.00           | 311.35           | 5.83   | 1.15            | 0.55 |  |
| 40  | Phutsang gaon                       | Majuli | Hand<br>pump | 8     | 7.69 | 633.40      | 0.30                               | 418.04 | 268.61                     | 42.54  | 50.04  | 26.67 | 235.00 | 11.27 | 44.54 | BDL             | 268.61           | 3.40   | 1.32            | 0.81 |  |
| 41  | Ratanpur miri<br>gaon               | Majuli | Hand<br>pump | 14    | 7.79 | 601.10      | BDL                                | 396.73 | 140.41                     | 102.81 | 58.05  | 26.67 | 255.00 | 3.51  | 7.89  | BDL             | 140.41           | 6.04   | 1.59            | 0.33 |  |
| 42  | Major deuri<br>gaon                 | Majuli | Hand<br>pump | 14    | 8.31 | 389.00      | BDL                                | 256.74 | 213.46                     | 17.73  | 30.02  | 24.26 | 175.00 | 6.90  | 6.51  | 12.00           | 201.46           | 3.03   | 2.78            | 0.43 |  |
| 43  | Garamura<br>satra                   | Majuli | Dug well     | 4.75  | 8.39 | 349.60      | BDL                                | 230.74 | 207.36                     | 24.82  | 50.04  | 6.04  | 150.00 | 14.32 | 10.61 | 12.00           | 195.36           | 1.62   | 6.00            | 0.42 |  |
| 44  | Karkichuk, phuloni                  | Majuli | Hand<br>pump | 8     | 7.92 | 411.90      | 0.10                               | 271.85 | 225.88                     | 35.45  | 48.04  | 14.54 | 180.00 | 17.55 | 6.39  | BDL             | 225.88           | 6.23   | 0.68            | 0.32 |  |
| 45  | Karkichuk,<br>phuloni               | Majuli | Tube<br>well | 88.4  | 8.43 | 416.90      | BDL                                | 275.15 | 268.40                     | 28.36  | 42.03  | 21.82 | 195.00 | 22.63 | 6.26  | 12.00           | 256.40           | 6.32   | 0.80            | 0.33 |  |
| 46  | Karkichuk,<br>phuloni               | Majuli | Tube<br>well | 88.4  | 8.38 | 291.70      | BDL                                | 192.52 | 207.25                     | 24.82  | 26.02  | 15.76 | 130.00 | 25.06 | 15.35 | 18.00           | 189.25           | 2.57   | 1.49            | 0.21 |  |

| S N | Location                       | Block  | Structure | Depth | Fe     | Mn    | Zn Cu |   | Cd    | Pb     |  |
|-----|--------------------------------|--------|-----------|-------|--------|-------|-------|---|-------|--------|--|
|     |                                |        |           |       |        | m     | g/L   | • | μg/L  |        |  |
| 1   | Jengraimukh                    | Majuli | Hand pump | 7.82  | 0.736  | 0.286 | _     | — | 0.695 | 42.715 |  |
| 2   | Garamur soru satra             | Majuli | Hand pump | 11    | 4.295  | 0.5   | _     | — | 5.109 | 5.396  |  |
| 3   | Mekheli gaon,PHED              | Majuli | Tube well | 29    | 3.339  | 0.286 | _     | — | 0.695 | 4.056  |  |
| 4   | Pohumora                       | Majuli | Hand pump | 11    | 4.729  | 0.286 | —     | — | 0.355 | 4.727  |  |
| 5   | Kamalabari,PHED                | Majuli | Tube well | 28    | 0.128  | 0.479 | —     | — | 0.544 | 3.045  |  |
| 6   | Nambotiya mari                 | Majuli | Hand pump | 11    | 8.57   | 1.076 | —     | — | 9.676 | 2.706  |  |
| 7   | Nambotiya mari                 | Majuli | Hand pump | 11    | 29.423 | 1.576 | —     | — | 2.43  | 5.062  |  |
| 8   | Nambotiya mari (Filtered)      | Majuli | Hand pump | 14    | 0.371  | 1.054 | —     | — | 0.242 | 4.727  |  |
| 9   | Kerala gaon(Mokhina LP school) | Majuli | Hand pump | 11    | 0.314  | BDL   | —     | — | 0.28  | 2.027  |  |
| 10  | Merua bari                     | Majuli | Hand pump | 14    | 10.441 | 0.382 | —     | — | 1.864 | 3.72   |  |
| 11  | Borkolia chariali              | Majuli | Hand pump | 11    | 0.795  | 0.404 | —     | — | 0.167 | 2.367  |  |
| 12  | Pakajora                       | Majuli | Hand pump | 11    | 0.736  | 0.127 | —     | — | 0.091 | 2.706  |  |
| 13  | Kohardubi gaon                 | Majuli | Hand pump | 7     | 0.581  | 0.053 | —     | — | 0.393 | 4.056  |  |
| 14  | Hazarika gaon namghar          | Majuli | Hand pump | 14    | 2.549  | 0.597 | —     | — | 0.469 | 13.519 |  |
| 15  | Hazarika gaon (filtered)       | Majuli | Hand pump | 14    | 9.761  | 0.912 | —     | — | 0.318 | 5.396  |  |
| 16  | Gereki gaon                    | Majuli | Hand pump | 7     | 0.165  | 0.074 | —     | — | 0.318 | 4.392  |  |
| 17  | Bhogpur (non-filtered)         | Majuli | Hand pump | 14    | 7.785  | 1.408 | —     | — | 4.656 | 5.062  |  |
| 18  | Bhogpur(filtered)              | Majuli | Hand pump | 14    | 7.844  | 1.076 | —     | — | 0.544 | 3.383  |  |
| 19  | Rajguru bari                   | Majuli | Tubewell  | 47    | 0.165  | 0.022 | —     | _ | 0.242 | 2.706  |  |
| 20  | Komargaon                      | Majuli | Hand pump | 11    | 9.474  | 1.475 | —     | — | 0.242 | 2.706  |  |
| 21  | Kalita gaon                    | Majuli | Tara pump | 32    | 0.466  | 0.201 | —     | — | 0.393 | 2.367  |  |
| 22  | Jugiikoibotro gaon             | Majuli | Hand pump | 8     | 0.296  | 2.153 | —     | — | 0.205 | 3.383  |  |
| 23  | Goalabari-jadavpur             | Majuli | Tubewell  | 27    | 17.625 | 3.249 | —     | — | 1.789 | 4.056  |  |
| 24  | Kakori kota                    | Majuli | Hand pump | 8     | 0.24   | 1.982 | —     | — | 0.28  | 2.367  |  |
| 25  | Kakori kota                    | Majuli | Hand pump | 11    | 1.359  | 0.011 | —     | — | 0.129 | 2.706  |  |
| 26  | Kakori kota(Filtered)          | Majuli | Hand pump | 14    | 0.639  | 0.255 | —     | — | 0.959 | 4.056  |  |
| 27  | Kakori kota(Non-Filtered)      | Majuli | Hand pump | 14    | 0.296  | 0.032 | _     | — | 0.129 | 1.686  |  |
| 28  | Malapindha mising gaon         | Majuli | Hand pump | 8     | 0.409  | 0.064 | _     | — | 0.205 | 6.724  |  |
| 29  | Malapindha koibotro gaon       | Majuli | Hand pump | 8     | 2.754  | 2.977 | _     | _ | 0.242 | 3.72   |  |

Annexure-V: Chemical data of pre-monsoon water sample (Heavy Metals)

| S N | Location                     | Block  | Structure | Depth | Fe    | Mn    | Zn  | Cu | Cd    | Pb        |  |
|-----|------------------------------|--------|-----------|-------|-------|-------|-----|----|-------|-----------|--|
|     |                              |        |           |       |       |       |     |    |       | a/I       |  |
|     |                              |        |           |       |       | 1113  | 2/L | 1  | μg/L  |           |  |
| 30  | Boridigha gaon               | Majuli | Hand pump | 8     | 0.697 | 0.329 | —   | —  | 3.524 | 2.706     |  |
| 31  | Boridigha gaon               | Majuli | Hand pump | 8     | 2.082 | 1.364 | —   | —  | 0.77  | 2.706     |  |
| 32  | Uluwani karkichuk gaon       | Majuli | Hand pump | 11    | 2.082 | 1.564 | —   | —  | 0.205 | 4.727     |  |
| 33  | Rongachahi mising gaon       | Majuli | Hand pump | 8     | 1.359 | 0.447 | —   | —  | 0.205 | 1.686     |  |
| 34  | Bapuchola gaon(non-filtered) | Majuli | Hand pump | 14    | 2.17  | 1.497 | —   | —  | 0.544 | 3.045     |  |
| 35  | Bapuchola gaon(filtered)     | Majuli | Hand pump | 14    | 1.505 | 0.533 | —   | —  | 0.091 | 1.345     |  |
| 36  | Lahon gaon(non-filtered)     | Majuli | Hand pump | 14    | 2.686 | 2.279 | —   | —  | 0.167 | 2.367     |  |
| 37  | Lahon gaon(filtered)         | Majuli | Hand pump | 14    | 4.859 | 1.902 | —   | —  | 0.431 | 1.686     |  |
| 38  | Lahon gaon                   | Majuli | Hand pump | 25    | 0.504 | BDL   | —   | —  | 0.129 | 1.345     |  |
| 39  | Gosaibari gaon               | Majuli | Hand pump | 8     | 7.197 | 0.447 | —   | —  | 0.393 | 2.367     |  |
| 40  | Phutsang gaon                | Majuli | Hand pump | 8     | 0.314 | 2.754 | —   | —  | 0.431 | 2.027     |  |
| 41  | Ratanpur miri gaon           | Majuli | Hand pump | 14    | 7.904 | 1.043 | —   | —  | 0.242 | 1.4303636 |  |
| 42  | Major deuri gaon             | Majuli | Hand pump | 14    | 1.277 | 1.032 | —   | —  | 0.205 | 1.2693042 |  |
| 43  | Garamura satra               | Majuli | Dug well  | 4.75  | 6.148 | 0.468 | —   | —  | 0.205 | 1.1082448 |  |
| 44  | Karkichuk, phuloni           | Majuli | Hand pump | 8     | 1.256 | 0.651 | _   | —  | 0.167 | 0.9471853 |  |
| 45  | Karkichuk, phuloni           | Majuli | Tube well | 88.4  | 0.874 | 0.651 | _   | —  | 0.129 | 0.7861259 |  |
| 46  | Karkichuk, phuloni           | Majuli | Tube well | 88.4  | 0.756 | 0.586 | _   | —  | 0.393 | 0.6250664 |  |